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ABSTRACT

In many areas of applied science, testing hypotheses is the most widely used statistical
technique, if not the only one. Indeed, it is a well known fact that the vast majority of
papers that appear in the applied scientific journals involve the testing of hypotheses.
The overabuse of this technique has naturally led to an overappreciation of statistically
significant findings, which has a number of undesirable consequences. First, many scientific
Journals encourage the publication of significant results in their publication policies, either
explicitly or implicitly, so that articles with statistically significant results are more likely
to get published. Also, the scientists themselves may regard their findings as useless unless
they result in statistical significance and therefore not even submit them for publication.
As a consequence, publications are highly biased towards reporting significant results and
the question arises as to what can be concluded from such results. We will present a
Bayesian analysis of this type of data. We use selection models to model the behavior of
published significant results and show how significant results may in fact give very strong
support to the null hypothesis. The selection mechanisms that may be give rise to the
available data are explicitly considered.

Key Words and phrases: file-drawer problem, meta—analysis, selection mechanisms, selec-
tion models, statistical significance, weighted distributions.



1. Introduction

The usefulness of statistical methods in the analysis of experimental data is widely
recognized in most areas of applied research. In spite of the great variety of statistical
methods that have been developed for use in various types of problems, tests of hypothesés
or tests of significance have become by far the most widely-used statistical methodology
in published reports of research. Studies illustrating this assertion have been reported
by Sterling (1959), Bakan (1966), and Bozarth and Roberts (1972) for the psychology
literature, Zellner (1980) for economics, and DeGroot and Mezzich (1985) for psychiatry.
It was found in these studies that in the vast ma jority of papers that made use of statistical
methods, the culmination of the analysis was the performance of some significance tests

and the reporting of the observed p-values.

Statisticians have only themselves to blame for this deplorable situation in which p—
values are senselessly reported, with an asterisk or two, or even three, indicating that they
are less than 0.10, 0.05, or 0.01, without any regard to the sample size or whether the
“statistically significant” deviations from the null hypothesis are of any practical signifi-
cance. In their zeal to have formal statistical methods applied to substantive problems,
statisticians have allowed researchers to adopt the testing methodology in its most naive
form in which experimental outcomes are regarded simply as.signiﬁcant or not significant,
without further insight or interpretation. The shortcomings of this misuse of statistical
methods has been discussed by several authors, including Cornfield (1975), Greenwald
(1975), DeGroot (1980), Pocock (1980), and Salsburg (1985).

A natural consequence of this heavy emphasis on significance tests and the reporting of
p—values is that statistical significance has become a primary goal of much of the applied
research that is performed, with the result that most of the studies published in the
professional literature report significant results. Thus, not only do journal editors tend
to encourage the publication of articles in which statistical significance has been obtained
(Melton, 1962; Greenwald, 1975), but also many experimenters themselves regard their
results as being useless unless the results are statistically significant and will not even

submit them for publication.



Discussion of this problem has reached beyond the scientific literature and has ap-
peared in regular newspapers. In his column “The Doctor’s World,” in the New York

Times, Altman (1986) writes:

It verges on the scandalous, in the minds of many critics of modern science,
that negative results are so seldom published...But pride and careers in science
rarely benefit much from negative results. The Nobel Prize is rarely awarded for
producing crucial negative information, no matter how skillful the scientist or

how time-consuming the work.

There are about 23,000 medical and scientific periodicals in the world, and most
have a strong bias for publication of studies reporting positive results. Occasion-
ally the editors of these journals publish studies with negative results, but the
articles usually refute claims of prior positive results or are sub Jjects of critical

importance.
The tendency to emphasize positive results skews the scientific process...

Altman goes on to point out that scientists who would find it useful to know certajn
negative results may needlessly repeat the work of others, Moreover, because of the close
relationship between publications and research grants, scientists may be “more likely to
submit safer proposals for grant support, ones they expect to yield positive results, instead
of moré imaginative, bolder experiments with a greater chance of fajlure.” These concerns
pertain to the information that we do not recejve because of the experiments that are not
performed or not published. In this paper, our central concern is with the appropriate
interpretation of the information that we do receive. The policy of giving favorable treat-
ment to the publication of statistically significant results can lead to substantial selection
bias that must be taken into account. (See Begg and Berlin, 1988, for discussions and

references.)

