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ABSTRACT

This paper deals with the empirical Bayes test procedure of Gupta and Hsiao (1983),
say dGH | for testing Hy : § > 6, against Hy : § < 6§y for the uniform distributions U(0, 8),
6 > 0. Two aspects are studied. We first investigate the convergence rate associated
with the empirical Bayes test procedure dS¥. Various convergence rates are established
according to the types of the prior distributions. Secondly, an improved smoothed version
of dS# is constructed. The smoothed version is shown to be at least as good as dS¥ in

terms of the Bayes risks.
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1. Introduction

Suppose that the random variable X has a uniform distribution with pdf f(z|6) =
6~ 110,0)(z), 8 > 0, and that 6 is a realization of a random variable ® having a prior
distribution G over the interval (0,00). Consider the problem of testing Hy : § > 6,
against Hy : 8 < 6y, where 6 is a known positive constant. For each 7 = 0, 1, let ¢ denote
the action deciding in favor of H;. For the parameter 6 and the action i, the loss function

is defined as

L(6,4) = (1 — i)(80 — 8)L(0,00)(6) + (8 — 60) 5, 00 (6). (1.1)

A decision rule d is defined to be a mapping from the sample space X of X into the
interval [0, 1] such that d(z) is the probability of taking action 0 when X = z is observed.
Let D be the class of all decision rules. For each d € D, let r(G, d) denote the associated
Bayes risk. Then, r(G) = digg r(G,d) is the minimum Bayes risk among all the decision
rules in the class D. A decision rule, say dg, such that r(G,dg) = r(G) is called a Bayes

rule.

According to the precedingly described statistical model, the Bayes rule dg can be

obtained as follows.
Let ¢.(z) = E[O|X = z] denote the posterior mean of © given X = z. From Fox
(1978),
po(z) =[1 - Fo(z)l/fo(z) +2, 220, (1.2)

where fo(z) = [ f(z|6)dG(8) = [°671dG(6) is the marginal pdf of the random variable
X and Fg(z) is the corresponding cdf. Note that the pdf fg(z) is nonincreasing in z for
z > 0. The Bayes rule dg is:

1 if pg(z) 2 o;
d = ¢ ’ 1.3.
6(a) { 0 otherwise; (13:2)
or equivalently,
do(z) = { 1 if eithe.r x>0 or (0<z<6yand H(z) > 0); (13.b)
0 otherwise;

where H(z) =1 — Fg(z) + fa(z)(z — 6o).



The minimum Bayes risk is:
r(G) = / [—H(z)ldg(z)dz + ¢ (1.4)
0

where c= [ -/ fao_:max(eo,z) (6 — 6p)f(x|6)dG(8)dz.

Since the class of densities {f(z]0)|¢ > 0} has monotone likelihood ratio in z, the
posterior mean ¢, (z) is nondecreasing in z. From (1.3.a), it can be seen that the Bayes

rules dg is a monotone decision rule. That is, dg(z) is nondecreasing in z.

When the prior distribution G is unknown, this testing problem has been studied by
Gupta and Hsiao (1983), Van Houwelingen (1987) and Liang (1990), respectively, through
the empirical Bayes approach of Robbins (1956, 1964). Motivated by the monotonicity
properties of the posterior mean ¢ (z) and the Bayes rule dg, Van Houwelingen (1987) and
Liang (1990) have, respectively, studied monotone empirical Bayes test procedures based
on certain nondecreasing empirical Bayes estimators of the posterior mean. Under some
regularity conditions, the corresponding rates of convergence of their empirical Bayes test
procedures have also been investigated. Gupta and Hsiao (1983) have studied an empirical
Bayes test procedure which mimics the form of (1.3.b). However, the proposed empirical
Bayes test procedure is not monotone; also, the corresponding rate of convergence was not

investigated.

In this paper, we deal with the empirical Bayes test procedure of Gupta and Hsiao
(1983), say dS¥. Two aspects are studied. First, we investigate the asymptotic optimality
of the empirical Bayes test procedure d$¥. Various convergence rates are established
according to the types of the prior distributions G. Secondly, we propose an improved
smoothed version of the empirical Bayes test procedure dG¥ for the concerned testing
problem. This smoothed version is shown to be at least as good as dZ in terms of the

Bayes risks.

2. Asymptotic Optimality of d¢¥

In the empirical Bayes framework, let Xi,...,X, denote the n past random ob-
servations. It is assumed that X,,...,X, be iid with the marginal pdf fg(z). Let
X, =(X1,...,X,) denote the n past observations and let X,+; = X denote the present

random observation.



