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ABSTRACT

Weighted distributions and selection models arise when a random sample from the
entire population of interest cannot be obtained or it is wished not to do so. Instead, the
probability or density that a particular value enters the sample gets multiplied by a non-
negative weight function (weighted distributions) that may, in particular, adopt the form
of the indicator function of some selection set (selection models). Bayarri and DeGroot
have studied in a number of papers many interesting statistical issues arising when dealing
with these models. This paper will be a brief, unifying review of their joint work on the
subject.



1. INTRODUCTION

Over the years, friends and colleagues have often asked me when and how did Morris
DeGroot and myself get first interested in weighted distributions and selection models. The
answer is very simple: since the very first day of my one-year visit to Carnegie Mellon
University during the academic year 1985/86. Morrie was showing me CMU around,
introducing me to faculties there, explaining how could I get books and secretarial work
and the alike, and while so doing we were chatting in an informal way about various
statistical problems of the kind Morrie used to produce and that always led to interesting,
stimulating, and lively discussions among the people around. One such problem was in
fact a question: “Do you think that, given the choice, we should go for a sample that
has been obtained in some selected subset of the sample space, maybe some set in which
observations are very difficult to obtain (as in the tails), or should we always stick to the
usual random sample over the whole population?” Nor that I had the singlest clue at
the moment, but that was in fact the starting point of a long and productive (and for me
extremely interesting) joint work in the subject; indeed, some few months later Morrie gave
our first joint talk at a meeting on weighted distributions. The name BAD (Bayarri and
DeGroot) was given to us by Nozer Singpurwalla in his discussion of our paper presented

at the third Valencia Meeting, and we did enjoy it ever since.

In our work on selection models and weighted distributions, we treated different sta-
tistical aspects. Qur first incursions in the subject appear in BAD (1987a, 1988), where we
formulate the problem, give several examples, and discuss inferences in various selection

models.

We got interested very soon, indeed since the very beginning, in the question of
whether a selection sample (that is, a random sample obtained in some subset of the sample
space) could be more informative than a random sample over the whole population. Our
first results pertain to the comparison of the information in a random sample from the
whole population with the information in a selection sample according to the criteria of
Fisher information and pairwise sufficiency. These results appear in BAD (1987b). We

were working in this subject while Morrie was visiting OSU (Ohio State University) and



got Prem Goel also interested in comparing selection experiments with unrestricted ones;
we had many interesting conversations on the topic. Eventually, a by—product of our study
of Fisher information in selection models got elaborated, investigated, took entity by itself
and became a simple and interesting new property of discrete distributions, as appears in

Bayarri, DeGroot, and Goel (1989).

In the meantime, we came across with various striking statistical features that appear
when analyzing selection models; also, our favorite example (that of properly analyzing
statistically significant results that are published in the scientific literature) got studied
from different point of views and discussed with friends and colleagues. (I collected part of
our results in BAD, 1991.) This example also got us interested in the issue of whether we
should worry about observations that we do not observe, in apparent contradiction with the
likelihood principle (at the time we were also pursuing some work on the likelihood function
and likelihood principle), which led us to explicitly consider the selection mechanisms that
could have produced the actual selection sample. All these topics are considered in BAD,

1990.

In the last paper that we jointly wrote in the subject (BAD, 1989), we turned back
to our primary question, namely, whether weighted samples can be more informative than
random samples. In that paper we moved from selection models to more general weighted
distributions, and we definitely abandoned Fisher information and explored sufficiency of
experiments. We wrote that paper while Morrie was fighting against cancer. Along all
those years, our work did benefit from comments and conversations with many friends, all
of whom would make too long a list to appear here; I would nevertheless like to especially
acknowledge James Berger, Prem Goel, Joel Greenhouse and Satish Iyengar, with all of
whom we spent many hours in fruitful and interesting discussions in the subject and whose

remarks directly influenced, improved or motivated some of our results.

The need for writing a review paper often arose, but we never got it written. This
intends to be a hopefully good review of BAD’s work. The main goal has been to stress the
ideas and inferential aspects more than the specific results. Thus, derivation of posterior

distributions, proofs, ..., etc. are not given here; also, technical details have been kept to a



minimum.

The paper has 5 sections the first of which is this introduction. In section 2 we
present the BAD approach to weighted distributions and selection models, give examples,
and motivate their use. In section 3 some interesting statistical aspects that appear when
carrying out a Bayesian analysis of selection models are discussed. Section 4 is devoted
to the analysis of published significant results and section 5 to the comparison of the

information in weighted samples with the information in a random sample.

2. WEIGHTED DISTRIBUTIONS AND SELECTION MODELS

Suppose that the random variable (or random vector) X is distributed over some
population of interest according to the (generalized) density g(z|d), and that it is desired
to make inferences about §. The usual statistical analysis assumes that a random sample
Xi,...,Xn from g(z|f) can be observed. There are many situations, however, in which
a random sample might be too difficult or too expensive or impossible to obtain and
statistical models has to then be developed to incorporate the non-randomness or bias in
the observations. (We will see later that in some situations, even if a random sample can
be obtained, the experimenter may decide not to do so, since a carefully biased sample
may be more informative about 8 than a random sample.) Weighted distributions arise
when the probability (or density) that the value z enters the sample gets distorted so that
it is multiplied by some (non-negative) weight function w(z), which in turn may involve
some unknown parameters. Thus, the observed data is random sample from the following
weighted version of g(z|9) : )

w(z) g(z
f(z|6) = %, (2.1)
where the expectation in the denominator is just a normalizing constant so that f(z|6)
integrates to 1. Distributions with deﬁsities of the form (2.1) are called weighted distribu-
tions by Rao (1965) who first unified the available results, although their use can be traced
to Fisher (1934). Good surveys in the topic are Patil (1984) and Rao (1985).

