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ABSTRACT

Let X1,X3,...,X, beii.d. observations with a common density f(z,6) depending on
a real parameter . Our problem is to estimate . In this paper, we consider a family of
non-regular cases for which the support of the density is an interval depending on 6 and

obtain a lower bound for the asymptotic risk of an estimator using the notion of limits of
experiments.



1. Introduction

Let {fa(,0)}, n > 1, be a family of densities depending on a parameter 6 taking
values in ©, where © is an open subset of the real line R. We consider the problem of
estimation of 6. Let {T,} be a sequence of estimators of §. We consider the asymptotic
risk

p(6,{T.}) = Al m lirfninf sup  L(k.(T. —¢")) (1.1)

=0 nvos o' —8|< Ak

as a measure of the asymptotic performance of the estimator {T,,} at ¢, where L is an
appropriate loss function and k(T o0) is the normalizing factor (see, for example, Weiss
and Wolfowitz (1974)) for the given family of distributions. The performance of {T},} at
¢ is evaluated not by the limiting risk at # but by the limit of supremum of the risk at
§', over the set |¢' — ] < Ak, where for any A, Ak tends to zero. This is done to
rule out superefficiency (see, Ghosh (1985)). For the regular cases a lower bound to the
asymptotic risk (1.1) was obtained in Hajek (1972). The nonregular cases were studied
by many authors including Weiss and Wolfowitz (1974), and Ibragimov and Hasminskii
(1981). In Samanta (1989), a lower bound to the asymptotic risk was obtained for a family
of non-regular cases using the notion of limiting experiment which is due to LeCam (1972).
The examples given in Samanta (1989) includes the case where the observations are i.i.d.
with density whose support is an interval S(6) = [4;(8), A2(8)] which is monotone in 6.
In this paper we consider the case where the support S() is not monotone in . We first
find in Section 2 the limit of the sequence of experiments {Pga Jn3 A € R} where P} is the
distribution of the first n observations when § = ¢'. In Section 3, we consider a wide class
of loss functions and find the minimax risk in the limiting experiment which gives us a
lower bound to the local asymptotic (minimax) risk by Hajek-LeCam asymptotic minimax

theorem (see Section 3).

2. The Limiting Experiment

Let X1,X>,..., X, be ii.d. observations with a common distribution Py having den-
sity f(z,0) with respect to Lebesgue measure where § € ©, an open subset of R. We
assume that the support of the density is an interval [4;(6), A2(6)] depending on . We
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consider the sequence of experiments
E, = { ;:;+/\/n;)‘ € A}') n>1

where A is the whole real line R or some appropriate subset of R, Py is the n—fold product
of Py and 6, is a fixed point in © which may be regarded as the true value of the parameter.
We want to study the convergence of this sequence of experiments in the sense defined as

follows (see Millar (1983)).

Definition. Let E® = {($",8"),Q%; A € A}, n > 1, and E = {(5,5),Qx; A € A}

be experiments with parameter set A. Then E™ converges to E if for every finite subset
{A, .., Ak} of A,

n dQA1 dQAk

,u}=>£{( o T Y

E dQKl . dQ&lk
d un Ut d ur
If one of the A;’s is increasing (in #) and the other decreasing (one of them may be

k k
where pu™ = 3 Q%,, p= Ele\i'
=1 1=

+00) so that the interval [A41(), A2(6)] is monotone in 8, then the limit of the sequence
of experiments E, with A = Rt or R~ is an exponential shift experiment under suitable
assumptions stated in Samanta (1989). This follows from the general result proved in
Samanta (1989, Sec. 2). In this paper we consider the case where either both the A;’s are

increasing or both decreasing.
To find the limit of E, we show that the Hellinger transform of the experiment E,

converges to that of a certain experiment E which is the limiting experiment.

Definition. The Hellinger transform of a statistical experiment E = {(X, A), Py; 6 €
©} is defined on the set S = {z = (z:)ier € [0,1]7: }_ 2 = 1, T is finite subset of ©} and
el
for I = {6,0:,...,0r} C © and 2 = (zg,,...,2p,) € S it is given by

where p is a o—finite measure dominating {Py;; i € I}.

3



Hg(z) is independent of the choice of p.

We shall use the following result to find the limiting experiment.