Let {an} be a sequence of positive numbers such that lim «, = 0. For each n =

n—oo
1,2,... and z > 0, define

{ Fo(z) =n"" ]iil To,21(X5); (2.1)

falz) = [Fu(z + an) — Fr(z)]/on.

Motivated by (1.3.b), Gupta and Hsiao (1983) proposed an empirical Bayes test proce-
dure d$*, which is given as follows: For each z > 0, let Hy(z) = 1 — Fy(2) + fu(z)(z —6o).
Then

. o > .
dCH(g) = { 1 if either z > 6 or (0 <z < 6y and Hy(z) > 0); (2.2)

0 otherwise.

Let r(G,dSH) denote the conditional Bayes risk (conditional on X ;) of the empirical

Bayes test procedure dS¥ | and let E[r(G,dSH)] be the associated overall Bayes risk. Then,

1G9 = [ HEN s + o (23)
and -
Blr(G,dS™) = [ [~H(@)Bl @)z +c, (2.4)

where the expectation E[dSH(z)] is taken with respect to X ,,. Since (@) is the minimum
Bayes risk, r(G, dS#)—r(G) > 0, and therefore E[r(G, dSH)]—r(G) > 0. The nonnegative
differences r(G,dS*) — r(G) and E[r(G,dS$®)] — r(G) can be used as measures of the
optimality of the empirical Bayes test procedure d$¥; see Van Houwelingen (1987) and
Liang (1990). In this paper, we are only concerned with the difference E[r(G,dSH)]~r(G).

Definition 2.1 (a) A sequence of empirical Bayes test procedures {d,}2; is said to be
asymptotically optimal relative to the prior distribution G if E[r(G,d,)] — r(G) — 0 as

n — Q.

(b) A sequence of empirical Bayes test procedure {d,}22, is asymptotically optimal of
order 3, relative to the prior distribution G if E[r(G, dy)] —r(G) = O(Bn), where {8,}52,

is a sequence of positive numbers such that lim 8, = 0.
n—o0

Gupta and Hsiao (1983) have proved that if na, — oo as n — oo, then E[r(G, dSH)] -

r(G) — 0 as n — oo. Hence, the sequence of the empirical Bayes test procedures {dS#}2
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defined through (2.1) and (2.2) is asymptotically optimal. However, the associated rate of
convergence was not investigated. In the following, we will investigate the convergence rate

of the empirical Bayes test procedure dS¥ according to the type of the prior distribution
G.

Let C be the class of all distributions over the interval (0,00). Two subclasses of C

are considered:
C1 ={G € C|fe(0) < oo};
C, = {G € C|G is a step function such that the number of

discontinuity points of G in the interval (0, y) is finite}
Note that Cq ;Cl.

Let A={0<z < 6|H(z) >0} and B={0 < z < 6y|H(z) < 0}.

Define ; ;
infA ifA ;
a= {m ifA# 9 (2.5)
Go if A=¢;
_ [supB if B # ¢;
B {0 if B = ¢; (2:6)

where ¢ denote the empty set. Since fg(z) is nonincreasing in z for z > 0, H(z) is

nondecreasing in z for 0 < z < 6 and therefore 0 < b < a < 6,.

From (1.4) and (2.4), also by the definitions of a and b given in (2.5) and (2.6),
respectively, it follows that

0 < E[r(G,dS®) - r(G) = I +II, (2.7)

where

b
I= [ @I @) = 1)ds,

II = " H(z)P{dS"(z) = 0}dz.

Note that I =0 if B = ¢ and II = 0if A = ¢. Without loss of generality, we may assume
that 0 < b < a < 6.



2.1 Asymptotic Optimality over C;
For 0 < z < b, H(z) < 0. By (2.2) and Markov’s inequality, it follows that
P{dF"(z) = 1} = P{Ha(z) - H(z) 2 ~H(a)}

(2.8)
< E[|Hn(z) — H(2)|]/(—H(z)).

From the definitions of the functions H,(z) and H(z), applying the triangular in-

equality, we can obtain the following inequality:

E[|Hn(z) - H(z)|]