In this paper, we address the problem of properly analyzing results from experiments
that are subject to this type of publication bias due to statistical significance. We use

selection models to describe the behavior of published significant results. In Section 2
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we introduce the formulation of weighted distributions and selection models and discuss
briefly Bayesian inference for the latter. In Section 3 they are applied to the modelling
of published significant results. In Section 4 the important question of whether we should
take into account the selection mechanisms is addressed. A general formulation is given
in section 5 and two particular selection mechanisms that are of interest when studying
published significant results are further elaborated in Sections 6 and 7. Finally, in section
8, the results of previous sections are applied to the analysis of published significant results,

including in a natural way the “file drawer” effect.

2. SELECTION MODELS AND WEIGHTED DISTRIBUTIONS

We will use weighted distributions, and in particular seléction models, to describe the
statistical behavior of published significant results. In this section, we discuss these models
briefly. A more extended description can be found in Bayarri and DeGroot (1987,1988)

together with many examples and references.

In many practical situations, a random sample from the population of interest is
not available so that special models that incorporate the bias of the observations must
be developed. Weighted distributions and selection models occur naturally in contexts
in which the probability (or density) that a particular observation enters the sample gets
multiplied by some (non-negative) weight function, or in contexts in which data is available

Just from some selected portions of the population.

Assume that an observable random variable X is distributed over the population
of interest according to the (generalized) density g(z|6), and that it is desired to make
inferences about 6. The usual statistical analysis assumes that a random sample from
g(z|0) is available. Assume instead that the probability or density of observing a particular
value z of X gets multiplied by the (non-negative) weight w(z) so that the observed sample

is, in fact, a random sample from

w(2)g(al6)
Bolw(X)] 1)

Distributions represented by (2.1) were called weighted distributions or weighted versions

f(z16) =

of g(z|¢) by Rao (1965) who first unified the formulation of these models, although their
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use can be traced to Fisher (1934). Good surveys on the topic are Patil (1984) and Rao
(1985).

We will be especially concerned with a special case of weighted distributions called
selection or truncation models. In these models, observations can be obtained just on a
subset S of the sample space, so that the weight function w(z) is simply the indicator
function of the so—called selection set S ,

_[1 ifzef,
w(””)z{o ifxgeé S. (22)

Thus, a selection sample (a random sample from (2.1) with the above weight function) is

a random sample from the density:

_ w(z)g(zlo) .
f(:c|6’) = m ifz e S,

=0 otherwise. (2.3)

In this paper, we deal mainly with the case in which the selection set S is the upper

tail of g(z|0) containing all values X > 7, where 7 is a fixed value, so that the joint density

of a selection sample = = (z1,Z2,...,2,) is
f{l 9(zil6)
f(z|6) = i-co@r (2.4)

where G is the c.d.f. corresponding to g(-).

We will particularly consider the case where 9(z|8) is the pdf of a normal distribution
with mean 6 and variance 1 and just a single observation is obtained from f(z]8). The
Bayesian analysis, although straightforward, can not be carried out in closed form due to
the dependence of (2.4) on ¢ through G(7]6). In general, Bayesian analysis is simpler when
carried out under conjugate families. In this case, however, the choice of an appropriate
prior distribution for 6 is not clear. The natural election of a conjugate prior density for
¢ would be directly based on the form of the likelihood function for 0,£(6), which is given
by

26) lf(;(\;f)g), (2.5)
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and would therefore be given by
exp[—h(0 — m)?/2]
) o« =55 = O

where the hyperparameters h,m, and a are specified constants and ® is the c.d.f. of the

(2.6)

standard normal distribution. Although the form of any conjugate prior is related to the
experiment to be performed, the explicit dependence of (2.6) on 7 can be very inappropri-
ate, and this will indeed be the case when selection models are used to analyze statistical
significant reports, since 7 will then be fixed by routine statistical practice and will not

convey any information about 6.