As an example, suppose that the number of talks X that participants in a given

statistical meeting would attend has distribution ¢g(z|#) and that, while in the meeting, we
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are interested in inferring about 6. In all statistical meetings a list of participants is usually
available, so that the obvious way to get a random sample X1, X, ..., X, from ¢(-|§) would
be to select n participants at random from that list and ask them how many conferences
are they attending. This procedure can, nevertheless, be inconvenient, cumbersome and
time consuming, since the particular participants thus selected have to then be located and
interviewed. An easier and simpler way to get observations X; would be to select one talk
(or several talks) at random and then n people among those attending the talk. Notice,
however, that in this case the more talks a participant attends (the larger the value of
X)) the more likely it is for him or her to be present in the sample. In other words, each
observation is size-biased in the sense that its density is given by (2.1) where w(z) is an
increasing function of z. Under certain equilibrium conditions, it is standard to assume
that w(z) = z; this particular case is sometimes referred to in the literature as length-
biased sampling. A more general formulation would be to take w(z) = z” and to treat 7
as an unknown parameter. Examples can be found in the references above as well as in
Patil and Rao (1977) and Patil (1978). Mahfoud and Patil (1982) relate properties of the
original distribution g(z|6) and its weighted version f(z|9).

Often, as commented above, the weight function w(z) is uncertain and sometimes this
uncertainty can be easily modeled by introducing a parameter 7 into the function w(z).

Thus, a general formulation of (2.1) is

oy _wlalr)e(lo)
1(=16,7) Jw(z|r)g(z|6)dz’ (2.2)

where ¢ is restricted to be a density whereas the only restriction on the function w is
that it has to be non-negative and such that the integral in the denominator is finite.
It is however worth emphasizing the fact that both functions w and g enter (2.2) in a

completely symmetric fashion.

Various interesting conclusions then follow. First, the restriction that g is a density
can be removed as long as it is a non-—negative function such that the integral in (2.2) is
finite. Hence, the distinction between weight function and the unweighted data—generation

process becomes meaningless and they should receive the same statistical treatment. In
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particular, 8 and 7 can be seen to have identical status in (2.2). A Bayesian analysis of
these models, in which a joint distribution for 8 and 7 gets revised, is more in accordance
with this fact and seems therefore more sensible than the usual non-Bayesian approach in
which the learning processes about 6 and 7 are regarded very differently (see, e.g., Patil
and Rao, 1977, and references there). Each observation does carry information about 6
and 7 and it is impossible to learn about one of them without simultaneously learning

about the other.

A particular case of weighted distributions to which BAD gave special emphasis are the
the so—called selection models (or truncation models) in which observations are obtained

only from some “selected” portions of the population of interest.

For example, suppose that the distribution of a certain vector X of characteristics in
a given population is represented by the density g(z|6) and that individuals for whom the
value of X lies in some set S manifest a certain disease. Assume that we are interested in the
distribution of X in the whole population but that X is only measured for individuals who
manifest the disease because the observation of X is expensive, painful, or even dangerous

(involving perhaps some sort of surgery).

In this example, inferences about 8 and S have to be based on data obtained from
people who manifest the disease because X will be observed for these persons in the course
of their treatment. The density of z for such a person is given by (2.1) where the weight
function w(z) is of the form:

w(w)z{l’ ifzels, (2.3)

0, otherwise.

When selection occurs, data consist of observations of a random sample X;,...,X,

of the selection model f(z|d,S) which, from (2.1) and (2.3) is given by

g(z|6)

f(x|0, S) = m for z € S, (24)

and f(z|6,S) = 0 otherwise. A random sample from (2.4) will be called selection sample

and the set S, selection set. Moreover, if S is unknown and can be characterized by some
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parameter 7, then 7 will be called selection parameter. The name “selection models” in
this context is due to Fraser (1957, 1966) although the term “selection” was used in a more

general setting by Tukey (1949).

Selection samples are common in scientific work and in our daily lives. For example,
a random sample from a uniform distribution over an unknown subset of the real line
or the plane can be regarded as a selection sample (provided the restriction of g being a
density is indeed removed). This and related problems are treated in DeGroot and Eddy
(1983). Problems of selection bias in a regression context have been widely studied in
the econometrics literature (see, e.g., Amemiya, 1984; Heckman, 1976; Little, 1985, and
references there). In the rest of the paper we will restrict ourselves to problems in which

g(z|6) is a univariate distribution. We will let G denote the d.f. corresponding to g.

The simplest selection model in this context occurs when selection is from a known
density g(z) and S is one of the tails of the distribution, say the upper tail containing all
the values z > , where 7 is uncertain. In this case, (2.4) reduces to:

flz|r) = lf(—ézﬂ forz >, (2.5)

and f(z|r) = 0 otherwise.

Other simple yet very frequent selection models occur when 6 in (2.4) is unknown but
the selection set S is known. This is, for example, the case when, in industrial settings,
detailed measurements are made only on items which are within certain specified limits.
One interesting particular case arises when selection occurs in one of the tails, say the
upper one, of the distribution. In this case, the selection model (2.4) is given by:

g(|6)
>T
f(z]6) 1 +16) for = , (2.6)
and f(z|0) = 0 otherwise, where 7 is a specified value.

Selection models of this type arise naturally when sampling from historical records. In
such problems, observations from the entire historical population are usually not available

and inferences have to be based on observations that were recorded just for some selected
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group. For example, estimation of the distribution of the height of the population might
have to be based on the historical observations of the heights of members of the army, for

which there was a known minimum required height 7 (Wachter and Trussell, 1982).

