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Abstract

We elaborate on the hit-and-run algorithm, a Monte Carlo approach that estimates
the value of a high-dimensional integral with integrand A(z)f(z) by sampling from a time-
reversible Markov chain over the support of the density f. The Markov chain transitions
are defined by choosing a random direction and then moving to a new point z whose
likelihood depends on f in that direction. The serially dependent observations of h(z;) are
averaged to estimate the integral. The algorithm applies directly to f being a nonnegative
function with finite integral.

We generalize the convergence results of Belisle, Romeijn and Smith to unbounded
regions and to unbounded integrands. Here convergence is of the point estimator to the
value of the integral; this convergence is based on convergence in distribution of realizations
to their imiting distribution f. In addition we discuss three variations that are intended to
reduce point-estimator variance: conditional expectation in the random direction, sampling
in multiple directions, and adaptive external control variates.

An important application is determining properties of Bayesian posterior distributions.
Here f is proportional to the posterior density and A is chosen to indicate the property
being estimated. Typical properties include means, variance, correlations, probabilities of
regions, and predictive densities.

Keywords: Bayesian posterior distribution, Barker’s method, conditional expectation,
control variates, hit-and-run, Markov chain, Metropolis’s method, simulation, stratified
sampling.



1 Introduction

We consider Monte Carlo methods for evaluating the multi-dimensional integral [ h(z)f(z)dz,
where f is a density function. Methods that sample from f are applicable, since this integral is an
expectation E¢(h). Such methods are useful when no closed-form solution can be found, whether
due to the complexity of the problem, due to the integrand being known only numerically, or due
to a desire for automatic evaluation.

The Bayesian statistical community has shown a recent interest in multidimensional integra-
tion for determining properties of posterior distributions f. Methods include importance sam-
pling [Geweke, 1989], approximation via Laplace’s method [Tierney and Kadane, 1986], Gaussian
quadrature [Naylor and Smith, 1982 and 1988], data augmentation [Tanner and Wang, 1987}, and
the Gibbs sampler [Gelfand and Smith, 1990].

Very recently, both Bayesian statisticians and those interested in the more-general numerical
integration problem have developed the Markov chain sampling methods of Metropolis et al. [1953]
and their generalization, as discussed in Hastings [1970]. Applegate, Kannan, and Polson [1990]
showed polynomial-time convergence for Markov chain algorithms that move over a finite discrete
state space. Miiller [1991] investigates Metropolis’ algorithm, with emphasis on fitting a multivari-
ate normal distribution to the posterior density and on specializing the algorithm for use in Gibbs
sampling.

Our work is closely related to Belisle, Romeijn and Smith [1990], who propose Markov chain
“hit-and-run” algorithms. Quoting almost directly, their description follows. Let .5 be a bounded
open subset of R* and let ¢ be an absolutely continuous probability measure on S. Let f be
a probability density function (p.d.f.) for ¢ and assume that it is bounded, almost everywhere
continuous (with respect to Lebesgue measure on S), and strictly positive. Let B denote the k-
dimensional unit open sphere centered at the origin and let B denote its topological boundary.
Thus

B={ze€ RF . llz]l < 1} and 0B ={z € RF: llz]| = 1}.

Finally, let v be an arbitrary probability measure on 8 B. The hit-and-run algorithm with direction

distribution » and with target distribution ¢ can be described as follows:



Algorithm Hit-and-Run
step 0. Choose a starting point z, € S and set i=0.

step 1. Choose a direction d; on @B, with distribution v.

step 2. Choose a signed distance A; € S;(d;, z;) déf{/\ € R:z;+ Ad; € S}, from the distribution

with density
fz; +Adi)

fs, f(z; + ud;)du

fi(A) = A€ S,

step 3. Set z;,; = z; + Aid; and set i=i+1. Go to step 1.

The proof of Belisle, Romeijn and Smith [1990] for the hit-and-run algorithm restricts the
support of the probability density function f to be an open bounded set and the density function
f to be bounded. However, in many real problems, for example Bayesian posterior estimation, the
support of the probability density function is unbounded. In addition, the density function might
also bé unbounded.

We are interested in developing the theory to remove those restraints, as well as in discussing
variance reduction ideas. We generalize the results of Belisle, Romeijn and Smith [1990] in the
following directions: (a) f is any probability density function, a) the support of f can be any R*
subset, and c) three variance reduction sampling algorithms are proposed.