If relative simplicity of calculation is desired, it seems more appropriate to use a prior
distribution which is conjugate with respect to the original model g(z|6), so that in this
case we would simply choose a normal prior distribution for . This election is in fact
equivalent to taking @ = 0 in (2.6) thus eliminating the undesired dependence on T, but

not the difficulties in the posterior analysis, which remains essentially unchanged.

If the prior distribution for 8 is normal with mean mg and precision (inverse of the

variance) hg, then the posterior p.d.f. ¢(0]z) is of the form (2.6) with a = 1 and

_ homo + z _
m = m, h—h0+1. (27)

It should be noted that the expressions for m and h are the same as those that would
be obtained for the hyperparameters of the conjugate posterior distribution for 8 were
an observation from the unrestricted density. We will also use this distribution to give
expressions for the posterior mean and variance. Specifically, for any function (), let
E*[4(8)] denote expectation with respect to the normal distribution with mean m and
precision k as given in (2.7), that 15, with respect to the posterior distribution that would

be obtained if the value z were observed in the unrestricted model. Furthermore, let
3(0) = [1—&(r - ). (2.8)

Then, the mean and variance of # under the posterior p.d.f. E(Hlx) obtained when z is

observed in the selection model are:
E(b|z) = E“[0s(8)]/E*[s(6)]
Var(flz) = {E"[6%5(6)]/ E*[s(8)]} — [E(6)z)]2. (2.9)
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The expectations in (2.9) have to be evaluated numerically or otherwise approximated
in some fashion. A sifnple approximation is the one obtained when the delta, method is

applied to each of the factors in (2.9), yielding:

%m(,;))] R’ 1+2hM(i—m) [M(7—2— ) ‘(T‘m)J
o~ () -] e

where M(-) denotes Mill’s ratio (inverse of the hazard-rate function for the standard

normal distribution) defined by

(2.11)

3. MODELING PUBLISHED SIGNIFICANT RESULTS

We will use a very simple (unrealistically so) example so that the technicalities will
not obscure the main points that we are trying to put forward. The framework will be
that of one-sided tests of hypotheses on the mean of a normal distribution with known

variance.

Assume that independent experiments are carried out by the same or different exper-
imenters around the world. In each of them random sample y;,ys, ... s Ym, of size m, is
taken from a normal distribution with unknown mean g and known variance 02 and the

uniformly most powerful test is used for testing

Ho:u <0
Hl:,u>0, (31)

at some level a. In this case, the distribution g(t|6) of the test statistic

m

T = Yo, (3.2)

*[3

is normal with mean 6 = 30@ p and variance 1, where Y, represents, as usual, the sample

mean in a given experiment. The restriction to equal sample sizes m and (known) variances
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o? is, of course, quite unrealistic and it is used here just to ease the presentation. A similar

argument would apply to more realistic settings and the concerns that we will raise would

remain virtually unchanged.

Assume that the results of one such experiment appear published in some scientific
journal rejecting the null hypothesis H, and declaring the data significant because they
yield a small p—value. Assume also that only experimental results that are found “statisti-
cally significant” get published. What should be concluded from this experiment? Do the

published significant results provide strong evidence against H,?

The first reaction of most readers is to take the distribution 9(t]0) of the test statistic
T, its observed value ¢, and its associated p-value Pr[T' > t|0 = 0) at face value and
thus conclude that data is indeed significant. But, as readers of the journal, we will not
learn the results of this experiment unless they lead to the rejection of Hy; that is, unless
T2>& 1~ a). In this situation, the density of any value of T that we will actually get

to observe is not simply 9(t]8) but is given by the selection model:

¢t — )

fele) = 5o

fort > r, (3.3)

where ¢ and @ are the p.d.f. and c.d.f. of the standard normal distribution, and 7 =

(1 — &). In the analysis presented here, assume that the experiment is performed
repeatedly until a significant result is obtained and published. Without this assumption,
the probability of observing a significant result must be taken into account. This point

will be discussed further in the next section.

