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Abstract

Let f(z|0) = a8/ :1:"'*'1[(0 ) (z) be the pdf of a Pareto distribution with known shape

parameter a > 0 and unknown scale parameter 8. We study the problem of estimating the
scale parameter 8 under a squared—error loss through the nonparametric empirical Bayes
approach. An empirical Bayes estimator is proposed and the corresponding asymptotic
optimality is also investigated. It is shown that under certain weak conditions the proposed
empirical Bayes estimator is asymptotically optimal and the associated rate of convergence

is of order O(n=2/3).
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1. Introduction

Pareto distributions have been used extensively to model various socio-economic data.

The reader is referred to Arnold [1] for a general discussion and its applications.

Let X be a random variable having a Pareto distribution with the probability density

function given by

— a, —(atl)
f(:l,‘|9) = ab%r I(o,oo)(x), a>0,0> 0, (1.1)

where the parameter o is assumed to be known. Consider the problem of estimating the
parameter 6 under the squared—error loss. Suppose that the parameter 6 is a realization
of a random parameter © which has a prior distribution G over the interval (0, c0). Then,

the Bayes estimator of  given X = z is ¢ (z), the posterior mean of @, where

po(z) = E[O|X =z] = /9f(x|9)dG(9)/f($), (1.2)
where f(z) = f;=0 f(z]0)dG(8) is the marginal pdf of X. The Bayes risk of ¢, is

R(G,¢s) = E[(ps(X) - 0)?] (1.3)
where the expectation E is computed with respect to (X, ©).

When the prior distribution G is unknown, Tiwari and Zalkikar [6] studied the esti-

mation problem through the empirical Bayes approach of Robbins [3].

In the empirical Bayes framework, let X3,...,X, denote the past data, which are
assumed to be iid with the pdf f(z). Let pn(X) = ¢n(X,X1,...,X,) be an empirical
Bayes estimator of the parameter 6 based on the past data X, = (X,... ,Xr) and the
present observation X. Let R(G,¢,|X ) denote the conditional Bayes risk of ¢, given X,
and let R(G, ¢n) denote the overall Bayes risk of .. That is, R(G,¢s) = E[R(G,ps|X»)]
and the expectation E is taken with respect to X,. Since ¢, is the Bayes estimator,
R(G,¢n|Xn)— R(G,ps) 2 0 for all X,, and for all n. Therefore R(G,p,)— R(G,p,) >0
for all n. The nonnegative difference R(G, ) — R(G, ¢ ) can be used as a measure of the

performance of the empirical Bayes estimator ¢,; for example, see Lin [2] and Singh [5].

A sequence of empirical Bayes estimators {,}52, is said to be asymptotically opti-

mal if R(G,¢n) — R(G,¢s) — 0 as n — co. Moreover, if R(G,¢n) — R(G, ¢, ) = O(an),
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where {a,}52, is a sequence of positive numbers such that lim a, = 0, then the se-
n—o00
quence of empirical Bayes estimators {¢,}32, is said to be asymptotically optimal having

convergence rate of order {a,}52,.

Tiwari and Zalkikar [6] have proposed an empirical Bayes estimator for the parameter
0 and investigated the corresponding convergence rate for a class of prior distributions G

satisfying the following conditions.

Condition A:
Al. G(m) =1 for some known positive number m.

A2. Let a* = sup{6|G(0) = 0}. f(z) is decreasing in z for z € (a*,m].

Condition B:

B1. sup f(z) < oo.

z>a*

B2. E{(Xf3(X))"'I(X <m)} < oo.
B3. E{F(X)(1 - F(X)(f3(X) (X <m)} < co.

B4. E{(X?>+2f2(X))"1I(X > m)} < oo. Here, F(z) is the distribution function associ-
ated with f(z).

It should be noted that Condition A2 was used by Tiwari and Zalkika [6] in the proof
of their Theorem 2.1, though it was not clearly stated as an assumption. They showed
that under the precedingly described conditions, the convergence rate of their proposed

empirical Bayes estimator is of order {n_l/ 2}

In this paper, we propose an alternative empirical Bayes estimator for this empirical
Bayes estimation problem. We also prove that under Condition A the proposed empirical
Bayes estimator is asymptotically optimal having convergence rate of order {n=2/3}. Since
we only assume Condition A, the class of prior distributions under study is larger than the

class of prior distributions considered in Tiwari and Zalkika, [6].