The outline of the paper is as follows. In Section 2, we introduce notation and provide a detailed
description of the random-direction Monte Carlo-sampling approaches that we consider. In Section
3, we introduce several candidates for transition probability kernels. Asymptotic convergence results
and their proofs are given in Section 4. In Sections 5, 6, and 7 we consider variance reduction ideas:
conditional sampling, multiple-direction stratified sampling, and adaptive external control variates,

respectively. Discussion is given in Section 8.

2 Random-Direction Monte Carlo Sampler

We consider a variation of the hit-and-run algorithm: The random directions are specialized to
be uniformly distributed; the random distances are generalized (as in Romeijn and Smith [1990])
to no longer require direct sampling from the conditional density. We also generalize to arbitrary

density f with any support S C R*.



Algorithm 1

step 0. Choose a starting point 25 € S, and set i=0.

step 1. Generate a uniformly distributed unit-length direction d; (cl1 d?,...,db).

1?7 ?

step 2. Find the set S;(d;, z; df-f{/\ERl ; + Ad; ES}

step 3. Generate a signed distance A; from density g;(A| d;,z;), where A; € S;.

step 4. Set y = z; + Aid;. Then set

¥ with the probability a(y | z;)
iy = . (2.1)
z;, otherwise,

step 5. Set i=i+1, and go to step 1.

A random unit-length direction d; can be generated in Step 1 by independently generating
2~N(0,1),l = 1,2, ...,k, and setting d} = z (2.11?:1 sz_)_% 0 =1,2,...,k (e.g. see Devroye [1986,
Section 4.2]).

-~ Candidates of g;( A| d;, z;) and a(y | z;)- that yield the asymptotic distribution f are discussed

in the next section.

3 Transition Probability Kernels and Time Reversibility

Let {X,,,n > 0} be the homogeneous Markov chain generated by Algorithm 1. The statement
of Algorithm 1 specifies neither the choice of the density g;(A | d;,z;) nor the probability a(y | z;).
In this section we discuss sufficient conditions on g;(A | d;, z;) and a(y | z;) for the resulting Markov

chain to have a probability transition kernel and to be time reversible.

Theorem 3.1 For any density g;(A | d;,z;), as used in Step 3 of Algorithm 1, such that

gz( A I _.n_z) = gz(’\ I _27_1)7 (31)



and for any 0 < a(y | z;) < 1, as used in Step 4, the Markov chain {X,,,n > 0} in Algorithm 1 has

one-step transition probability density at X;; =y given X; =z

2 y—z
pylz) = = 9illlz -yl Ty—z® oula), fraliy#zes, — (3.2)

where Cy, = or$ / 1‘(12’-) is the surface area of the k-dimensional unit hypersphere. And at the point

X, 11 = z, the one-step transition probability mass is

eln)=1- [ syl ey (33)
S5—{z}

Furthermore, the transition probability kernel is
de
K(z, A P(X;, € A| Xs = 2) = p(z | 2)Iale) + /A p(y | z)dy, (3.4)

where A C S is an arbitrary Borel set in R*, and I4(z) =1 if z € A and 0 otherwise.

Proof: See Appendix A. : [ |

Notice that we are using p(- | -) as both a density and as a probability, with the interpretation
being clear from the arguments.

Equation (3.2) is intuitively appealing. The numerator “2” arises from two directions passing
from z through y. The surface area C} arises from choosing a unit-length random direction in Step
1. The denominator || z — y ||¥~! arises from distant points being “harder to hit” than close points.
The density g;(A | d;, ;) reflects the choice of candidate points generated in Step 3. The function
a(y | z;) is the probability of moving to the candidate point in Step 4. The proof in Appendix A
reflects a variety of intricacies that arise.

To obtain the convergence results of Section 4, we require choices of g;(A | d;, z;) and a(y | z;)

that yield time-reversibility

p(y | 2)f(z) = p(z | ) f(y), for every z,y € S. (3.5)



Corollary 3.1 If g;(\ | d;,z;) satisfies Equation (3.1), gi(A | di,z;) > 0 for X € Si(d;,z;), 0 <
a(y|z;) <1, and

sllz-yll ey e ol /@ = sy -2l ;b pw) o DI@, (9

forallz # y € S, then the Markov chain {X,,,n > 0} satisfies Theorem 3.1 and is time reversible.