When a statistically significant result is analyzed using the model (3.3) it may very
well provide strong support for the null hypothesis. To see this, it is enlightening to
calculate the maximum likelihood estimator of 8 for a given observed value of T. It can be
shown from (3.3) that the maximum likelihood estimator 8 is the unique solution to the
equation

(t—-0M(r—0) =1, (3.4)

where Mill’s ratio M(-) is given in (2.11). The values of § for o = 0.01,0.05 and 0.10 are

given in Table 1. Of course, the most widely used criteria for statistical significance is
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a = 0.05. In Table 1 we also give the p—values corresponding to the observed values of ¢ as
they would appear published in the scientific journal, that is, calculated from the standard
normal distribution. Since only “significant” values of T can be observed, all the p—values

must be less than a.

. a =0.01 a = 0.05 a=0.10

0 t p t p t P

3 3424 0.0003 |3.175 0.0008 | 3.095 0.0010
2

1

3.017 0.0013 |2.586 0.0049 |2.403 0.0081
2.792  0.0026 |2.249 0.0124 |[1.985 0.0236

0 |2.665 0.0038 |2.063 0.0195 |1.755 0.0397
—1 12588 0.0048 | 1.955 0.0253 |1.625 0.0526
—2 12538 0.0056 |1.888 0.0305 |1.546 0.0611
—3 12503 0.0062 |1.844 0.0326 |1.496 0.0675
=5 2453 0.0071 |1.789 0.0368 |1.434 0.0759

Table 1: Maximum likelihood estimate of 6 for various observed values ¢ and p.

Since i = 08/\/m it follows from (3.1) that negative values of support the null
hypothesis Hy. The basic conclusion to be drawn from the discussion in this section is
that even observed values of ¢ that appear to be highly significant can yield maximum
likelihood estimates that are very negative and give strong support to Hy. Moreover, a
published p-value only slightly smaller than the effective a can be regarded as supporting
Hy rather than rejecting Hy. In fact, as the p-value approaches « in this selection model,

g > —co.

From a practical point of view, it would be nice if we could find a rough, easy to
compute, threshold value ¢; for the observed ¢ such that the null hypothesis is supported
(é negative) for observed values of T < 5. Of course, it follows from (3.4) that the exact
value for ¢g is tp = 1/M(7). On the other hand, it is a cute empirical fact that 6 is negative
when p, the p-value associated with the observed ¢ is, roughly, greater than (0.4) a. We
found the explanation for this fact in conversations with Satish Iyengar and it goes as

follows:

It is well known (see, i.e., Feller, 1968, Vol. 1) that for large 7:

1

—— -I——l-l- 3.5
~ T e .
M(r) T (3.5)
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Therefore, the p-value associated to ¢y = 1 /M(7) can be approximated by

p=1—¢(t0)%1—¢'<7'+%).- (3.6)

But (see, i.e. Feller, 1968, Vol. 1)

. 1-9(r+1) 1

Since 1 — ®(7) = a we have that, as 7 goes to oo (or a goes to 0),
1
P~ —a=(0.3679)c. (3.8)
e

Thus, for small values of «, the MLE 6 will be negative when the observed p—value p is

greater than a/e.

4. WORRYING ABOUT WHAT YOU DON'’T SEE

Assume that our hypothetical published experiment reports an observed value of ¢ =
1.844 (which would also be the reported MLE 8 of 8), with associated p-value 0.0326.
Data is thus declared significant at level a = .05,

Nevertheless, being aware of the publication bias effect, we do not take these quantities
at face value, but use instead the selection model f(t|6), carrying out the analysis of the
preceding section and finding § = —3 (see table 1), an estimate of § which is at least three
standard deviations away from the parameter values in Hy. We thus conclude that the

data is, in fact, providing very strong support to H,.

When using selection models, however, it has to be kept in mind that we are in fact
making the implicit assumption that, regardless of the true value of 8 and regardless of
any other unpublished experimental outcomes, experimentation is continued by at least
one experimenter until a significant result is obtained and published. Under different

conditions, the analysis should proceed differently.

Suppose at the other extreme that we know beforehand that there is just a single

experimenter who performs the experiment just once. In this case, when we read his or
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her published report of a significant result, we know that this is the actual outcome of the
only experiment that was performed and therefore it should be accepted at face value and
analyzed using the density g(t|f). In this case, we should conclude that § = 1.844 and
that the data does provide evidence against Hy. Here we know that if the experiment had
yielded a non-significant result, we would not have seen any published report at all and

thus the lack of a report would have given us information about 6 as well.