2. The Proposed Empirical Bayes Estimator

First, we give a representation of the posterior mean ¢, (z). Under Condition Al,

straightforward computation yields the following: As 0 < z < m,

Jo—o 671 dF(6) M(z)
vel@) =2 M = e 1)
where M(z) = [’ §**1dF(6). Note that 0 < ¢ (z) < z, and therefore
M .
ma—ﬂ(f“’()T) <. (2.2)
Asz >m,
atl " gtldF(6

Since f(z) = ¢ ;:(i)n(m’x) af*dG(8), hence 2ot f(z) = m*+1 f(m) for all z > m.

Therefore, (2.3) can be rewritten as

M(m)

ps(x) =m— m‘""l—f(m) =ps(m)  for z > m. (2.4)

Let h(z) = f,_, a8*dG(6) for 0 < = < m. h(z) is increasing in z and z°+! f(z) = h(z)

for 0 < z < m.

Let {b,} be a sequence of positive numbers such that lim b, =0 and lim nb, = co.
n—oo n—ro00

For each n and z > 0, define
fa(2) = [Fu(z + ba) — Fu(z)]/bs

where Fy,(z) is the empirical distribution based on Xn, and let

1~ g
M, (z) = = ZX]- L o0,2)(X;)-
j=1

Both f,(z) and My(z) are consistent estimators of f(z) and M(z), respectively. Also,
E[M,(z)] = M(z).



We then propose an empirical Bayes estimator ¢,(X) given as follows:

+ [(m - —M—'@—) (00 (X) V 0]

metl f,.(m)

(2.5)

where a V b = max(a,b), 2 =0 and £ = oo for ¢ > 0.

£
0

3. Asymptotic Optimality

The following analysis is made based on Condition A. Straightforward computation

yields the following:
0 < R(G,¢n) — R(G,9s)

= E{(¢n(X) — 96 (X))*}
= [" Bllon(o) - po@)Iste)ie (1)

+ [ Bllon(a) ~ po(@)V 1 f(e)dn
From (2.4) and (2.5), for £ > m, @a(z) — ¢s(z) = pn(m) — p5(m). Hence,

| Bltonta) ~ po(@)15(e)de

m

= /oo E[(¢n(m) — p5(m))?] f(z)dz

m

=E[(pn(m) = ¢ (m))*][1 - F(m)].

(3.2)

Thus, it suffices to consider E[(¢n(z) — ¢ (z))?] for 0 < £ < m. Note that for each
0 <z <m, |pa(z) — ps(r)] < z. By (2.1) and (2.5), using Lemma of Singh [4], we can

obtain the following inequality.
E[(¢n(z) — pa(2))’]
<E [(| Mx(z) M(z) | z) ] (a A b = min(a, b))

zotify(z)  zoHif(z)

8 z) — M(z))/z>11)?
< Sy Bl (@) - M(:)/o%H]

8 M=) \* 22| D FVE
s [(xaﬂf(m)) +2]E[fn() f@F. -

(3.3)
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Since 0 < My(z)/z**! <1 and M,(z) is an unbiased estimator of M(z), we have
E[(Ma(z) — M(z))/z* ]2 = Var(M, () /%) < % (3.4)

Also,
E[fa(z) = f(2)]* = Var(fa()) + [Efa(z) — f(2)]? (3.5)

where
Fz +bs) — F(z) _ f(z)

nb2 nbn ’

(3.6)

Var(fn(z)) <

where the second inequality is obtained due to Condition A2.

