A NOTE ON BAHADUR'S TRANSITIVITY

by

E. Greenshtein Purdue University

Technical Report #90-04

Department of Statistics Purdue University

January 1990

A Note on Bahadur's Transitivity

E. Greenshtein

Abstract

Let X_1, X_2, \ldots be a sequence of random variables, $(X_1, \ldots, X_n) \sim F_{\theta}^n$ $\theta \in \Theta$. In a work by Bahadur [1], it was shown that for some sequential problems, an inference should be based on a sequence of sufficient and transitive statistics $S_n = S_n(X_1, \ldots, X_n)$. A simple criterion for transitivity is given in Theorem 1.

Introduction

Let X_1, X_2, \ldots, X_m $m \leq \infty$ be a sequence of random variables, $(X_1, \ldots, X_n) \sim F_{\theta}^n$, $\theta \in \Theta$. Bahadur has shown in [1] that in a typical sequential decision problem it is enough to consider a sequence of sufficient and transitive statistics. It was shown that: The risk function of any sequential procedure Δ based on X_1, X_2, \ldots , can be achieved by a procedure Δ' based on S_1, S_2, \ldots , if S_1, S_2, \ldots is a sequence of transitive sufficient statistics.

Definition: The sequence S_n is transitive if under each of the measures F_{θ}^m , $\theta \in \Theta$ S_1, S_2, \ldots is a Markov sequence.

An important work dealing with the concept of transitivity is [2]. Some criteria for transitivity are given there using invariance considerations. The simple criterion stated in the following Theorem 1 seems to have been overlooked so far.

Section 1: We will assume in the sequel that:

(1)
$$F_{\theta}^{n} \ll F_{\theta_{0}}^{n}$$
 for some $\theta_{0} \in \Theta$, $n = 1, ...$

Let S_n be a sequence of sufficient statistics. Then:

(2)
$$dF_{\theta}^{n}(s_{1},\ldots,s_{n})=f_{\theta}^{n}(s_{n})dF_{\theta_{0}}^{n}(s_{1},\ldots,s_{n})$$

and it is obvious that S_1, S_2, \ldots is a Markov chain under F_{θ} iff it is a Markov chain under θ_0 .

AMS 1985 subject classification 62B05, 62L99, 60J10

Key words and phrases. Sufficiency, transitivity, Markov chain, sequential analysis

Denote $dF_{\theta}^{n+1}(s_1,\ldots,s_n,s_{n+1}|S_n=s_n)$ the conditional distribution of S_1,\ldots,S_{n+1} conditional on $S_n=s_n$. Then:

(3)
$$dF_{\theta}^{n+1}(s_1,\ldots,s_{n+1}|S_n=s_n) = \frac{f_{\theta}^{n+1}(s_{n+1})}{f_{\theta}^n(s_n)} dF_{\theta_0}^{n+1}(s_1,\ldots,s_{n+1}|S_n=s_n)$$

Lemma 1: Suppose S_1, S_2, \ldots is a sequence of complete sufficient statistics for the measures $F_{\theta}^n(s_1, \ldots, s_n)$ $\theta \in \Theta$. Then for every value s_n, S_{n+1} is complete and sufficient for S_1, \ldots, S_{n+1} in the parametric family $F_{\theta}^{n+1}(s_1, \ldots, s_{n+1} | S_n = s_n)$ $\theta \in \Theta$.

Proof: Sufficiency is obvious from (3), we will prove completeness.

Notice that $F_{\theta_0}^{n+1}(ds_{n+1}) \gg F_{\theta_0}^{n+1}(ds_{n+1}|s_n)$. Here $F_{\theta_0}^{n+1}(ds_{n+1})$ and $F_{\theta_0}^{n+1}(ds_{n+1}|s_n)$ are respectively the marginal distribution of s_{n+1} and the conditional distribution of S_{n+1} conditional upon $S_n = s_n$, under $F_{\theta_0}(ds_1, \ldots, ds_m)$. Hence we can write $F_{\theta_0}^{n+1}(ds_{n+1}|s_n) = \varphi(s_{n+1})F_{\theta_0}^{n+1}(ds_{n+1})$.

Let $h(s_{n+1})$ be a real valued function, then:

$$\int h(s_{n+1}) \frac{f_{\theta}^{n+1}(s_{n+1})}{f_{\theta}^{n}(s_{n})} dF_{\theta_{0}}^{n+1}(s_{n+1}|s_{n}) = 0$$

if and only if

$$\int h(s_{n+1})f_{\theta}^{n+1}(s_{n+1})\varphi(s_{n+1})dF_{\theta_0}^{n+1}(s_{n+1})=0.$$

By completeness of S_{n+1} , the latest is true for every θ implies $h(s_{n+1}) \cdot \varphi(s_{n+1}) \equiv 0$; this implies $h(s_{n+1}) \equiv 0$ for s_{n+1} belongs to the support of $F_{\theta_0}^{n+1}(ds_{n+1}|s_n)$, the proof now follows.

Theorem 1: Suppose S_1, S_2, \ldots is a sequence of complete sufficient statistics. Then S_1, S_2, \ldots is transitive.

Proof: Consider the family $dF_{\theta}^{n+1}(s_1,\ldots,s_{n+1}|s_n)$ $\theta \in \Theta$. By sufficiency of S_n , (S_1,\ldots,S_{n-1}) is ancillary for this family. By Lemma 1 S_{n+1} is complete and sufficient. Hence by Basu Lemma [3] S_{n+1} and (S_1,\ldots,S_{n-1}) are independent conditional on $S_n = s_n$.

Section 2: Examples

Most of the examples in [2], can be derived by applying Theorem 1. We will consider two examples; the first is taken from [2].

Example 1: Let $\{X_i\}$ be i.i.d. $X_i \sim N(\mu, \sigma^2)$. Let $\theta = \frac{\mu}{\sigma}$. Let $S_n = \frac{\overline{X}_n}{\sum_{i=1}^n (X_i - \overline{X}_n)^2}$, then

 S_n is sufficient for S_1, \ldots, S_n when the parameter of interest is θ , see [4] [2]. Presenting $N(\mu, \sigma^2)$ as an exponential family, with $(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ a minimal sufficient statistics for $(\frac{\mu}{\sigma}, \frac{1}{\sigma})$ we get $(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ is complete. Hence any function of $(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ is complete, in particular $S_n(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2) = \frac{\overline{X_n}}{\sum_{i=1}^{n} (X_i - \overline{X_n})^2}$. By Theorem 1 S_n is transitive.

Example 2: Let $(X_1, ..., X_m) \sim N(\theta, \Sigma)$, Σ known θ unknown. A sequence of complete minimal sufficient statistics exists, using the exponential family presentation. This sequence is transitive, by Theorem 1.

Acknowledgment

The observation stated as Theorem 1, was made thanks to a discussion with Professor L. D. Brown.

References

- [1] Bahadur, R. R. (1954). Sufficiency and Statistical Decision functions. Ann. Math. Stat. 423-462.
- [2] Ghosh, J. K. Hall, W. J., and Wijsman, R. A. (1965). The relationship between sufficiency and invariance, with applications in sequential analysis. *Ann. Math. Stat.* 575-614.
- [3] Basu, D. (1958). "On Statistics independent of sufficient statistics", Sankhya 20 223-226.
- [4] E. L. Lehman, Testing Statistical Hypothesis (1959).

Professor E. Greenshtein Department of Statistics Purdue University West Lafayette, IN 47906