Intermediate conclusions between these two extremes can be obtained by taking into
consideration the selection rule that produced the observed selection sample. The first
and most evident conclusion is that what we do not get to observe, namely the number
of performed experiments, can decisively influence the statistical analysis of the reported

data.

Problems of this type, dubbed the “file drawer problem” by Rosenthal (1979) are
also considered by Sterling (1959), Dawid and Dickey (1977), Hedges and Olkin (1985, ch.
14) and Iyengar and Greenhouse (1988) among others. The effect does not pertain only
to the analysis of significant reports, but it is more general. Indeed, when dealing with
selection models, it can happen that the way in which the selection sample was produced,
that is, the selection mechanism generating the observed sample, has a decisive influence
on the statistical analysis of data and, therefore, it might have to explicitly be taken into
consideration. In the remainder of the paper, we will briefly present a general discussion of
the selection mechanisms that might have generated a selection sample and we will apply

them afterwards to the particular case of reported significant results.

5. SELECTION MECHANISMS

Consider again the general formulation in which a selection sample = (z1,...,z,)
of size n is obtained from some underlying density g(x|6) restricted to the selection set S.
In general, both 6 and S are unknown, with € Q and S € S. When we model the joint

density of the selection sample & by

1 o(z:16)

6,8) ==L i =1,2,... :
f(=|9,5) eSO forz; € S,1=1,2,...,n, (5.1)
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we are implicitly assuming that the number n of observations was fixed in advance or, in

any event, that the observed n contains no information about 6 or S.

In general, however, depending on the selection mechanism used to generate , n itself
may contain useful information. For example, in many problems a small value of n might
indicate that observations in S are hard to obtain, which in turn might imply that Pr(S|6)
is small. In recognition of this fact we will consider n as the realized value of an observable
random variable and it will be explicitly introduced in the notation. Thus, although once
@ is observed n is automatically also observed, it will be convenient to denote our data by

the pair (&, n).

To present a general discussion of the possible selection mechanisms giving rise to
(x,n), it is useful to think in terms of a (usually fictional) investigator that somehow
- produces a selection sample from the underlying density ¢g(z|f) and a statistician who can
only observe the selection sample (z,n). Accordingly, assume that the investigator observes
a sequential random sample 1,7, ... from the underlying 9(y|6). Also, fori =1,2,.. ., let
z; be one or zero according to whether y; is to be or not included in the selection sample,

that is:

1 ify; €8,

We will let § denote the stopping rule used by the investigator to determine when
to stop sampling, about which we will make the following assumptions: i) § depends on
Y1,Y2, .- only through the observed values of 21, z,, ... i1) 6 is such that with probability
one sampling will eventually terminate. When sampling terminates, let N denote the
total number of observations y;, let n = g: z; be the number of observations y; in S , and
denote their observed values by z;, z,, . z=,13:n The statistician only observes (,n) and
in general doesn’t know either the stopping rule § used nor all the values Y1, Y2y, YN
obtained. Since, for given @ and S, Z1,%2,... 1s a sequence of Bernoulli trials and since §
depends only on zj,2,, ..., what we are in fact assuming is that § is a binomial sampling

plan of the general type described by Girshick, Mosteller and Savage (1946), and DeGroot
(1959).
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Once (2,n) is observed, the general goal of the statistician is to compute the joint

posterior density p(8, S|®,n) which, by Bayes theorem, is given by
p(6, S|@,n) o< p(z|n, 8, S)p(nl6, S)p(8, S). (5.3)

Here, as in the rest of the paper, the symbol p is used to denote an arbitrary density
without any implications that it is the same for all variables. We will now discuss the first

two factors on the right—hand side of (5.3).