Now we consider two candidate sets for g;(A | d;,z;) and a(y | z;) that satisfy the assumptions
of Theorem 3.1 and time reversibility. The first samples from the density f directly, while the

second samples indirectly.

Candidate Set I:

f(z; + Ad;)

Si(dizi)

and

d(ylz)=a'(z|y), 0<d(yla)<1, forallz;,yes. (3.8)
Typically aI(:_q_ | ;) = 1.

Candidate Set II:
Choose g;i(A | d;,z;) to be one of the following:
a) If S is bounded, then
o\ | diy2:) = ———r—, for A € Sids, ;) (3.9)
1] =71 m(Si(dz',gz‘)), -1/

where m is Lebesgue measure.

b) If S is unbounded, then choose g/f() | d;,z;) to be any symmetric-about-zero, continuous
distribution with unbounded support. For example, g/{(\ | d;,z;) can be a normal distribu-

tion, Cauchy distribution, or double-exponential distribution with location parameter zero.



Independently of the choice a) or b), choose a(y | z;) to be either

c¢) Barker’s method [Barker, 1965]'

11 ) = __&._
©uls) = ey (10
or
d) Metropolis’s method [Metropolis et al., 1953]
a(y | ;) = min(1, e ). (3.11)

flz)

Those choices, which are motivated by Hastings [1970], are also used in Romeijn and Smith [1990].

4 Asymptotic Convergence Results

Let f denote a given p.d.f. in RF with support S, an arbitrary subset of RF. Let {X,,,n > 0}
be the Markov chain in Algorithm 1. Then, under the conditions of Corollary 3.1, for any starting
point z, in Step 0 of Algorithm 1, we prove in Theorem 4.2 that the limiting density of X, is f,
and in Theorem 4.3 the average of sample A(X;) converges to the integral [¢ h(z) f(g)dg We first
state and prove Lemmas 4.1, 4.2 and 4.3 and Theorem 4.1.

Now, let K(z,A) be the transition probability kernel given in (3.4), and let p(y | z) denote
the one-step transition probability density and mass, as given in (3.2) and (3.3), respectively. We
assume here and in future sections that Algorithm 1 is subject to the conditions of Corollary 3.1;

then we have

p(y | z)f(z) = p(z | »)f(y), and p(y | ) > 0, for any g,y € 5. (4.1)

Let B* denote the Borel sets of R*. For every A € BF, let the probability measure ¢, defined by f,

be
def

o) [ s (4.2)

Then ¢(5) = / f(z)dz = 1. Thus, we have
S



Lemma 4.1 The probability measure ¢ is invariant for the transition probability kernel
K(z,A), i.e.,
#(4) = [ Kz, A)f(2)d, (43)

for every Borel set AC S.

Proof: By (3.4), K(z,A) = p(z | z)Ia(z) + /A p(y | z)dy,

and by (3.3),p(z |2)=1- / p(ylz)dy=1- /Sp(_gi | z)dy, since [{_} p(z | z)dy =0.

5—{z}
Thus

[x@nr@dz= [ (1- [ o) w@s@iz+ [ ([ sl o) @)

:[SIA(Q)f(i)dﬂ—/g</Sp(_3i|$_)dy_) IA(g)f(g)dgz-[-/S(Ap(_y_l_a_;)f(g)dg> dz

= /A f(z)dz - /A ( /S P(E|£)f(£)dg_) dz + /S ( /A p(glg)f(g)dg) de.

By (4.1) and Fubini’s Theorem, we have

| ([ralor@ay)dze= [ ([ relprwdy) de

= [S ( /A p(zly)f(ﬂ)dﬂ) dy = /S ( /A p(glg)f(g)d@ dz.

