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Abstract

In this paper we consider the selection and ranking problem in a nonpara-
metric setup when the populations IIy,II,...,II; are characterized by func-
tionals of the associated distribution functions 6(Fy),0(F3),...,0(F), where
0(F;) = [ g:dF;, fori=1,2,...,k and ¢1,92,...,gr are known bounded func-
tions. The problems of selecting the best population under the indifference
zone approach and the subset selection approach are considered. Approximate
non-randomized rules are obtained. Finally, some simulation studies concerning
these procedures are given.
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1 Introduction

In many practical situations, the experimenter often faces the problem of comparing
several competing populations, treatments in clinical trials or processes. The selection
and ranking methodology of ranking and selection provides the useful techniques for
solving such problems. There have been two main approaches to seleétion and ranking
problems, the indifference zone approach due to Bechhofer (1954) and the subset
selection approach due to Gupta (1956). In the indifference zone approach a single
population is chosen and is guaranteed to be the best (worst) with probability at least
equal to P*. However, in this formulation it is assumed that the best population
is sufficiently apart from the remaining k — 1 populations. In the subset selection
approach no such restriction on the parameter space is assumed. A random size
subset of k populations is chosen which is guaranteed to contain the best (worst)
population with probability at least equal to P*. In this approach the data or the
outcome of the experiment is used to decide on how many populations to select. For
an extensive review of these formulations see Gupta and Panchpakesan (1979) and
Gupta and Panchpakesan (1986).

Often in practice, especially for the new treatments, or for expensive products
there is not much information (the past data) which could lead us to assume a para-
metric model. In this paper we consider a ranking and selection problem in a non-
parametric setup. Considerable amount of work has been done on the problems of
selecting population associated with the largest a-th quantile (or the largest location

parameter) or selecting a subset of the populations which contains the population as-



sociated with the largest a-th quantile (or location parameter). Some references are
Barlow and Gupta (1969), Gupta and McDonald (1970), Gupta and Huang (1974),
Rizvi and Sobel (1967), and Sobel (1967). An extensive review of non-parametric
selection and ranking procedures is in Desu and Bristol (1986).

To formulate the problem, let Iy, Il,,...,IIx be the k independent populations.
The population II; is associated with the cumulative distribution function F;(.) on R?,

for ¢ =1,2,...,k. The population II; is characterized by the real-valued functional,

0(F) = [ ai(@)dF(a) ;

where g; is a known, real-valued bounded function on RP. In this paper we obtain
the “optimal” classical type procedures. Non-randomized procedures are proposed.
It is also shown that the proposed non-randomized selection procedures are “close”
to the optimal procedures. A lower bound for the probability of a correct selection
is also obtained. The non-parametric procedures which are developed in this paper
are robust and may also be used to do the preliminary analysis. We believe these
procedures would be of use in many selection and ranking problem where the dis-
tribution functions associated with the populations do not possess “nice” properties.

Some Monte Carlo results are presented in the Section 4.

2 Indifference Zone Approach

In this section we consider the problem of selecting the best (worst) population under
the indifference zone approach. The goal is to select the best population with proba-

bility at least P*, provided that the “distance” between the best population and the
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remaining k — 1 populations is at least d, where d is some positive number specified
by the experimenter.

As defined before, let IIy,I1,,...,II; be the k populations. First we consider the
problem of selecting the best population among k& population when the population II;
is characterized by the functional 8(F;) = [ gdF;, for i = 1,2,...,k and we are inter-

ested in selecting large (small) values of 8. If necessary, we make the transformation

g —infg
g —

supg — inf g’

and, without any loss of generality assume that sup g(z) = 1 and infg(z) = 0. Let
O < g3 < ... < Op—q} < Oy be the ordered values of 0;,0,,...,0;. The correct
pairing between ordered and unordered 6‘s is completely unknown. The population
corresponding to O is called the best population, in case of ties we assume that one
of them is tagged to be the best population. Our goal is to select the best population
with probability of correct selection at least P*. We need to define some notations.

Let

F=A{(F,F,...,Fy): F; is distribution on R? }.

In general, if we allow F' to take any value in F then there does not exist a procedure

which would satisfy the P* condition, hence we need to restrict the space. Let d be

a real number in the interval (0,1) and define, following Bechhofer (1954),
(")’ — {(01, 02, cen ,ak) : G[k] — 0[19—1] 2 d}

and

F'={F:0(F) e 0}.