Lemma. A sequence of experiments E, converges to an experiment E if and only if

Hg, converges to Hg, pointwise on S.
We first find the limit of the Hellinger transform of E, = { P 4a /a3 A €RL
We make the following assumptions.

(A1) f(z,8) is strictly positive and jointly continuous in (z,8) on the set {4;(6) <
z < Az(0)}. We set h(0) = f(A1(8),0) and ¢(0) = f(A2(6),6).

(A2) A1(6) and A3 () are continuously differentiable function of 6.

(A3) The derivative f'(z,8) of f(x,8) with respect to  exists and is continuous in 8
on the set {A4;(0) < z < 42(6)}.

We shall prove the following:

Proposition 1. For A\; < Ay < ... < A, the Hellinger transform Ho(z1,22,...,2k)
of E, = {Péf,+,\/n? A € R} restricted to {A1,..., At} converges to

k
H(z1,22,...,2r) = exp {62(90)/\1 —c1(o) Ak — Z/\izi(c2(90) - 61(90))}

i=1

with ¢;(6p) = A} (6)h(6o) and cz(6p) = A5 (86)9(6o)-

Corollary. The sequence of experiments E, converges to the experiment E = {Qx; ) €
R} where Q) is a probability distribution on R? with density
{ exp{(ca(fo) — c1(fo))A}exp{z — y}, if z < ca(6p)A
D\T,y) =

and y > c1(6p)A,
0, otherwise.

The result stated in the corollary follows from the above lemma since the limit
H(z1,2,..., %) givenin Proposition 1 is the Hellinger transform of the experiment {Qx; ) €

A} restricted to {A1, Az,..., Ak}



Now to prove the proposition it is enough to show that as n — oo
k
n l:/Hfz‘(a:,Go + Xi/n)dz — 1}
=1

k
—ca(6o) A1 — e1(00) Ak — Z Aizi(ca(6o) — c1(6o))

=1

(2.1)

k
for any (z1,...,2x) satisfying 0 < z; < 1 for all s and 3. z; = 1. We prove only for the

=1
case where both A;() and A3(6) are increasing in 6 and \;’s are all > 0. The proof for

the other cases are similar. Now, n [f IT f%(z,60 + A\/n)dz — 1]
i=1

k
= /n l:l{A1(00+,\k/n)<z<A2(6’0+,\1/n)} Hfz‘ (z,60 + Aifn) — f(=, 60 )J dz
=1

A1 (Bo+Ar /1) Az(B0+A1/n) K
= —n/ f(z,600)dz + n/ Hfz‘(:z:,ﬁo + Xi/n)dz

A1(6o) A2 (6o) i=1
Az(8p) k
+n/ II 77,00 + Xi/n) — f(z,80) | dz
A1 (Bt /n) |15

= Iin + I2n + I3, say.
By assumptions (A1) and (A2)
Iln - —61(90)/\k and I2n - 62(00))\1.

It now remains to show that

k
I3n — E /\iZi(Cl(ao) —_ 62(90))

Isn = / e [f[ { (z,60) + 2 f’(:c,G,-n)}Zi _ f(a:,GO)J da

Ai1(8o+ Ak /n) i=1
[where 6;,, lies between 6y and 6y + )\; /n]
Az (6o) k ;i f'(z, 6; ) 2
=n f(z,8) {l—l— LY } — 1| dz.
/Al(eo+xk/n) [,1;[1 n f(z,6o)

The next two steps are to show
k

(2.2)

Aa(80) Xi f'(2,6:) 1% T Ai f'(2,0in)
n z,0 ML A At ALY A — L, -
‘[41(00+Ak/n) f( , 0) I:H{l-l_ n f($700) } ZI__II{1+ n f(fc,go) } d (2.3)

=1

—0asn— o0



and
k

n/Az(eo) f(z,80) [H {1 + %%z} - 1] dz

A1(8o+Aisn) i=1

Az (o) ko .0
o~ n/ f(z,60) [Z -%‘—'f—(—-Lm)z] dz.

A1(fo+Ai/n) =1 f(:l),a()) '

(2.4)

By “an ~ b,” we mean a, — b, — 0. (2.3) and (2.4) are valid if we assume, for example,

the following
(A4) There exists a neighbourhood N (o) of 6y such that for all 8 € N(6,),

f'(z,6)
f(z,60) < M)

for some constant M(6y) and for all z € [4;(60), A2(6o)] for which f'(z,6) exists.