Thus
[ E@f@dz= [ f@)dz=o(a).

|
Now, if Ky(z, A), Ko(g, A) are two transition probability kernels, their product KK, is defined
by
de
K1 Ko(z, A) =f/S K1(z,dy)K3(y, A)

(e.g. see Nummelin [1984, p. 2] or Revuz [1975, p. 11]). Thus K(z, A) is well-defined, and we
have the following result:



Lemma 4.2 For every integer j and every Borel set AC S,

/g Ki(g, A)f(@)dz = [ f(2)dz = $(4). (4.4)

Proof: By mathematical induction on j using Lemma 4.1. n
Since the Markov chain {X,,,n > 0} has the transition probability kernel K(z,A), then the

j-step transition probability is
Py(X; € )Z P(X; € A| Xo = 2) = K¥(z, 4). (4.5)

Thus by Lemma 4.2, we have
[ PelX; € M)z = 9(4). (4.6)

Lemma 4.3 The transition probability kernel K(z,A) is ¢-irreducible, i.e., for every Borel set

ACS, if $(A) > 0, then

ZKj(g, A)> 0, forevery z€S. (4.7)
J=1
Proof: Since the transition probability kernel K7 (z,A4),7 =1,2,--., are nonnegative, we need only

show that K(z,A) > 0. For every z € S, K(z,A) = p(z | z)Ia(z) + 4 p(y | 2)dy, from Equation

(3.4). Since p(z | ) > 0 and I4(z) > 0, K(z,A) > [4p(y | £)dy. For every y # z, any choice of

g and a satisfying the conditions of Corollary 3.1 yields p(y | z) > 0. Therefore, since ¢(A4) > 0

implies m(A) > 0, we have [, p(y | z)dy > 0. u
The potential kernel associated with the transition probability kernel K(z, A) is

Gz, A)Y iK i(z, A), (4.8)

=0

where K%z, A) = I4(z). The potential kernel G(z, A) is proper if § can be written as the union
of an increasing sequence of S-subsets {S,,} in B¥ such that for every z € S, G(g, S,) is finite for

every n. Otherwise it is émproper. See Revuz [1975, p. 42].
Lemma 4.4 The potential kernel G(z, A) is improper.

Proof: We prove by contradiction. Suppose G(z, A) is proper. Then by Proposition 1.15 of

9



Chapter 2 in Revuz [1975], there exists {Sy, S» € B¥} such that {S,} increasingly converges to S,
and G(z, Sy) is finite for every z € S. But for every set S, C S and every z € §, the potential

kernel satisfies

G(Q’ Sn) = EKj(ﬁa Sn) < 00,

3=0
S0

lim K?(z, S,) =0, for every z € S.

j—00
Since [g f(z)dz = ¢(S) = 1 is finite and since |K7(z, S»)f(z) |< f(z) for every z € S, § > 0 and

n > 1, the Lebesgue Dominated Convergence Theorem implies

lim [ K(z,S2)f(@)dz = [ lim K¥(z, 5.)f(2)de = 0, (4.9)
J—00 JSs S 3—00

for every z € S and every n = 1,2,.--.
Since {S,} increasingly converges to S and ¢(S) = 1, there exists an n* such that for every

n > n*, ¢(S,) > 0. Then from Lemma 4.2, for every n > n*

lim / Ki(z, S.)f(@)dz = lim /S f(@)de = $(Sn) > 0, (4.10)
j—oo Jg j—=oo Js,
which is a contradiction to Equation (4.9). [

A Markov chain {X,,n > 0} is said to be Harris recurrent if there exists a positive, o-finite,

invariant measure u such that for every A € BF, u(A) > 0 implies
i

Py [iIA(L) = 00} =1, (4.11)

for every z € S [Revuz, 1975, p. 75].

Theorem 4.1 The Markov chain {X,,,n > 0} in Algorithm 1 with the transition probability kernel

K(z, A) is Harris recurrent.

Proof: According to Theorems 2.6 and 2.7 of Chapter 3 from Revuz [1975], we have that if the
Markov chain {X,,n > 0} is ¢-irreducible and its potential kernel is improper, then it is Harris

recurrent. But these two conditions are the consequences of Lemmas 4.3 and 4.4, respectively. ®

10



Now we prove that the n-step distribution of the Markov chain {X,,n > 0} converges to
the limiting distribution f regardless of the starting point z,. Let uo be any starting probability
measure on B¥ in Step 0 of Algorithm 1. Then the n-step probability measure uo P™ is

poP"(A) déf/ K™(z, A)uo(dz), for everyA € B*. (4.12)
s
The total variation between poP™ and ¢ is
n de n . n
Il oP™ — ¢ || 2 sup (oP"(4) — $(4)) — inf (4oP"(A) - ¢(A)) (4.13)
AEB* A€B

(e.g. see Nummelin [1984, pp. 108-109]).
Theorem 4.2 The n-step probability measure of the Markov chain {X,,,n > 0} in Algorithm 1
converges to the invariant probability measure ¢ in total variation; that is,

lLim || poP™ - 4 ||=0. (4.14)

-—*+00

Proof: By Theorem 4.1, the Markov chain {X,,n > 0} is Harris recurrent. Since it is aperiodic,
then Theorem 2.8 of Chapter 6 in Revuz [1975] yields the result. [
Theorem 4.3 says that the sample mean of the observations A(X;) converges to the value of the

integral, regardless of the number of observations ignored to warm-up the Markov chain.