If 6 were known, then the statistician would compute the conditional posterior density
p(0, S|z, n, &) < p(x|n, b, S, 6)p(nl6, S, 6)p(6, S|6). (5.4)

Because § is a binomial sampling plan, it follows that p(z|n, 8, S,6) is given by the right—
hand side of (5.1). That is, given the observed value n, the observations # form a selection

sample irrespective of the particular § used. Therefore,

I1 g(z:/0)
p(z|n,0,5,6) = p(z|n,0,S5) = f(=]0,S) = Z—0—, 5.5
(21, 0,5,6) = p(aln, 6, 5) = f(el6, ) = (55)
gives also the expression for the first factor on the right-hand side of (5.3).

In general, the statistician is uncertain about the stopping rule é that was used to
produce (,n). Let p(6]6, S) denote the statistician’s prior distribution over some available
set A of possible sampling plans (as our notation indicates, we allow the possibility that

the statistician’s prior beliefs on § depend on his or her prior beliefs on § and S.) Then:

(8, S|e,n) =" p(8, S, 8|z,n)  p(z|n, 6, S) {Z p(n|8, S, 6)p(6]6, 5)} p(8,5), (5.6)

seA seA

and the second factor in (5.3) is in general given by

p(nl6,8) = > p(nl, S, 8)p(6], S). (5.7)
6§EA

If p(n|6, ) above does not depend on (6, S), then (5.3) can be expressed as

p(8, S|le,n) o p(x|n, b, S)p(8, S);
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so that the particular selection mechanism used can be ignored and data is analyzed
according to the selection model. A note of caution is in order. Notice that our use of the
term ignorable in this context results in an interpretation that differs from the usual one
that is given to the term. Here that the selection mechanism is ignorable means that data

is analyzed according to the selection model.

We next discuss two particular sampling plans that will be used to describe possible
selection mechanisms that might occur in the publishing of significant results scenario:
sampling plans in which the number of observations in S is fixed and sampling plans in
which the total number of observations is fixed. (A more detailed discussion of selection

mechanisms in this context can be found in Bayarri and DeGroot, 1990.)

6. PLANS WITH FIXED n

Consider first inverse binomial sampling plans § in which sampling is continued until a
fixed number of observations n lying in S have been obtained. In this set—up, a particular
sampling plan ¢ can in fact be characterized by the fixed value n that it requires, and A
can be taken to be the set of ail positive integers. Accordingly, sampling plans in this

section will be denoted by 6, (and sometimes simply by n).

If 6p, is a given sampling plan that specifies sampling until ny observations in S have
been obtained, then p(n|6, S, 6,,) in (5.7) is a degenerate distribution concentrated in the

single value n = ng, therefore
p(0, S|z, n, 6n,) x p(x|no, 6, S)p(8, S) for n = ny, (6.1)
and the selection mechanism is ignored.

In general, the value ng to be used in the sampling plan may not be known by the
statistician until the selection sample has actually been observed. In this case, he or she

would assess p(6,16, S) for n =1,2,3,..., and once ng is observed,
p(6, S|z, n0) o p(2|no, 8, S)p(8, S)p(6x, 16, S), (6.2)

so that if the probability that the statistician assigns to the investigator fixing the actual,

observed value ng, p(8r, |6, ), does not depend on 6, S (as it is very frequently assumed to

14



be the case), then the analysis is again based on p(z|ng, 6, § ) and the selection mechanism

is ignored.

In the situation that we are considering in this section, the total number N of observa-
tions taken by the investigator (the “file drawer” size in the context of published significant
results) is usually not known to the statistician, so that he or she may want to learn about

it. In this case, the goal is to compute the joint posterior distribution
p(6,S,Nlz,n)  p(z|n, o, S, N)p(n|8, S)p(N|n, 6, S)p(6,S), (6.3)

where p(z|n, 6,5, N) = p(x|n, 6, 5) is given by the selection model (5.5). Also, if we let
P = Pr(S]6), then the probability that N observations are needed to achieve n of them in

S is given by
N -1 n N-—n
p(N|n,8,5) = n_1 )P Q=P N=nnt1,... (6.4)

and if we make the usual assumption that p(n|f,S) does not depend on (6, 5), then the

joint posterior (6.3) can be expressed as

o),
P(6: 5, Nz, n) oc S0 (]Z _ 1)P"(l = P)N=mp(9, 5), (6.5)

from which a marginal posterior distribution for N can be derived.