Correct selection (CS) : Selecting the best population

Goal: For given P* (1/k < P* < 1), find a procedure R such that for any n;
Pp(CS|R,n) > P* for every F € F', (1)

where Pr(CS|R,n) denotes the probability of a correct selection for the procedure
R. The above condition is called the P*—condition.

In dealing with the above problem, we need to introduce some notations. Let
p; = (Pi1,Pizy-+»Pin); P = (p1, P2, - - -, Px), Where pj; >0 fori = 1,2,...,k and
for j = 1,2,...,n. Let Z;; be the independent Bernoulli random variables with
parameters p;; for ¢ = 1,2,...,kand y = 1,2,...,n, énd let Uy, Us,...,Us be the k

independent uniform random variables on interval (0,1/2). Let

S; = ZZ‘U + Us.

Jj=1
Define
¥i(p) = P(S: = ppax ). (2)
Now let Xi1, Xi2, . .., Xin be the observable independent random vectors from the
population IT;, forz=1,2,...k. Let X = (Xi1, X125+ 0e 0o Xkn), and let
3(X) = (9(X11), 9(Xa2), .-+ » 9(Xin))-

Now we propose the following selection procedures.
Procedure R;:
Select one of the populations Iy, Iy, . . . , Iz with probabilities 11 (§(X)), 2(g(X)), - - -

respectively.

» Pr(9(X



A natural non-randomized version of this procedure is:
Procedure Rj:

Select the population II; for which
$i(3(X)) = max +;(3(X)),

randomize in case of ties.

Notice that the procedure R, is randomized procedure and the procedure R; is a
non-randomized (randomization for ties considered) version of procedure R;.

First we prove that the decision rule 6(X) = (¥1(§(X)), ¥2(4(X)), ..., ¥e(§(X)))

is “optimum” decision rule for selecting the best population among k populations.

Theorem 2.1 :
The procedure Ry mazimizes the infimum of the probability of a correct selection. i.e.

If R’ is any other selection procedure then
Anf, Pp(CS|R) < Aot Pr(CS|R).

Proof:
Observe that inf g(z) = 0 and sup g(z) = 1.
Fix e > 0, and get a and bsuch that g(a) = €1, 9(0) =1—and 0 < g +e <e
Let P; be the counting probability measure induced by a distribution function F;.

Define

]—"0 _ fo(q’ez) _F. Pz({b}) = Pi Pi({a}) =1- pi nF. (3)

0<p; <1; fori=1,2...,k



Forz=1,2,...%k, define
A¢={AXZ X,‘j=b j:1,2,...,n.} and Tz(X)ZlAzI

Note that for a class of distribution functions Fo, the statistics T' = (11, T, ..., Tk)
is a complete sufficient statistic.

We also note that 7;,75,..., T, are independent and they have binomial distri-
butions with parameters (n,p;), (n, p2),.-.,(n, pr), respectively. Since the binomial
distribution has the monotone likelyhood ratio property, it is easy to see that for
every invariant prior, a rule which selects populations with largest 75 (randomize in
case of ties) is a Bayes rule for 0-1 valued loss function. Also notice that the risk
function of the procedure R; is same as the risk function of the Bayes rule.

Hence

inf Pr(CS|R)< __inf Pr(CS|Ry).

0(eg ,62) 0(€eq,€2)
Since € is arbitrary, letting € — 0 the result follows.
Remark 2.1 :
From this theorem we see that the procedure R; is the “most economical” in the
sense that for a given P* and d there doesn’t exist any other procedure which can
meet the basic probability requirement with a smaller sample. This was also proved

in a special case by Hall (1958)

Theorem 2.2 :

[1] Pr(CS|Ry,n) is increasing in n and

[2] Pr(CS|Ry1,n) is increasing function of O provided 01,6y, . . ., Opp—1) held fized.
[8] infres Pr(CS|Ry,n) — 1 asn — oo.
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Proof:

It is straightforward to see that
Pp(CS|Ry,n) = P(Yen + U = max (Yin + Uj)), (4)

where Yi,,Ysn, ..., Ys, are independent binomial random VaJria,bles'With parameters
(n,0n)), (7, 07), - - -, (1, Opxy) respectively, and Uy, Uy, ..., Ux are independent uniform
random variables over the interval (0,1/2). If we consider the problem of selecting
the best population among & binomial populations, the .procedure which selects the
population II; for which Y;, + U; = max;Yj, + U; is the best invariant and is
a Bayes procedure with respect to every invariant prior on @', provided that the
underlying loss function is permutation invariant, “monotone” (more loss for selecting
bad population) and nonnegative. Hence the Bayes risk of the procedure R; decreases
as n increases for every permutation invariant prior on ©’. Thus Pr(CS|Ry,n) is
increasing in n. From equation (2) it is clear that Pr(CS|Ry,n) is an increasing
function of f).

The third result is an immediate consequence of the strong law of large numbers.
This completes the proof of the theorem.

The above theorem insures that for a given P*, there exists no(P*, k, d) such that

Py(CS|Ry,n) > P* for every F € F'.

The procedure R; has nice properties, however it is a randomized procedure.
In practice the experimenter would like to use a non-randomized procedure. The
procedure R, is a non-randomized version of R;. The following theorem gives the

relationship between Pr(CS|R;) and Pr(CS|Ry).
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Theorem 2.8 :

For every FF € F
Pr(CS|R,) 2 2 Pr(CS|Ry) — 1. (5)
Proof: Let II; be the best population, and I be a indicator function then

P(CS|Ry) = Erln(@)=max (5=
2 / T sty >mas;s v:a@) 4F
> [ 1(3(e)) - maxyi(3(e))dF
= [ 1(5(@)dF — [ maxsi(g(a))dF
= Pr(CS|RY) ~ [ maxi(3(z))dF
2 PR(CSIR) ~ [ S ia@)ar
= Pr(CSIR) = [(1 = ta(a(@))dF
= Pp(CS|Ry) — 1+ Pr(CS|Ry)

= 2 Pr(CS|R;) —1.
This proves the theorem.

Remark 2.2 :

From Theorems 2.2 and 2.3 it follows that, for every F' € F’
Pp(CS|Rz,n) — 1 as n — oo.

Remark 2.3 :

Observing the method of the proof of the above theorem, we note that, the above



result holds for any multiple decision problem with 0-1 loss, R; is any procedure and

the procedure R; is a “non-randomized version” of the procedure R;.

As we noticed before we can generalize the procedures Ry and R, to obtain the
procedure for selecting the best population with highest parameter, when the popu-

lation II; is characterized by the functional
o(F) = [ gdF;

where g; is a known real-valued function with inf, ¢;(z) = 0 and sup, g;(z) =1, for
i =1,2,...,k. This can be done in the following way.

Define

3(@) = (g1(212), 91(212)s -+ G1(1n)s G2(21)s - G2(T2m)s o3 - Gi(@R1)s - - - Ge(Tkn).

Let 11,2, ..,%% as by equation (2).

Procedure R3 :

Select one of the populations ITy, II,, . . . , I with probabilities 4 (§(z)), %2(3(z)), - - . ¥(3(z)),
respectively.

A non-randomized version of this procedure is given by

Procedure R, :

Select the population II; for which
¥i(9(z)) = max ;(¢(2))

and randomize in case of ties.
Theorem 2.1 , Theorem 2.2 , Theorem 2.3 and the above remarks hold true for these

procedures also.
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Theorem 2.3 indicates that the procedure Ry (R4) is a “good” approximate non-
randomized version of procedure Ri (R3), whenever P* is large, and that is the case in
general. For example, if Pr(CS|Ry) > 0.99 then Pr(CS|Rz) > 0.98. The procedure
is good, in the sense that we lose at most 1 — P* due to non-randomization. We also
note that these procedures can be generalized to the problem of selecting the ¢ best
populations.

As given by equation (4) the probability of a correct selection can be written
in terms of the binomial probabilities. The sample sizes, n,(P*, k,d) (exact and
approximate) are tabulated by Sobel and Huyett (1957) for k¥ = 2,3,4,10, d =
0.05(0.05)0.5 and P* = 0.5,0.6,0.75,0.90,0.95,0.99. For k = 2 they conjectured that
the least favorable configuration occurs at py) = (1 4+ d)/2 and 0}y = (1 — d)/2. This

conjecture is shown to be true by Eaton and Gleser (1989).