Define h(y) = h(m) for all y > m. Note that h(y) is an increasing function for y > 0.
Under Condition A2 again, using the relationship that f(y) = h(y)/y**! for all y > 0, we

obtain

0 < f(z) — Efa(z)
z+by,
—f@) -5 [ )y

1 1 z+b, potl T
= potl h(:l,') - _A ya+1 h(y)dy

n

o

1 1 [fotbn Lo+l i (3.7)
h(a:) - b—/; s h(:c)dy

n

h(z) [ 1 [=tbs :1:"+1d
potl b /. yotrt

= f(=) [1— o (1 - (xfb))] '

By Taylor’s series expansion, there exists an z(b,) € (z,z + b,) such that

() | - S s 9

Combining (3.7) and (3.8) yields
(Efu(z) - f@) < ()3 0 (39)

Since 0 < __5?(% < z, we obtain
[F%] 2 + "'"2—2 <z'+ f; < 2z2. -~ (3.10)
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Based on the above discussion, we have:

/ " Bl(pn(z) — 0o(2))f()de
™ f( ) )
< /0 nf2( ] (a:)dm+/ f2 x 2z° f(z)dz
2 (a+1)bn 2
+ / ey X 2 X g @) (@),

16 3 \
<3 [ Fyte t T 4k VR

=0(n')+0 (%) + O(b2),

and
/m El(pn(s) — po(2))?1f(2)do
= E[(¢n(m) — oo (m))2][L — F(m)]
= O(n “1)+0( i ) + O(b2).
enee: 0 < R(G, ) ~ R(G,00)
=0(n" ') +0 ( 2 ) + O(b2).
If we choose b, = n~1/3, we obtain

0 < R(G,¢n) — R(G,p5) = O(n™?/%).

We summarize the preceding result as a theorem as follows:

(3.11)

(3.12)

(3.13)

Theorem 3.1. Let {¢,}52,; be the sequence of empirical Bayes estimators constructed in

Section 2. Then, under Conditions Al and A2,

R(G)pn) — R(Gpg) = O(n™) + 0 ( = ) +O®).

4. A Lower Bound For R(G,¢,) — R(G,¢c)

Throughout this section, we assume that m = 1 and the prior distribution G is the

uniform distribution /(0,1), and @ > 1. Then,

f(z) = { 1

aF1)z=F1 ifz > 1.

f0<z<1;

7
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Note that f(z) is decreasing in z for £ > 0. Hence, Conditions Al and A2 are satisfied.
For this prior distribution G = ¥(0, 1), we claim:

Theorem 4.1. R(G,¢,) — R(G,¢c) > O (;l;—") + O(B2).

The lower bound is established based on certain lemmas given below. First, we intro-
duce some results associated with the prior distribution G and some notations.

az*t?

For 0 < z < 1, when G = U(0,1) is the prior distribution, M(z) = CES)CEs))

2 T2f(x ~ (a+1)z

= 25 pala) = (232,

Let 6 be a positive value such that 0 < § < i. For each 0 < z <1 -4, let B,(z) =
I (};ﬂ%,% < a:) and let B;(z) be the complement of By(z).
Lemma 4.1. lim E[B:(z)] =0and lim E[B,(z)]=1,0<z<1-6.
Proof: We consider the case only where n is sufficiently large such that b, < . Hence, for
each z € (0,1 — 6],

E[Mn(z) — 272 fu(2)] = M(2) — 2°** f(2),

$a+2

« 1 o
Var (Mn(2) — 2% fo(2)) = — Var (X7*I,)(X1) ~ 5 Lot (X1))

2 a+1 z*t?
< o [Ver T Too(X0) + Var (=L e40,)(X1)

<2 [14 2 e

n

2(a+2) . .
where % [1 + %”—)] — 0 as n — oo since lim nb,, = oo.

n—00
Hence, by Chebychev’s inequality,

BB = P { s > )

zoH1f, (1) >z

=7 {[Mn(x) — 2 (o)) - [M () ~ 2 (e)] > (@ HETSE) }
< (o + 1) Var (M, (z) — £**2 f,(z))
- (a + 1)2z2(at2) f2(7) .
Therefore, nli—{%o E[B:(z)] = 0 and nlingo E[Ba(z)] = 1. -

Lemma 4.2. [} Bl(pa(s) — 9a(2))?](z)dz > 0 ().
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Proof: [} E[(¢n(z) —c(2))?]f(z)dz > [, ° E[(pn(e) — ¢ (2))? Ba(e)] f(z)dz, where for
each z € (0,1 — ], for the prior distribution G = U(0, 1), straightforward computation
leads to:

E[(¢n(2) — ¢a(2))? Ba(2)]

(o + 2)[Ma(z) = M(z)] = 2°F[fulz) = F@)]\* 2
( (at 2)2717,(z) ) Bn(e)

e (4.2)

Since E fn(z) = f(z), Var (fo(z)) = M%ﬂl and lim b, =0, hence

222 /nba(fa(z) — £(2))7 N (0,22 f(2)) as n — oo.
Also,
(a + 2)/nbp(Myp(z) — M(z))p 0 as n — oo,
(a +2)z°t fo(2)5 (o + 2)x*F f(z) as n — oo,
and E[B,(z)] — 1 as n — oco. Hence, by Slutsky’s theorem,

(a 4 2)[Mn(z) — M(z)] — 2°2[fa(z) — f(2)]
\/TE [ (o + 2)zot1f,(z) Bu(z)

v (o W) -

Then, by convergence theorem, from (4.2) and (4.3), we have:

(4.3)

72
2)] 2 7
e PRI
for all z € (0,1 — 6] as b, < é. Then, by Fatou’s lemma,

lim inf E[nb,(pn(z) — pc(z))’*B (4.4)

1-6
lim inf /0 Efnbn(¢n(z) — 06(2))2 Ba(2)|f(2)dz

1-§
> / {lim inf Blnba(pa(z) — 9a(z))* Ba(@)]} f(z)da

1-§ a:2
2 [ e
_(1=¢p

~ 3(a+2)2°

Hence, we conclude:

/01 E[(pn(z) — pc(x))?]f(z)dz > O (%) _ o

n
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Lemma 4.3. E[(¢n(1) — ¢c(1))?] > O(¥2) as a > 1.
Proof: Let C,, = b,/(a+2) and A, = I(Jea(1) — ¢a(1)| > Cy). Now,
El(¢a(1) — ¢c(1))’]

=E[(¢n(1) — ¢6(1))* Ba(1)] + E[(¢a(1) — pc(1))*BE(1)),

where

Bllien) ~ poP B0} = (223) PiBi),

and

E(¢a(1) — (1))’ Ba(1)]

>CP{An N Ba(1)}
o (M) 1
2P T s 2 O )

=C2p {M (1) — fa(1) (—— + Cha ) >0, Bn(l)}.

For n being sufficiently large, C,, < ;i—z and hence,

El(pa(1) — pa(L))?]
>c2p {M (1) = £a(1) (

>C2p {M (1) — fa(1) (a+2+0,,)20}
~ozp{ [, - 100 (—+Cn)] B 1) - £u0) (735 + ) |
> —

B M) - 1) (5+6) |}
where B [Ma(1) = fa(1) (7 + Ca) |

_ a Pl 1 /H'b" dz (e +2)Cr /1+b" dx
T (a+1)(a+2) br J; o+l bn 1 zotl

o 1 [l gy 1+bn o .
CERCES) 1‘5/1 —+‘/ gorr | (since (o +2)Cr = by)

S a -1 —];-/1+bn d_m /1+bn d_x ( . > 1
“(a+1)(a+2) b, J1 22 J; g2 | Coeed= )

=0.

1

+ 0,,) >0 n(l)} +CaP{B;(1)}

Q
w
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Therefore,

{M (1) = fu(1) (——+c ) > o}

>p {M (1) = fu(1) (—i— +C ) [M (1) = £a(1) (—+c )] } o

By central limit theorem, the R.H.S. of (4.5) will tend to % as n — 0o. Therefore, we have

E[(¢n(1) — pa(1))?] > O(C%) = O(b2) since (o + 2)Cp = by. d

Proof of Theorem 4.1.: Theorem 4.1 is a direct result of (3.1), (3.2) and Lemmas 4.2
and 4.3. O

From Theorems 3.1 and 4.1, there is a prior distribution G such that Conditions Al
and A2 hold, and R(G,¢,) — R(G,pg) =0 (;},—") + O(B2). In order to obtain the best

~1/3

convergence rate, we let b, = n~1/3, and the convergence rate is of order O(n=2/3).
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