To prove (2.3) we use the expansion

(I+y)=1+zy+ Z(—z;—l)yQ(l +£)*?

where ¢ lies between 0 and y.

From (2.3) and (2.4) we have by (A3) and (A4)

k A2(80)
I3n ~ Z )\,-z,-/ f’(.’E, Gin)dw
=1

A;1(0o+Ak/n)
k

A2(8o)
~ Z )\,-z,-/ f'(z,00)dz (2.5)
i=1 A1(8o+Ak/n)

A2(80)

k
~ Y Nz / f'(z,86)dz.

i=1 A1 (6o)

0
-y

As(6)
= F(42(6),0)45(6) ~ F(A1(6),6)A4(6) + /A ., o

Az(9)
/ f(z, 9)d:z::|

A1(9)

Therefore, from (2.5) we have

k
I3, — Z /\izi(cl(ao) - 02(90))
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and thus the proposition is proved under assumptions (A1)-(A4).

3. A Lower Bound to the Asymptotic Risk

We now find the minimax risk of the limiting experiment obtained in Section 2 to find
a lower bound to the asymptotic risk p(8, {T,.}) of an estimator {T,,}. We use the following
general result which is known as the Hajek-LeCam asymptotic minimax theorem. Suppose
we have experiments E™ = {(S™,8"), @%; A€ A}, n>1, and E = {(S,S), Qx; A € A}.
Let D be a fixed decision space and L a loss function on A x D which is lower semicontinuous
on D for each fixed A € A. Let p,(b,A) and p(b, \) be the risk functions of a procedure b
in the decision theoretic structures (E™, D, L) and (E, D, L) respectively. Then we have

Theorem (Hajek-LeCam asymptotic minimax theorem). If E™ converges to E, then
liminf infsup pn(b,A) > inf sup p(b, A)
n—oo b ) boox

where the infimum in either side is over all “generalized” procedures (see Millar (1983, Ch.

IT)) for the corresponding experiment.
We consider a loss function L(-) satisfying the following
(i) L(0)=0, L(z) > 0 for all z
(i) L(z) = L(~)
(iii) {z:L(z) < c} is closed and convex for all ¢ > 0.

Using the above theorem and proceeding as in the proof of Theorem VII 2.6 of Millar

(1983), we can now prove that
lim liminf inf sup  EsL[n(T, — 6)]
A—oo n—ooo Ty g_g 1< An-1

> inf sup p(4, A)
5 xeR

(3.1)

where the infimum in the left hand side is over all estimators T}, of 8 and the infimum
in the right hand side is over all randomized procedures for the limiting experiment E

obtained in Section 2.



We now compute the minimax risk in the limiting experiment E. Let (X,Y) have

joint density ga(z,y) given in Section 2. Let us consider the transformation

U= ClX—62Y
c+co
X

y- XY
c1+ ¢

(We write ¢; in place of ¢;(6g)). Then U and V have joint density of the form g(u,v — \)

where

(c1 + c2) exp{2u + (¢ — c1)v},
g(u,v) = ifu<Oand *<v<-—%, (3.2)
0, otherwise.
The problem of estimation of A is invariant under the group of transformation (u,v) —
(u,v+¢), ¢ € R. Any equivariant estimator is of the form V + ¢(U). By the result of

Kiefer (1957), the best equivariant estimator is minimax and therefore the minimax risk

in experiment E is
i%f//L(v+¢(u))g(u,v)dudv
=//L(v+¢o(u))g(u,v)dudv, say.
We assume that a minimizing ¢o exists. If, for example, L is convex and the integral
is finite for some ¢, then such a ¢y exists. If we have squared error loss, ¢o(u) is the

conditional expectation of V given u. If ¢;(0) = c2(6), ¢o(u) = 0 for any loss function L

satisfying (i)—(iii) above.
Now, from (3.1) we have

lim liminf inf  sup  E¢L[n(T, — 6)]

A—oo n—=o0 Tn |g_gy|<An-1

> EL(V + ¢0(U))

where U and V have joint density g(u,v) as given in (3.2) and ¢, is as defined above. In

particular, for any sequence of estimators {7}, }, we have

p(00,{Tx}) = BL(V + ¢o(V)).
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