3 Subset Selection Approach

In the subset selection approach we select a random size subset of the k populations
which contains the best population with probability P* (1/k < P* < 1). The main
feature of selecting a subset of random size is to allow the size to be determined by the
observations themselves. Also in the subset selection approach we need not assume
any restriction on the “parameter space”.

Now we describe the problem formally, let us assume that there are k populations
II;,1I,,...,lIz. The random variable associated with population II; has the cumula-

tive distribution function F;(.) on RP. Again the characterizing function is real-valued
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as defined earlier. Let ;) < [y, ..., < O be the ordered values of 6, 60,,...,0;. The
population associated with O is called the best population, in case of ties one of
them is tagged as the best population. Our goal is to select a non empty subset of
these k populations so that the selected subset includes the population associated
with O with large probability. Let CS denote the event of correct selection and
P(CS|R) denote the probability of correct selection for the procedure R.

CS: Selecting a subset of k& populations which contains the best population.

Goal: Find a subsect selection procedure R for which
P(CS|R) > P~.

Let the decision space D consists of 2¥ — 1 subsets of the set {1,2,...,k} we write

this formally as

D={a:aC{l,2,...,k}and |a| > 1}.

Action @ = {i1,72,...,%,} € D corresponds to the selection of the populations
IL;,, Iy, . .., ;.. A decision “a” is called a correct selection (CS) if the best pop-
ulation is included in the selected subset. We implement the procedures established
by Gupta and Sobel (1960) for selecting a subset of k binomial populations con-
taining the best population. To define the procedures we need some notation. Let
i = (Pit,Pizy- -y Pin)y 0 < pij < 1fori=1,2,...,k and for j = 1,2,...,n. Let
p= (Pl,Pz, e ,pk)-

For every a € D define

Yo(p) = P(min§: > max S; — d > max5y), (6)
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where S; = 37, Z;; for i = 1,2,...,k. Fori=1,2,...,k and forj=1,2,...,n Z;
are independent Bernoulli random variables with P(Z;; = 1) = p;;. Let Xi1, Xio, ... , X

be the observable random vectors form population II; for ; = 1,2,...,k. Let

9(z) = (9(z11), 9(212), - - -, 9(T1n), - - -, 9(Tk1), 9(TR2), - - -, G(Tkn)).-

Procedure R, :

Having observed X = z, select a subset of populations IL;,,1L;,, . .., I, with prob-

ability v.(g(z)), where a = {i1,43,...,4,}.

Theorem 3.1

Jnf Pr(CS|R,) = oot Fo(Y1 2 {2;2’25’2 —d) (7)
where Y1,Ys,..., Y, are i. i. d. binomial random variables with parameter (n, ).

Proof:

Let II; be the best population then

Pr(CS|R;) = Er Y. %.(X)

a:l€a
= FEpP(5 > Jax S; —d| X = z),
where S; = Zg“:l Z;; and for given X = z , Z;; ‘s are independent Bernoulli ran-
dom variables with P(Z;; = 1|X = z) = g(z;;). Hence marginally Sy, Ss, . .. , Sk are
independent binomial random variables with parameters (n,641),(n,8s),...,(n,60),
respectively.

Hence we have
FEPr(OSIR) = ol (5,2 o 5= )
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From Gupta and Sobel (1960) we know that

i c—d) = i > . —d).
e, P52 oax Simd) =, ol P52 oy S5 = d)

This completes the proof of the theorem.

In the case of k = 2, Gupta and Sobel (1960) proved that

inf  P(5 > fax S;—d)

f1=02=...=0x

is attained at 6; = 6, = 1/2. For k > 2, the common value 6y at which infimum
takes place is not known. The conservative values of d based on the normal approx-
imation have been tabulated by Gupta and Sobel (1960) for £ = 2(1)20(5)50, n =
1(1)20(5)50(10)100(25)200(50)500 and P* = 0.75,0.90,0.95,0.99. Gupta, Huang and
Huang (1976) obtained consurvative values of d when P* = 0.75,0.90,0.95,0.99 and
n = 1(1)4 when k = 3(1)15, and n = 5(1)10 when & = 3(1)5.

The procedure R; is randomized, the non-randomized version of this procedure is
given by
Procedure R :

After observing X = z select a subset of populations II; ,II;,,..., I, if

¥a(3(2)) = maxya(§(2)),

where a = {%,12,...,%,}, randomize in case of ties.