It should be stressed that, as N is not observed, the mere introduction of it into
the formulation does not provide any information about (6, 5) and should not change the
inferences about (6,5). This is indeed true in a Bayesian analysis of the problem since
inferences about (6,5) will be based on the marginal joint posterior density for (4,5)

which, from (6.5),is given by
n(x|0
(0, Sle,n) oc 221 g ), (66)

and thus it is irrelevant whether or not we wish to learn about N as well. This may not
be the case when a likelihood analysis is carried out. In fact, if learning about NV is not of

interest, then a likelihood analysis would be based on the likelihood function
(|0
£6,S;2,n) « g%nl—) (6.7)
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whereas if IV is also of interest, the likelihood function would be
N -1 N-—n
£(6,S,N;z,n) < gn(z|d) "1 (1-P) (6.8)

and the likelihood analysis based on these two different likelihood functions will usually
differ. In particular, the MLE of § and S will be different depending on which likelihood
function, (6.7) or (6.8), is used. Thus, the mere consideration of the possibility of learning
about the unobserved N can change the inferences (here the MLE) about # and §, in

flagrant contradiction with the likelihood principle.

7. PLANS WITH FIXED N

In this section we will consider sampling plans é in which the number of observations
N to be drawn from the underlying density g(x|f) is fixed in advance. In other words,
suppose that the investigator draws a random sample of fixed size N from g(z]6) and then
reports to the statistician those observations among these NV that happen to fall in S. Any
such ¢ can be characterized by the N that it specifies; because of the importance that
these plans will have in the next section, we will abuse notation a little so that a particular
sampling plan §y which specifies sampling till N observations are obtained will simply be

denoted by N.

For any such sampling plan N, the joint posterior of (8, .5) can be expressed as
p(6, S|, n, N) o p(z|n, 6, S)p(n|d, S, N)p(b, S). (7.1)

But the probability of obtaining n observations in § is, for any given 6, S and N,

N
ol 5,3 = (1 ) Pra - PV, (7.2
where, as before, P = Pr(S|4). Thus,
p(8, S|z, n, N)  ga(]6, S)(1 ~ P)N""p(9, S), (7.3)

so that the selection mechanism can not be ignored. This is not a surprising conclusion,

since with this selection mechanism, the observed value of n does carry information about

P = Pr(S)6).
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In general, the statistician is uncertain about the actual N used. We will see that in
this situation the selection mechanism can sometimes be ignored. This is quite remarkable,
since we have just seen that when N is known, and for all values of N, it can never be

ignored.

When N is uncertain, the statistician quantifies this uncertainty by p(N16,5) so that

[e 0]

p(6, Slz,n) o p(x|n,6,S) { > p(nl6, S, N)p(N8, 5)} p(8,5), (7.4)

N=n
and according to the comments in previous sections, the selection mechanism can be 1g-

nored (and data analyzed according to the selection model) if

oo

p(nl6,S) = Z @f ) P™(1— P)N="p(N|, S) (7.5)

N=n
does not depend on (6, S). We will next present two examples of priors p(N16,S) for which
this result holds.

In the first one, the conditional distribution of N is assumed to be Poisson with mean
A/P, where X is a fixed and known constant. This is not unreasonable, since the less
likely the set S is, the larger the mean of this distribution is taken to be. That is, the
statistician believes that, since the investigator is to report only observations in S , then
the investigator is likely to fix large values of N when observations in S are difficult to get.

It follows from (7.5) and the assumption just made that

oo

1 1-P\"™ . o
p<n|a,s>:Nzn!(N_n)!( =) e h

A" A= 1[[1-P k_ﬂ,\
gl

so that p(n|6,S) is a Poisson distribution with mean A, and since it does not depend on

(7.6)

(6,5), the selection mechanism is to be ignored.