Other practical problems in which 7 is known arise in the analysis of data reported to
reinsurance companies, which only receive claims that exceed 7, where the value of 7 is fixed
by agreement with the original insurance company. The reinsurance company, however, is
often interested in making inferences about the entire distribution of claims. Still another
example is provided by situations in which measurements are made with instruments of
a given sensitivity so that some items cannot be recorded; for example, in astronomy,
only sufficiently bright objects can be observed. Sampling from a truncated binomial
or Poisson distribution in which the zero class is missing (r = 1) is another selection
model widely treated in the literature (see, e.g. David and Johnson, 1952; Irwin, 1959;
Cohen, 1960; Dahiya and Gross, 1973; Sanathanan, 1977; Blumenthal and Sanathanan,
1980; and the survey paper by Blumenthal, 1981); more generally, the lowest 7 — 1 classes
might be missing, where 7 is a known non-negative integer. BAD’s favorite example of
selection models with known 7 occurs when only experimental results that are found to
be “statistically significant” are published in the scientific literature; we will turn back to

this example in section 4.

Finally, consider selection models in which both 6 and S are unknown but there exists
a known relationship between them, as for instance selection models in which Pr(X € 5|6)
is known. When X is univariate and S is the upper tail of the distribution having fixed

probability «, then the density for this selection model is
f(z|8) = i- o(zlf)  foro>G(1— alg), @2.7)

and f(z|f) = 0 otherwise. An illustration of this type of problem is provided by a simplified
version of the medical example mentioned at the beginning of this section, namely when
individuals manifest a certain disease whenever the value of an associated latent random
variable X exceeds some critical threshold 7, and it is known that the proportion of

individuals in the population who have the disease is a. If, on the basis of the values of X
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observed in a random sample of patients having the disease it is desired to make inferences

about the distribution of X in the whole population, then model (2.7) should be used.

Selection samples also occur in much more general settings of our daily lives. Consider
the news that is reported on newspaper or on television: because of space and time
restrictions, it is a selection sample from the events of the day. Another entertaining

example is provided by what we can wrongly perceive as consecutive “perfect” predictions,

as described in DeGroot (1986, chapter 1) and in BAD (1988).

3. INADEQUACIES OF “ROUTINE” PRIOR DISTRIBUTIONS

In this section we will show that, when dealing with selection models, the naive use of
“routine” type of prior distributions can be inadequate. By “routine” priors we mean the
ones that are usually assumed in much of Bayesian work, namely non-informative priors

or conjugate priors.

Selection models provide very simple examples where improper priors always lead to
improper posteriors, no matter which observations or how many observations have been
obtained. Consider the case in which selection occurs in the upper tail of a completely
specified g(z), so that the selection model is given by (2.5). Then, if = (21,...,z,) is a

selection sample from (2.5), the likelihood function 4(7) is
Ur)x [1-G(r)]™" for 7 < min(z4,...,2,) (3.1)

and £(7) = 0 otherwise. Based in (3.1), a natural choice for a conjugate prior density for
T 18

&1(t) x [1 = G(7)]* for r <b (3.2)
where the hyperparameters a and b are constants to be specified. A distribution of this
form may be appropriate in problems in which the support of g(-) is bounded on the left,
so the possible values of 7 are also bounded on the left. However, if the possible values
of 7 are unbounded from the left, then the density £;(7) will be improper for every real
number a. Although Bayesians are used to improper prior distributions, this particular

one is completely useless, since it is conjugate, and hence the posterior distribution will
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also be improper, for all values of n and all values of z;,z5,...,2,. Thus if it is desired
to carry out an analysis under a conjugate distribution, a different form for the conjugate

prior has to be selected.

There are, indeed, many different families of prior distributions that are closed under

sampling. For example, any density of the form
€(7) o< h(7)[1 — G(7)]* for 7 <b (3.3)

will have this property, where h could be any function such that the right-hand-side of
(3.3) is integrable over 7. In particular, i could be taken to be of the form

_J0 forr<e
h(T)_{l forT>¢ (3.4)

so as to specify a lower bound ¢ for the possible values of 7. However, a more suitable

choice in this case is to simply take . to be g. The resulting prior density:
E2(1) o< g(7)[1 — G(7)]* forr <b (3.5)

is proper for all values of a and the Bayesian analysis is straightforward.

It should be emphasized that it is not the particular form of (3.2) which makes the
posterior improper. As a matter of fact, any improper density &,(7) for which the area
under the lower tail is infinite will result in posterior distributions that are improper for
all n and all z1,3,...,2,. Moreover, if {(7) is a proper prior for which exactly the first
k moments exist (k = 0,1,...) and for which higher moments do not exist because the
integral f_coo |7|¥+1€(7)dr is infinite for all ¢, then the corresponding posterior distribution

¢(7|z) will also have exactly k moments for all n and all z (see BAD, 1990).

Simple examples outside the selection models framework in which the election of
the prior determines whether the posterior will be proper or improper, and its number
of moments are provided by sampling binomial data with both parameters unknown (see
Kahn, 1987), and the simple mixture model f(z|0) = Ago(z)+(1—A)g(z|8), where go(z) is

some completely specified density. It can be immediately seen that if the prior distribution
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for 0 is improper, so will be the posterior, and that if the prior is proper with exactly k

moments, the posterior distribution will also have exactly £ moments.

In the examples just presented, we might say that data have little influence on the
posterior distribution in the sense that they cannot make proper an improper prior. Se-
lection models also provide examples of the opposite situation for which, under conjugate
analysis, the posterior distribution is not at all influenced by the hyperparameters of the

prior after just a finite number of observations are obtained (see BAD, 1990).