As in the previous section we can generalize these subset selection procedures when
population II; is characterized by the functional 8(F;) = [ ¢g;dF;, for i = 1,2, ...k.

As in the indifference zone approach case, we are not been able to get lower bound

for the probability of correct selection of procedure R.. We feel however that, there

14



exists a constant ¢ = ¢(n) and a non trivial subset Fy of F such that
Pp(CS|R)) > Pr(CS|R,) — ¢(1 — Pr(CS|Rs)),

VF € Fo.

4 Examples

Let us suppose that there are k populations, II;,II,..., I}, associated with distri-
butions functions, Fi, Fs,..., Fj, respectively. In this section we will present some
examples and the Monte Carlo results. Standard errors for all the estimates is less

than 0.035 .

Example 4.1 :

Let
L ol :
fi(z) = 3¢ #l fori=1,2,...,k,

where f; is the density associated with F; for ¢ = 1,2,...,k. We want to select
the population associa.ted with pp). Take g as c.d.f. of double exponential random
variable with parameter u. The problem of selecting the population with the highest
location parameter is same as the problem of selecting the population with the highest
functional. Now we will use the nonparametric procedures and make comparisons.
Let

R;: The nonparametric rule.

Rs : Non randomized version of the rule R;.
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Ronedian : Selects the population associated with the highest median.

Romean : Selects the population associated with the highest mean.

pr=p2=p3=ps =0, ps=1,n=13,

P(CS) p=2 p=0.75 pu=0.50
R, 0.4823 0.6815 0.665
Ry, 0.690 0.882 0.880

Roedian  0.887 0.887 0.887

In practice we may not know the configuration; then we estimate pfx and pp-y)

by sample medians and set y = estimate of pge—1] + 3/4(pir) — pr-1))- We will take

n = 23
P(CS|Ry) = 0.69
P(CS|Ry) = 0.89
P(CS|Rmedian) = 0.93
Example 4.2 :
Let

Fi(z) =

fori=1,2,...,k.
1+e_($_ﬂi)’ or = b

pr=pr=ps=ps=0, ps=1
g — c.d.f of logistic, p = 0.75
P(CS|R:) = 0.550
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P(CS|R,) = 0.806
P(CS|Rmedian) = 0.748

P(CS|Rmean) = 0.803

As in the previous example we will estimate pp and ppp—1) and by sample medians

and set u = estimate of pp_1j + 3/4(pup — Mmp-1)). Let n =23

P(CS|Ry) = 0.69
P(CS|Ry) = 0.92
P(CS|Rmedian) = 0.86

P(CS|Rean) = 0.91

In above examples we observe that P(C'S|R1) < P(CS|R2). These results indi-
cate that the nonrandomized version of the nonparametric procedure would be better
when the associated distribution functions are stochastically increasing in the param-
eters.

This can be proved for ¥ = 2 and n = 1 in the location parameter case. Let
F(.) be the associated distribution function, X; be the observable random variable
from the population II; with location parameter y; and X, be the observable random
variable from population I, with location parameter ys. Let g be the distribution
function of X,. Let II; be the best population.

Then

P(CSIB) = Ela(Xa)(1 - o(X2)) + 59(X:)a(Xs) + 3(1 = g(X0)(1 - (Xa))]

17



B[ — S(0(X2) + (X)) + 59(X)9(Xo)]

= SElg(X) — g(Xp) +1].

Let Z; and Z, be the independent random variables with common distribution func-

tion F(.). Set Z = Zy — Z,. We have the following;

P(CS|Ry)

1
= §[P(—,LL1+M2 < 7Z <0)+1]
Since P(Z > 0) = P(Z < 0) = 1/2, we have,

P(—p1+ p2< Z<0)+ P(Z >0).

b | —

It is straightforward to see that

P(CS|Ry) = P(Z > —p+ pa).

Hence

P(CS|R;) > P(CS|R)

if and only if

-;—[P(Z S — i+ ) = P(Z > 0) +1]

1
P(Z > —pq + p2) > §P(—p1 +p2 < Z<0)+P(Z>0)

which is true if and only if

1
P(Z>—/11+/12)—P(Z>0):P(—/11+,U,2<Z<0)>'2—P

which is always true.

18
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