In the second example, p(N|6, S) will itself not depend on (6,5), and will be taken to

be an improper prior distribution. Specifically, suppose that
1
p(N|6,S) o I for N =1,2,... (7.7)

17



Then, for any positive integer n, it follows from (7.5) that

p(nlf, S) o % 3 <]: __11)13”(1 _pyN-n % (7.8)

N=n
which is also improper and does not depend on (8,S). (Notice, however, that an improper
uniform prior for N will not produce a similar result). Thus, again, the selection mechanism

is ignored.

We will finish the paper by applying the two particular sampling plans discussed in

the last two sections to our example of a published significant result.

SELECTION MECHANISMS FOR A PUBLISHED SIGNIFICANT RESULT

Consider again the example described in Sections 3 and 4, in which we read the
published report of an experiment in which a one-sided test of hypothesis on the mean
of a normal distribution with known variance was carried out. Based on the N(6,1)
distribution for the test statistic T, data was declared significant yielding a small p—value.
We also assumed that non-significant results did not get published so that, as readers of
the journal, we can only observe values of T such that T > 7 = @ 1(1 - a); 7 was 1.96 for
a = 0.05. Since we are considering just one published experiment, the size of the selection
sample in this example is n = 1. The two extreme conclusions reached in Section 4, as
well as a wide variety of intermediate ones, can now very easily be expressed in terms of

specific sampling plans that could have been used to produce the observed report.

For example, if we believe that the experiment under consideration was performed
repeatedly, possibly by different experimenters in different laboratories around the world,
until a significant result was obta,ined and published, then the selection mechanism is based
on an inverse binomial sampling plan with ny = 1. Hence, as explained in Section 6, the
selection mechanism can be ignored and the published result should be analyzed according
to the selection model (3.3), so that the posterior distribution for 8, as given by (6.1), is

pl0m0 = 1) o (6) 2L =)

'—_m, (8.1)

where £(6) is the prior distribution for 8. The assumptions made could be appropriate for
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instance to analyze experiments that are cheap and easy to carry out, not requiring overly

specialized skills or equipment,...,etc.

On the other hand, if we believe that the published significant result corresponds to
the only experiment of this type that has been performed, then the selection mechanism
is based on a sampling plan of fixed total sample size N = 1. In this case, it follows from
the discussion in Section 7 that the selection mechanism can not be ignored so that the
selection model (3.3) is no longer appropriate to analyze t. In fact, it follows from (7.3)

that the posterior distribution for 6 is in this case
P(Blt,n = 1,N = 1) o 4(t - 0)¢(6) (8:2)

so that the analysis of the observed value of ¢ is based on the original, underlying distribu-
tion N(6,1), implying that ¢ and its associated p—value should be taken at face value, as
common sense suggested. The assumptions made could be appropriate if, for instance, the
experiment under consideration is very expensive, or takes a very long time to complete, or

one that involves a large number of scientists or very sophisticated instrumentation,. . . etc.

The file drawer problem can also be described in terms of a sampling plan of fixed
total sample size N. N would here be the total number of performed experiments and
its value can not be observed. A Bayesian approach requires the specification of a prior

distribution p(N6, 1), so that the posterior distribution for 0, as given by (7.4) is

pBlt,n = 1) o< §(t ~ 0)¢(6) Y N[®(7 — )]V p(IV]6, 7). (8.3)
N=1
The analysis will be based on the selection model ¢t —0)/[1 — ®(r — 0)] if p(N10,7) is
such that

oo

> N[1—8(r - 9))[B(r — 6N (N8, 7) (8.4)
N=1

does not depend on 6, as it is in the case when p(V]8,7) corresponds to a Poisson distribu-

tion with mean A\/®(r — ) for any fixed A, or when it is taken to be inversely proportional

to N. Otherwise, the full analysis based in (8.3) has to be carried out.
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If it is not desired to carry out the full Bayesian analysis, we strongly recommend

that, at least, conditional posterior distributions as given by (7.3), namely
p(6lt,n = 1,N) o 6(t — O)[1 — B(r — )]V ¢(6), (8.5)

or their associated quantities of interest (estimators, HPD regions,...,etc.) be computed for
a “likely” range of values of V to tentatively investigative how sensitive our conclusions
are to the value of N. If they are sensitive, a fully Bayesian analysis, with maybe different

types of priors for N, is very advisable.
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