Still another way in which conjugate prior distributions can work poorly with selection
models is by exhibiting an inappropriate dependence on the experiment to be performed.
Assume, for example that the underlying density g(z|f) is a member of an exponential

family so that
9(2|0) = r(z)s(6) exp{u(z)v(6)}, (3.6)
and that the value z is observed only if z > 7, where 7 is a known value. In this case, the

density f(z|) is given by (2.6), and it follows that the likelihood function £(8) for 8 based

on the selection sample & = (z1,...,z,) is given by
[s(6)]™ exp{v(6) 21 u(zi)}
£(0) o = 3.7
©) AEEEnE 41
Thus, a conjugate prior density for § based directly on the form of £(6) is
6)]* bu(6

[1-G(rlf)} ~
where the hyperparameters a,b and c are specified constants. Although the form of any
conjugate prior distribution is always related to the experiment to be performed, the form
of (3.8) seems especially unsuitable because of its explicit dependence on the value of 7. It
is true that in some cases 7 and 6 are related as, for example, in the sampling from historical
records where 7 was the minimum required height to join the army; obviously 7 should be
assumed to be related to the mean height of the population. In most problems, however,
the fixed value of 7 conveys no information about 6: for example, it would usually be
unsuitable to assume, in the astronomy example, that the mean number of stars in regions

of interest is related to the sensitivity of the observing instrumental.
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It seems more appropriate in these problems to use a prior distribution that is conju-
gate with respect to the unrestricted model, which is equivalent to using the value ¢ = 0
in (3.8). With this choice we have eliminated the dependence of the prior distribution on

7 without unduly complicating the statistical analysis that remains essentially unchanged.

As a final example of inadequate conjugate prior distributions consider the selection
model mentioned in the previous section in which selection occurs in the upper tail (z > 1)
of g(z[), and both 6 and 7 are unknown but & = Pr(X > 7/6) is known. The density for
this selection set is given by (2.7), and the likelihood function for  based on the selection

sample z1,...,z, is

£(6) H g(z:]0)  for 8 € Q(a,t), (3.9)

where ((a, t) is the set of all values of 6 such that G(¢|6) > 1— o and ¢ = min{z;,...,z,}.

A conjugate prior density based directly on the form of £(8) given in (3.9) would
require that the range («a, a) of possible values of 6 be dependent not only on a hyperpa-
rameter a whose value can be specified arbitrarily, but also on «. For reasons similar to
those presented above, it seems desirable to eliminate the dependence of the prior on a.
Thus, in problems where there is a suitable family of conjugate prior distributions for the
unrestricted model g(x|6), it is usually more appropriate to use this family for the selection
model as well. In effect, this type of prior is equivalent to choosing the value a = oo for

the hyperparameter a in Q(a, a).

4. SELECTION MODELS FOR SIGNIFICANT RESULTS

As mentioned in section 2, an important example of selection models with known value
of 7 occurs when only experimental results that are found to be “statistically significant”
are published in the scientific literature. This situation is very common both because the
editors of some journals encourage the publication of articles in which statistical signifi-
cance has been obtained, and because many experimenters themselves regard their results
as being useless unless the results are statistically significant and will not even submit

them for publication.
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The unfortunate effects that these policies can have on scientific learning have been
discussed by several authors and some references are given in BAD (1987a, 1991). The
careful modeling of publication bias should be especially important when a meta—analysis
(combining the results from different experiments) is carried out, since meta-analyses
are usually based on published experiments. Unfortunately, this is seldom the case. An

interesting modeling for meta—analysis can be found in Iyengar and Greenhouse (1988).

To present our discussion of this problem, we will use a very simple (unrealistically
simple) example so as to highlight the main points we would like to stress. Real situations
are seldom so clear—cut and the effects of publication bias might be less dramatic than the
ones we will find here. The framework will be that of one-sided test of hypotheses on the
mean of a normal distribution with known variance, and we will restrict ourselves to the
analysis of a single published significant result. The concerns we will rise here would also

apply, of course, to more complicated scenarios and to a full meta—analytic analysis.

Assume that independent experiments are carried out by the same or different exper-
imenters around the world. In each of them a random sample y;1,¥2,...,ym of size m is
taken from a normal distribution with unknown mean yx and known variance 02 and the

uniformly most powerful test at some level « is used for testing
Hy: p <0 versus Hy: > 0. (4.1)

In this case, the distribution ¢g(t|6) of the test statistic

T= ym Y (4.2)

my
g

is normal with mean § = \/m p/o and variance 1, where Y, represents, as usual, the

sample mean in a given experiment.

The restrictions to equal (and known) variances o2, equal sample sizes m and equal
means g in all the experiments are, of course, quite unrealistic and are used here just to
ease the presentation. In a more realistic setting, the sample sizes m would be different in

2

different experiments, the variances 0* would be unknown and, as the means y, should be

allowed to vary from experiment to experiment, although in a meta—analysis they would
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obviously be related, relation that could maybe be modeled by using a hierarchical model.
Arguments similar to the ones we will present could also be derived to apply to these
realistic settings, and the nature of the concerns that we will rise would remain essentially

unchanged.

Let’s come back to our simplified situation and assume that the results of one such
experiment appear published in some scientific journal rejecting the null hypothesis Hy
and declaring the data significant because they yield a small p—value. Assume also that

only experimental results that are found “statistically significant” get published.

What should be conclude from such an experiment? The usual reaction is, of course,
to take the distribution ¢(t|6) of the test statistic T, its observed value ¢ and its associated
p—value Pr(T > t|6 = 0) at face value and thus conclude that the data is indeed significant.
But as readers of the journal, we will not learn the results of this experiment unless they
lead to the rejection of Hy; that is, unless T > ®7!(1 — «). In this situation, the density
of any value of T' that we will actually get to observe is not simply g(#|6), but is given by
the selection model:

£(218) = 1_“;(;(;—9:)-@5 for t > 1, (4.3)

and f(t|¢) = 0 for ¢ < 7, where ¢ and @ are the p.d.f. and d.f. respectively, of the standard

normal distribution, and 7 = ®71(1 — a).

To see how a “significant” value of T' when properly analyzed can support the null

hypothesis Hy, it is enlightening to calculate the maximum likelihood estimate for 6.

It can be shown from (4.3) that the maximum likelihood estimator 8 is the unique

solution of the equation:
(t—0) M(r—8)=1, (4.4)
where Mills’ ratio M(:) is defined by

1 - &(z)
$(z)

The values of § for o = 0.01, 0.05, and 0.10 and various observed values of ¢ are given in

M(z) = (4.5)

Table 1. Of course, the most widely used criterion for statistical significance is & = 0.05.
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In Table 1 we also give the p—values corresponding to the observed values of £ as they would
be reported in the literature, that is, calculated from the standard normal distribution.