Theorem 4.3 If h is integrable with respect to f, i.e., [¢|h(z)|f(z)dz < oo, then for every fized
0<jo<

lim Zh( i) = Es(h) a.s., (4.15)

n—oo 7 — ] + 1 =70
where E¢(h) = [¢ h(z)f(z)dz. '
Proof: Theorem 4.1 and Lemma 4.1 say that the Markov chain {X,,n > 0} is Harris recurrent

with invariant probability measure ¢. Thus, for every h integrable with respect to f, Theorem 3.6

of Chapter 4 in Revuz [1975] gives

lim
n—oo 7 +

Zn:h()_(_j) = E¢(h) a.s. (4.16)
j=0

11



Therefore,

J=jo

n+1 Jo-1
= 1 h = FE¢(h) a.s.
nl-l-vrgo n—Jo+1 n+12 (£) - n — Jo +lz (X 1(h) as

5 Conditional-Expectation Sampling

Let f denote a given p.d.f. in R* with the support S, an arbitrary subset of R*. We want to
evaluate the k-dimension integral E¢(h) = [¢ h(z)f(z)dz, where we continue to assume E¢|h| < oco.
The idea here is that if we use Algorithm 1, at the ith-iteration, we generate z; and d;. At that itera-
tion, the original quantity for estimating E¢(h)is h(z;). But now we use y,+1 2l (P(Xiy1) | diy 2;).
Since E (h(X;41) | d;,2;) is a one-dimensional integral, numerical evaluation of Yi+1 is reasonable.

The expected value of each observation is unchanged since by the Markov property,

E(Yiq1 | Xo = 2o) = E(E (M(Xi1) | Dir Xi) | Xo = 20) = E(MXi11) | Xo=20).  (51)

From Algorithm 1, given X; = z; and D; = d;, then X;,; = z; + Ad;, where the random signed

distance A has density and mass

gi(A ] d;, z;)a(z; + Ad; | z;), if A#0,A € Si(d;, z;),

G2 =N g dza(e + ud: | z:)du i A =0, (52
Si(diz;)

Let Qi(A | d;, z;) denote the c.d.f. of A.

Algorithm 2

step 0. Choose a starting point z,, and set i=0.
step 1. Generate a random unit-length direction d; uniformly in the k-dimension space.

step 2. Find the set S;(d;,z;) = {A € R| z; + Ad; € §}.

12



step 3. Compute yiy1 = [5 h(z; + Ad:)dQ:() | di, 2;)-
step 4. Generate a candidate A; from g;(X | d;, z;), where A; € Si(d;, z;)-

step 5. Set y = z; + Aid;. Then set

y with the probability a(y | z;)
Xip1=4§ -
z; otherwise,

step 6. Set i=i+1, and go to step 1.

The candidate sets for g;(A | d;,z;), and a(y | z;) are the same as for Algorithm 1. We continue
to assume that the conditions of Corollary 3.1 hold.
Let Y3,Ys,---,Y, be the sample from Algorithm 2. Then, we can use

Es(h)% Ly ZY (5.3)

as an estimator of E(h) = [s h(z)f(z)dz. Algorithm 2 is valid in the following sense.

Theorem 5.1 For the Markov chain {X,,,n > 0} in Algorithm 2, if E¢|h |< oo, then for almost

all zy € S with respect to the invariant probability measure ¢,
lim B(Bf(h) | Xo = 2o) = Ey(h). (5.4)

Proof: By Theorem 4.1 and Lemma 4.1, the Markov chain {X,,,n > 0} is Harris recurrent with

invariant probability measure ¢. Since

B(E) | %o %2

i | Xo = 2o)
=—ZE(E(h(X)I -1 Xi1) | Xo

=) = —ZE(h(X ) | Xo

20),

and [g|h(z) | f(z)dz < oo, then the fact that for almost all z, € § with respect to the invariant

probability measure ¢,

Jm LS BE) | Xo = 22) = By(h) (55)
=1

13



is a consequence of Theorem 3.5 of Chapter 4 in Revuz [1975]. [
Therefore n~13_%_,Y; is an asymptotically unbiased estimator of E;(h). Theorem 5.2 says that

under the nonnegative conditional correlation assumption, the variance of the estimator is reduced.