(2.9)
SE[|Fu(z) — Fo(z)|] + (60 — 2)E[| fa(z) — fo(2)]]-
Now
E[|Fo(z) — Fo(z)|] < [Var (Fu(z))]*? < n™1/2, (2.10)
Also,
E[|fa(z) = fa(z)l]
(2.11)
SE[|fa(z) — Efa(2)l] + |Efa(z) — fa(z)l.
From (2.1), it follows that
E[|fa(z) — Efa(2)]] < (Var (fo(2)))/?
< [FG("E + an) — FG(‘T)]I/Z
na? (2.12)
< (4"

where the last inequality is obtained due to the fact that fg(z) is nonincreasing in z for

z > 0.
From (2.1) again,
|Efn(z) — fo(2)| < fo(z) - fa(z + an). (2.13)
Combining (2.8)-(2.13), we obtain: for G € C;,

b b b
I< / n"2dy -I—/ GO[ZGT(z)]l/zda: —I—/ bolfa(z) — fa(z + an)]dz
0 0 n 0

< O(n—l/Z) + O((nan)—-lﬂ) + /a,, 8o f(0)dz (2.14)

= O(n™/?) 4 O((naw)™"/2) + O(an).
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For a < z < 6y, define
H(z,n) =1—Fg(z) + [Fa(z + an) — Fa(2)](z — 6)/an.

Note that H(z,n) > H(z) > 0 for a < z < 6. Analogous to the preceding discussion, we

can obtain the following results:

For a < z < 6y,
P{dSH(x) = 0} = P{Hn(w) - H(w,n) < ——H(z,n)}
< E[|Hn(z) — H(z,n)||/H(z,n).

Also
E[|Hn(z) — H(z,n)|] < E[|Fa(z) — Fa(2)|] + E[| fa(z) — Efa(2)]]

<n71/% 4 (fG—(x))l/z.

non,
Hence, it follows that

6o
II< / E[|Ha(z) — H(z,n)|ldo (2.15)

< O(n™%) + O((nan)™/2).

We summarize the above result as a Theorem as follows.

—1/3

Theorem 2.1. Let a, = n . Then, the sequence of the empirical Bayes test procedures

{dGH}> | has the following asymptotic optimality:

E[r(G,dSH)] — r(G) = O(a) for all G € (.

2.2. Asymptotic Optimality over C;

For each G € C3, let {c1,...,cn} be the set of discontinuity points of the prior
distribution G in the interval (0,6p), where 0 < ¢; < ... < ¢m < 6. Straightforward
computation shows that the function H(z) is constant on each of the intervals [¢;—1,¢;),

t=1,...,m+1, where ¢o = 0 and ¢prq1 = 6. We have the following lemmas.

Lemma 2.1. For each G € C; having the set of discontinuity points {¢; < ... < ¢}

contained in the interval (0,6 ), the following results hold:
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(a) If b > 0, then b = ¢;+ for some i* =1,...,m+ 1, and sup H(z) = H(c;+-1) < 0.
z€B

(b) If a < 6, then a = ¢;+ for some j*=0,1,...,m, and 1I€1£1H(x) = H(c;+) > 0.
z

Proof: Straightforward computations will lead us to the results and hence the detail is

omitted.
In the following, we still assume that 0 < b < a < . Since we are interested in the

asymptotic optimality, we consider the case where n is sufficiently large so that b — a, > 0.

Let
Wa(z) = an[l — Fa(z)] + (2 — 60)[Fa(z + an) — Fa(z)].

Lemma 2.2. For G € C,, let i* and j* be the numbers implicitly defined in Lemma 2.1.

Then, the following hold.

(a) For 0 < z < b— apn, Wa(z) < anH(ci—1) <0.

(b) For a < z < b, Wy(z) > anH(cj+) > 0.

Proof: (a) For 0 <z < b — ap,
Wa(z) € an[l - Fg(z + ap) + fo(z + an)(z + an — b))
= a,H(z + ap)
< apH(cis-1)
< 0.
(b) Similarly, for a < z < g
Wa(z) 2 an[l — Fa(z) + fe(z)(z — 60)]
= o, H(z)
2 anH(cj)

> 0.

Lemma 2.3. Under the assumption of Lemma 2.1, we have the following results:
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(a) For 0 < z < b — ay,
P{d97(z) = 1} = O(exp(~n B (ci1)/2))
+ O(exp(—nanH*(cis-1)/(166; fa(0)))).
(b) Fora <z < 8

P{d;"(z) = 0} = O(exp(—nH*(c;+)/2))
+ O(exp(—nanH*(c;+ )/(1667 f5(0)))).

Proof: We prove part (a) only. The proof for part (b) is similar, and hence the detail is

omitted.
Let R,(z) = Fy(z) — Fg(z). For 0 < z < b— ay, by (2.1) and (2.2), we can obtain,
P{d{"(z) =1}

= P{anRn(z) + [Rn(z + an) — Ra(2)](60 — z) < Wy(2)} (2.16)
< PlanRa(z) < Wa(z)/2} + P{Rn(z + an) — Ra(z) < Wo(z)(6o — )1 /2}.