Since only “significant” values of T' can be observed, all the p—values must be less than a.

a=0.01 a=0.05 a =0.10

6 t p t P t P
3 |3.424 0.0003 |3.175 0.0008 |[3.095 0.0010
2

1

3.017 0.0013 |2.586 0.0049 |2.403 0.0081
2.792 0.0026 |2.249 0.0124 |[1.985 0.0236

0 }2.665 0.0038 |2.063 0.0195 |[1.755 0.0397
—1 |2.588 0.0048 [1.955 0.0253 |1.625 0.0526
-2 |[2.538 0.0056 {1.888 0.0305 |1.546 0.0611
-3 |2.503 0.0062 [1.844 0.0326 |1.496 0.0675
=5 [2.453 0.0071 |1.789 0.0368 |1.434 0.0759

Table 1: Maximum likelihood estimate of 6 for various observed values ¢ and p.

Since i = o6/m1/2, it follows from (4.1) that negative values of § support the null
hypothesis Hy. The basic conclusion to be drawn from the discussion in this section is
that even observed values of ¢ that appear to be highly significant can yield maximum
likelihood estimates that are very negative and give strong support to Hy. For example, it
can be seen from Table 1 that when o = 0.05, a p-value as small as 0.033 yields § = -3,
an estimate that is at least 3 standard deviations away from the parameter values in H;.

Similar behavior is found for o = 0.01 and a = 0.10.

These results emphasize the fact that under current statistical practice, a published
p—value only slightly smaller than the effective a can only be regarded as supporting Hy
rather than rejecting Hy. In fact, as the p—value approaches a in this selection model

6 — —o0.

In order to reach this conclusion we have assumed that the experiment was performed
repea.tedly (not necessarily by the same experimenter, but also by different experimenters
working in the same problem) until one significant report was obtained and published.
The number N of performed experiments does not provide further information about

and it should not change our inferences about 6 even if we explicitly introduce it into the
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analysis. We will turn to this point later on.

Under different conditions, the analysis should proceed differently. For example, sup-
pose at the other extreme that we know beforehand that there is just a single experimenter
who performs the experiment just once. In this case, when we read his or her published
report of a significant result, we know that this is the actual outcome of the only experi-
ment that was performed and therefore it should be accepted at face value and analyzed
using the density g(#|f). We know that if the experiment had yielded a non-significant
result, we would not have seen any published report at all. This lack of a report would,

therefore, have given us information about 6 as well.

Intermediate conclusions between these two extreme ones can be obtained by taking
into consideration the number N of performed experiments. Problems of this type, dubbed
the “file drawer problem” by Rosenthal (1979) are also considered by Sterling ( 1959), Dawid
and Dickey (1977), Hedges and Olkin (1985, chap. 14), and Iyengar and Greenhouse (1988),
among others. Of course, this is only one example of a more general pheﬁomenon that can
be present when analyzing selection samples: the fact that the way the selection sample
was actually produced, that is, the selection mechanism generating the observed sample,
can have a decisive influence in the statistical analysis of the data and sometimes it has to
explicitly be taken into consideration. In BAD (1990), selection mechanisms are considered
and discussed in the general scenario of selection models, as well as conditions under which
the selection mechanisms can be ignored in the analysis of data, either because it does not
provide additional information about 6, or because even if it does, the particular form of
the prior distribution makes it ignorable when making inferences about 8. We will content

ourselves here with our particular example.

Suppose, in the spirit of this discussion, that we observe n published results ¢ =
(t1,...,tn) all of them significant, and we are uncertain about the total number N of
experiments that have been performed. Included in the N — n unpublished results there
might be both significant and non-significant outcomes. Under the Bayesian approach to

this problem, a joint generalized density p(¢,n, N, 6) is specified, which we may factor in
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the following convenient way:
p(t,n, N,6) = p(t|n, N, 6)p(n|N, 0)p(N|6)p(6). (4.6)

In (4.6), we are using the symbol p to denote an arbitrary density without any implication
that it is the same one for all variables. It should be emphasized that ¢ and n are observed,
and N and 6 are unobservables. Hence, p(N|0)p(6) represents the joint prior density of
N and 6. We assume that 7 is fixed and known throughout the analysis, and hence it is
omitted from the notation although (4.6) can be generalized to the situation in which 7 is

unknown or varies from experiment to experiment.

Next, we make the basic assumptioh that for the observed value of n, the observed
significant results ¢1,...,%, form a random sample from the selection model given by (4.3).
Therefore, .

p(tIn, N,6) = p(tln, 6) = [ ] f(£:l6)
=1

. n 4.7
fi o "

T I=%r -0

fort; >7 (¢=1,...,n).

The two situations that we are discussing are special cases of the model (4.6) under
the assumption (4.7): In the first situation, it is known beforehand that n will have the

fixed value n = 1. Thus, (4.6) becomes

f(t:110)p(N10)p(6), (4.8)
where f(,]0) is given by (4.3) and the joint density of ¢; and 8 simply reduces to
p(t1,0) = f(t1]6) {Z P(NI9)} p(0) = f(t110)p(6). (4.9)
N=1

It follows from (4.9) that analysis of this published significant result is based on the selection
model f(¢1|6), so that it might very well be providing strong evidence in favor of Hy, as

discussed previously.

In the second situation, it is known beforehand that N = 1. In this case, the proba-

bility of obtaining n =1 is
pn=1N=1,0) =1— &(r - 0). (4.9)
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Hence, from (4.9) and the fact that p(V = 1[f) = 1, the joint density (4.6) becomes

f(t116)[1 — &(r — 0)]p(0) = g(t110)p(6) = 4(¢1 — 6)p(8), (4.10)

where g(#1|6) is the original, unrestricted density of T. It follows from (4.10) that the

observed significant result ¢; should be analyzed at face value as common sense suggested.

In the file-drawer problem, none of the two situations above is usually assumed.
Instead, it is assumed that there is an unknown number N of performed experiments and
subjective knowledge about N is required from the reader in order to properly analyze
the significant result. From a classical point of view, a value of N that would reverse the
conclusion (that is, that would make the result non-significant) is computed (called the
file-safe sample size) and the reader is asked to compare that with his or her subjective
opinion about N so as to conclude whether or not the significant data supports Hy. From
a Bayesian point of view, the reader is asked to specify his or her prior distribution for
N,p(N|6,7) that, in general, might depend on § and 7. Inferences about 8 will be based

in the posterior distribution:

p(6ltn = 1) o gt — 6)p(6) 3 N[&(r — )V 1p(V, 7). (a.11)
N=1

It can be seen from (4.11) that the analysis would simply be based on the selection
model f(t|0) = ¢(t — 8)/[1 — (7 — )] if p(N|6,7) is such that
i N[1—&(r — 0)][®(r — &)V 1p(N|8,T) (4.12)
N=1
does not depend on 0, as it is the case when p(N|6, 7) corresponds to a Poisson distribution
with mean A/®(7 — ), for any fixed A, or when it is taken to be inversely proportional to

1/N (which results in an improper prior). Otherwise the full analysis based on (4.12) has
to be carried out. For details, see BAD (1990, 1991).

If it is not wished to carry out a fully Bayesian approach, we strongly recommend, at

least, that conditional posterior distributions of the form

p(0lt,n = 1,N) oc o(t — B)[1 — (7 — 6)]V " p(6) (4.13)
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or their associated quantities of interest (estimators, HPD regions,...,etc.) be computed
for a likely range of values of N to tentatively investigate how sensitive our conclusions
are to the value of N. If they are very sensitive, a full Bayesian analysis has to be carried

out (with maybe different types of priors for N).

5. INFORMATION IN SELECTION MODELS AND WEIGHTED
DISTRIBUTIONS

One constant of BAD work on selection models and weighted distributions over the
years have been their interest in comparing the information about 8 provided by a random
sample from the underlying density g(x|¢) with the information in a selection sample or,
more generally, in a random sample from a weighted version f(z|0) of g(z|6). We will see
that a selection sample is not necessarily less informative about 6 than an unrestricted
random sample, and that in some statistical problems we are better off with a biased

sample than with a random sample.

In order to compare both types of experiments it is useful to elaborate further the
notation so far employed. We will continue to restrict ourselves to univariate problems.
In this section, we will use X to denote a random variable whose distribution is the
original, underlying g(x|f) and will use Y to denote random variables whose distribution
is characterized by some weighted version f(y|) of g(z|6), as given in (2.1), where w will
be some specific weight function. Also, £x will denote the statistical experiment in which

an observation X is to be obtained, and €y is defined similarly.

There are many different ways to measure and compare the information in statistical
experiments. Probably the most common one in Statistics is based on Fisher information.
We shall let Ix(#) and Iy(6) denote Fisher information for the experiments £x and &y,
respectively, under the standard regularity conditions. If Ix(6) > Iy(6) for all values of 6,
then (and abusing language a little) the unrestricted experiment £x will always yield at
least as much information about 6 as the weighted experiment Ey. In this case, we write
Ex =F & . The relation & >=p Ex is defined analogously. Comparison of some weighted

and unweighted distributions according to this criterion can be found in BAD (1987b) and
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Patil and Taillie (1987).

In spite of its widespread use in statistics, Fisher information does not have any
clear—cut operational interpretation in statistical decision theory. More decision oriented
although more restrictive, are the concepts of information based on the theory of the
comparison of statistical experiments as developed originally by Blackwell (1951, 1953).
The experiment £x is said to be sufficient for the experiment £y, denoted £x = &y, if
there exists a stochastic transformation of X to a random variable Z(X) such that, for each
value of 6, the random variables Z(X) and Y have identical distributions. The relation

&y = Ex is defined in an analogous way.

Sufficiency of experiments is a very restrictive ordering, in the sense that it is relatively
rare for one experiment to be regarded as more informative than another one. Nevertheless,
when this does occur, every decision maker would prefer the more informative experiment,
regardless of his or her prior distribution and utility function, since the relation £x = &y
holds if any only if for every decision problem involving 6 and every prior distribution for

8, the expected Bayes risk from £x is no greater than that from &y .

A somehow less restrictive partial order that still makes use of the basic concept of
sufficiency is based in the notion of pairwise sufficiency. An experiment £x is said to be
pairwise sufficient for the experiment €y, denoted £x =3 v, if for every pair of values
61,02, Ex is sufficient for &y when the parameter space is restricted to contain just the two

values 6; and 6,. The relation & 22 £x is defined in an analogous way.

Clearly, if £x x £y then £x =2 &y. Also, the relationship £x = £ implies a similar
ordering in terms of Fisher information; i.e., if £x = €y then £x >=r Ey. However, the
converse relations does not necessarily hold. Moreover, since the Fisher information can
be obtained from the Kullback-Liebler information by considering pairs of values of § that
are arbitrarily close to each other, it can be shown that if £x > £y then £x =F £y. Some
of these relations and other properties of the comparison of experiments are described in
Stein (1951), Stone (1961), Kullback (1968), Torgersen (1970, 1972, 1976), Hansen and
Torgersen (1974), and Goel and DeGroot (1979).
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In general, we will be interested in the information in weighted and random samples,
and not only in the information in single observations. Nevertheless, it will be sufficient
for us to consider the simple experiments £x and £y since it can be shown that, if any
of the relations above between £x and £y holds, then the same relation holds between
the experiment in which a random sample Xj,...,X, is obtained from the underlying
density g(z|f) and the experiment in which a random sample Y3,...,Y, is obtained from

the weighted density f(y|6).