By Lemma 2.2.(a) and Theorem 1 of Hoeffding (1963),

P{anRy(z) < Wa(z)/2} < exp(—nH?*(ci—1)/2). (2.17)

Also, by Lemma 2.2.(a) and Bernstein’s inequality (see Ibragimov and Linnik (1971),
page 169),
P{Rn(z + am) — Ru(z) < Wa(z)(6o — )" /2}
< exp(=nWp(2)/[16(80 — 2)*(Fo(z + an) — Fa(2))(1 — Fo(z + am) + Fa(z))])
< exp(—nay H(¢i-1)/[1663 fa(0)an])
= exp(—nan H* (¢ -1)/[166; fa(0))).

(2.18)

The proof of part (a) is then complete after combining (2.16)—(2.18) together.

We conclude the following asymptotic optimality of the empirical Bayes test procedure

dSH over the class Cs.



Theorem 2.2. Let {d$¥}%2, be the sequence of empirical Bayes test procedures con-
structed through (2.1) and (2.2) with a, = n™(log n)'** for some e > 0. Then, {dG7} |
has the following asymptotic optimality:

E[r(G,dS™)] — +(@) = O(a,) for all G € Cs.

Proof: First, we have

0 < E[r(G,d7™)] - r(G)
b—a, b
= /o [—H(z)|P{dS" (z) = 1}dz + /b [—H(2)]P{d;"(z) = 1}dz (2.19)

o " H@)PLaS (z) = 0}de,

a

where

b
/ [—H(m)]P{de(a}) = 1}dz = O(ay). (2.20)

b—an

By Lemma 2.3(a) and the definition of ay, for sufficiently large n, as 0 < z < b — ap,
P{d"(z) =1} = O(n7Y),
which is independent of z. Hence,
b—ay,
/ [~ H(2)] P{dS" (z) = 1}dz = O(n~1). (2.21)
0

Similarly, we can obtain that

" H(z)P{dS"(z) = 0}dz = O(n™1). (2.22)

a

Therefore, the results of this Theorem follows from (2.19)—(2.22).

3. An Improved Empirical Bayes Test Procedure

Since the loss function L(6,7) in (1.1) is linear and the class of densities of uniform
distributions {f(z|6)|# > 0} has monotone likelihood ratio in z, the decision problem

under study is a monotone decision problem. Recall that the class of all monotone decision
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procedures is essentially complete, see Berger (1985). However, the empirical Bayes test

procedure d$H may not be monotone, and therefore may be inadmissible. In the following,
we consider a method to monotonize d$¥ to obtain an improved empirical Bayes test

procedure.

For the given past observations X, let B, = {0 < z < 64|d9H(z) = 0} and let
b, = f B dz. It is clear that 0 < b, < 6y. We define an empirical Bayes test procedure d¥

as follows:
1 ifz > by

dy(z) = 3.1
(=) {0 otherwise. (3-1)

By (3.1), it is easy to see that this empirical Bayes test procedure dy is monotone.

The following theorem shows the superiority of the empirical Bayes test procedure dr.

Theorem 3.1. For any prior distribution G and each n,
(a) r(G,d%) < r(G,dSH), and hence,

(b) E[r(G,dy)] < Elr(G,d7™)].

Proof: Since part (b) is a straight consequence of part (a), it suffices to prove part (a)
only. First, we present certain useful preliminary results.

Let Ap = {0 < z < 6p|dSH () = 1}, B = [0,b,) and A* = [b,,6p]. Note that
AnUB, = A} UB;; =[0,6p). By the definition of b,, and B},

/ dr = / dz = b,.
/ da:-l—/ d:v:/ d:v-l—/ dez,
B,nB}, B,nA? BrnB, BinA,

which implies that
/ dz = / dz. (3.2)
Bn.nAY B:nA,

By the definitions of the sets A,, By, A} and B},

1 ifzeBinAy,
d$H(z) —di(z) ={ —1 ifz € A* N By, (3.3)

0 otherwise.

Hence,
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Let ¢y = inf [~H(z)], ¢o = sup [—H(z)]. Note that for z € B* N A, and

2€B;NA, z€ALNB,
y € A, N By, < b, <y, which is obtained due to the definitions of B} and A%. Since

H(z) is nondecreasing in z for z € [0, 6], we can obtain

g1 > —H(b,) > ¢a. (3.4)

Now from (2.3), combining together with (3.2)—(3.4) it follows that

"G (G = [ [-H()d - | @

B;’;ﬂAn A;an
Z/ 91d$—/ godz
BinA, A%NB,
> 0.

Therefore, the proof of this theorem is complete.
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