We will next compare £x and &y for various underlying models g(z|f) and various
weight functions and will show that the ordering of experiments can be very sensitive to

the weight function used.

5.1. Selection from an exponential family

First consider the question of whether we gain or lose Fisher information when a
selection sample rather than random sample is obtained from a distribution belonging
to an exponential family. Thus, we are assuming that g(z|6) is of the form g(z|f) =
r(z)s(0) exp{u(z) v(6)}, and that ¥ is observed only if Y lies in some selection set S.

Hence, in this case, w(y) is just the indicator function of the set S.

The relation > is very easy to characterize in this situation in terms of the function
t(€) = Pr[X € S0 = v71(£)]. Indeed £x =F Ey holds if and only if #(£) is a log—concave

function of ¢, and &y ZF Ex if and only if ¢(¢) is log—convex.

As an example, assume that the underlying distribution is gamma with a known value
of the shape parameter o and with unknown scale parameter 6, and that selection occurs
in the upper tail y > 7. In this case, if & > 1, then £x = & and if 0 < a < 1, then
& zr €x. In words, if g(z|) is a J-shaped gamma, then according to this criterion,
we would rather have all our observations in the upper tail since all we can possibly get
from also having observations in the interval (0,7) is a loss of Fisher information. On the
other hand, if g(z|6) is a bell-shaped gamma density, then a random, unrestricted sample
provides greater Fisher information about 6 than a selection sample from the upper tail.

When o = 1, the distribution of both X and Y — 7 is exponential with parameter 6 and
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both experiments are equivalent (each one is sufficient for the other one).

Next, we compare the binomial and Poisson distributions with their zero-truncated
versions in which the zero class is missing and observations are restricted to be positive.
Hence, £x will denote the experiment in which an unrestricted observation X is taken from
one of these two families, and £y will denote the experiment in which an observation Y is
taken from the corresponding zero-truncated version. Then a straightforward calculation
shows that £x Zr £y; as a matter of fact Ex 2 & (as pointed to us in independent
personal communications by Prem K. Goel and Erik N. Torgersen). However, it can be
explicitly shown (BAD, 1987b) that in spite of these relations, it is not true that £x = Ey,
thus providing an interesting example of experiments in which the parameter space is an
open subset of the real line and £x =y & but it is not true that £x = &y. It also
follows that since £x = €y does not hold, there must exist a decision problem and prior
distribution for € such that the Bayesian expected risk is smaller with the selection sample

than with the random sample.

5.2. The “Big Three” and the “CV” property

This subsection is a bit an aside from the general argument in this section and it just
pretends to mention a cute fact we came across in our study of the Fisher information in
truncated versions of standard discrete distributions. The initial “cute fact” was further
elaborated and investigated and became a general property of discrete random variables,
not necessarily longer related to the selection models scenario. The results can be found

in Bayarri, DeGroot and Goel (1989).

Assume here that X is a random variable whose distribution belongs to any one of
the “Big 3” families of discrete distributions: binomial, Poisson and negative binomial,
and that Y is its zero-truncated version. When deriving by “brute force” Ix(6) and Iy (6)
for the experiments £x and £y, we surprisingly found that, for all the “Big 3”, the ratio

of I'y(0) to Ix(6) could be expressed as:

Iy(6)  Pr(X >2[9)
11(0) ~ Pr(X > 1)6)? (5.1)

This was the starting “cute” fact. Further elaboration took into account two other general
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facts.

The first fact is that, when g(z|0) is a member of an exponential family of the form
given by (3.5) with u(z) = z, and Y gets observed only if it lies in a fixed selection set S,

then it can be shown that
Iy (9) _ Var(Y'|6)
Ix(0) = Var(X|6)

(5.2)

The second general fact is that if X is any discrete random variable taking values on
the non-negative integers and whose distribution has mean y and variance o2, and if Y is
its zero truncated version, then

2
Var(Y) 1-po— £po
Var(X)  (1—po)? ’

where pg = Pr(X = 0) is assumed to be < 1.

(5.3)

Both general facts did apply to our statistical situation, so that putting together
(5.1), (5.2) and (5.3) we found that the “Big 3” satisfy the “CV property” that is defined

as follows:

Suppose that a random variable X has a discrete distribution on the non-negative

integers with finite variance, and let

pi =Pr(X =1) forz2=0,1,2,...

(5.4)
p = E(X), and 0* = Var(X).
Then the distribution of X is said to have the CV property if
2
Po O
— = —. 5.5
o (5:5)

The name CV property given to (5.5) was inspired by the fact that the right-hand side of
(5.5) is the square of the coefficient of variation (the CV) of the distribution of X.

Although isolated examples of distributions satisfying the CV property can be con-
structed, we do not know of any other widely-used family of discrete distributions apart
from the “Big 3” all of whose members satisfy it. (In particular, it is not satisfied by dis-
crete uniform, hypergeometric, nor beta—binomial distributions.) For a dipper treatment

of this property the reader is referred to Bayarri, DeGroot and Goel (1989).
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5.3. Normal Selection

We now come back to comparing information in random and selection samples by

considering various selection sets for an underlying normal distribution.

We begin by considering an example in which the experiment based on a selection
sample is pairwise sufficient for the analogous experiment based on an unrestricted random
sample. Consider a population in which X has a normal distribution with a known mean,
which we take to be 0, and an unknown precision 8. (The precision of a normal distribution
is the reciprocal of its variance). For i = 1,2, let &; denote the experiment in which a single
observation y; is obtained by restricting X to the tails X > 7; and X < —7;, where ; > 0
is given and fixed. (It should be noted that this experiment is equivalent to one in which
X is restricted to the upper tail only.) It can be shown in this case that if 73 < 75 then
& Z3 &1, that is the experiment with a smaller selection set is pairwise sufficient for the
experiment with a larger selection set. It follows that a selection sample from the upper
tail of a normal distribution with known mean and unknown precision is pairwise sufficient
for a selection sample of the same size from the upper tail with a smaller truncation point.
Moreover, a selection sample from the upper tail is pairwise sufficient for a random sample

from the entire distribution.

It is striking that the reverse relationships holds when the mean is unknown and
the precision is known. To see this, assume now that X has a normal distribution with
unknown mean 6 and known precision. For i = 1,2, let & denote the experiment in
which a single observation Y; is obtained by restricting X to the upper tail X > 7;, where
—00 < 71 < T2 < oo. Here it can be shown that & X3 &. In particular, by letting
T1 — —00, it follows that a random sample from the entire normal distribution is pairwise

sufficient for a selection sample from the upper tail.

We do not know whether the relation =, can be replaced by the stronger relation >

in these problems.

If X has a normal distribution with unknown mean 6 and known precision, and the

observation Y is obtained by restricting X to the two tails X < 7 and X > m, then it
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can be shown that neither £x = & nor & Zr E€x, and therefore the stronger relations

>, and = cannot hold either.

5.4. Other weight functions

In this subsection we will present some results on sufficiency obtained when vari-
ous weight functions are applied to standard statistical distributions, which we will use
to demonstrate the wide variety of effects that weighing can have in the ordering of ex-
periments. In this and the next subsection this ordering refers to sufficiency in all the

examples.

Assume first that the distribution of X is exponential and that the distribution of
Y is a weighted version of it. We will see that all the possibilities in the ordering of the
experiments £x and &y are attained for particular weight functions w(z). Indeed, if we
have exponential weight w(z) = e™**(a > 0) then £x X £y, and a random sample is thus
preferred to a “weighted” sample. On the other hand, for size-biased weights of the form
w(z) = z%(a > 0) the relation is reversed and we have in fact £y = Ex; notice that, if
we are in such statistical situations, we should be very glad of having size-biased samples.
Finally, as we have already mentioned, we have equivalent experiments £x ~ £y when the
weight function is the indicator function of any set of the form z > a, that is, when Y

represents selection from the upper tail.

We have just presented an example in which the original and the weighted experiments
were equivalent experiments. A less known example of the same type of behavior is the
following: Assume that X has a normal distribution with mean 6 and variance 1 and
that the distribution of Y is its weighted version with exponential weight of the form

w(z) = e**. Then £x and €y are equivalent experiments.

If the underlying distribution is a Poisson distribution, we can find a very simple
family of weight functions that results in different orderings of the original and weighted
experiments. Indeed, if the distribution of X is a Poisson distribution with parameter
0 and Y is its weighted version with a weight function of the form w(z) = a® for some

specific value of a, then if a < 1, a random sample is preferred since Ex >= &y, while the
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relation is reversed when a > 1, in which case we have £y > £x.

Last, we present an example to demonstrate that the effect of the same weight func-
tion on the information about different parameters of a multiparameter distribution can
be dramatic. Assume that the distribution of the underlying X is Gamma with shape pa-
rameter o and scale parameter # and that the distribution of Y is a generalized size-biased
version of it, that is, with w(z) = 2* for some a. Then, if a is known (and 8 unknown),

& = Ex, while if § is known (and & unknown), £x = &y.

5.5. Size—biased sampling

We finally explore the consequences of using the widely used size-biased weight in the
distributions belonging to the “Big 3” families of distributions. Interestingly enough, the
effect on each of them is different. Thus, assume that the distribution of X is one of the
“Big 3”: binomial, Poisson and negative binomial, and that Y is its size-biased version
with w(z) = z. Then, if the distribution of X is Binomial, random samples are better,
since £x X Ey; if the distribution of X is Poisson, then both experiments are equivalent;
if the distribution of X is negative binomial, then size-biased samples are better since

Ey = Ex.

5.6. The criminal example

We would like to finish the paper with still another admittedly unrealistic example
(but a very cute one) that shows how what at first might look as a very bad sample might
in fact provide more information about the parameter of interest than a random sample

that would anyway be impossible to get.

The general problem is to study the total population of criminals by sampling from
just the criminals who are in jail. (We cannot, obviously, get a random sample from the

whole population of criminals.)

We assume that each criminal commits crimes according to a Poisson process with his

or her own rate of X crimes per year. We also assume that the density of X over the total
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population of criminals is exponential with parameter 6, that is:
g(z)0) = e~ 0" (5.6)

and that we want to make inferences about 6.

Suppose that each time a crime is committed, there is a fixed probability q that the
criminal get caught and sent to jail. We will sample from criminals who have been sent to
jail during the year. Then, the distribution f(z|f) for the rates of crimes X of criminals
who are in jail will be a weighted version of the original g(z|6) where the weight function
w(z) is simply the probability that a criminal who commits crimes at rate z is sent to jail

during the year, that is:
w(z) = Pr(criminal is sent to jail during the year)

oo
=1- Z Pr(commits n crimes and does not get caught)
n=0 (5.7)

bt

==Y -

Therefore, the distribution of X over the population of criminals who are in jail is
given by:
6(6
F018) o (1 - e g(ul) = LEDq - e, (58)

An easy calculation shows that

Ix(6) = 512-,
. ) (5.9)
MO=7+Gvor

Since Iy (6) > Ix(#) for all 6, it follows rather surprisingly that, as far as Fisher information
is concerned, it is more informative to sample from criminals who are in jail than to sample

from the whole population of criminals.

Another interesting fact about the family of weights {w(y) = (1 —e™ %), 0 < ¢ < 1}

is worth mentioning. First notice from (5.9) that as ¢ decreases to 0, Iy(6) increases to
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2/6%. Also, it can be seen from (5.8) that as ¢ — 0, f(y]§) — 62ye®, but this is just the
ordinary size-biased version (w(z) = z) of the exponential density g(z|f) and we have seen
that in this case, £y is actually sufficient for £x. In words, we have a family of weights
for the exponential distribution that provides increasing Fisher information as ¢ — 0 and

that in the limit leads to full sufficiency.
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