Theorem 5.2 If for every i,j > 1, and for every given Xo = zo € S, Dy = dy € 0B déf{d €

Rk’ | d||=11}, the conditional covariance of h(X;) and h(X;) is finite and nonnegative, then

Varg, (Xn: E(h(z-z) |.]-li—1,2(_i—1)) < Varg, (z": h(L)) , for every gz, € S, (5.6)
=1

where

Var, (= E(h(X)) | Qz-_l,zg_o) - |

5 (@E(h(.&) | Q,-_I,L-l))z | Xo= 4)) - (; B(h(X:) | Xo = m)z (5.)
and

i=1 i=1

n n 2 n 2
Varg, (z h(L-)) _E ((z h(&)) | Xo= 4,) _ (z B(X:) | Xo = m) C68)
=1

for everyzy € 5.

Proof: See Appendix B. |

6 Multiple-Direction Stratified Sampling

In this section, we modify Algorithm 2 by considering multiple directions at each iteration. The

modified algorithm is as follows:

Algorithm 3

step 0. Choose a starting point z;, and set i=0.

step 1. Generate a random unit-length direction d; uniformly in the k-dimension space. Denote

i = d,.

14



step 2.  Get any random unit-length direction set d?,d?,.--,d* such that d},d?,..-,d’ are

orthogonal. Let k* = k.

step 2/. Alternatively, use all of k! permutations of the direction components of d;. Let k* = k!,
and denote this random-direction set by d},d?,- -, Qf'. (Notice that k* = k if step 2 is used,
and k* = k! if step 2’ is used.)

step 3. Find the set Sf(df,g, déf{z\Eng:_.-+z\df-'ES}, i=1,2,--.,k*.

step 4. Compute yf_l_l = fS{(i{,g.-) h(z; + )\_(ﬂ)de-'()\ | df,g,-), where Qg()\ | df,_@z) is the c.d.f. of

the random signed distance Af , which for j = 1,2,..-,k* has density and mass

g0 &, z)a(z: + Al | z) if A #£ 0, € S/(dl, z;)

¢ &)= o .
1— Jsiggi gy 9 (M | s zi)a(z; + M) | z;)dA if A =0.

(6.1)
step 5. Generate a candidate A; from g}() | &}, z;), where \; € S}(d}, z;).

step 6. Set y = z; + A\id}. Then set

y with the probability a(y | z;)
L+1 =

z; otherwise,

step 7. Set i=i+1, and go to step 1.

Let {X;,X,,---,X,,} and {Ylj,Y;,-- Y3, j=1,2,---,k*} be the samples from Algorithm
3. The Markov chain {X,,,n > 0} from Algorithm 3 is the same as that from Algorithm 1. Thus,
the Markov chain {X,,,n > 0} from Algorithm 3 is Harris recurrent with the invariant probability
measure ¢.

Now, we use
1 & k*

22 Y (6:2)

i=1j=1

RO

as an estimator of E¢(h). Similar to Algorithm 2, Algorithm 3 is valid in the following sense.

Theorem 6.1 Under the conditions of Corollary 3.1, if E¢|h |< oo, then for almost all z, € S

15



with respect to the invariant probability measure ¢,

lim E(E(h) | Xo = 2o) = Ex(h). (6.3)
Proof: Since
. n k*
BUES() | Ko = 20) = B3 3 ¥ | Ko = 20
i=1j=1
n k* n k*
1
= Y Y B (B(HX) | D, Xia) | Xo = 20) = o o EHE) | Ko = 20)
1_1_7 1 i=1j5=1
= Ly B | Xo = 20)
z-.l
the result follows from Theorem 5.1. [ |

In Step 2 (or 2) we can substitute any other set of £* directions that maintains the unconditional

uniform distribution on 8B.

7 Adaptive External Control-Variate Sampling

In this sectibn, we modify the Algorithm to use external control-variate (e.g. see Bratley, Fox,
and Schrage [1987] or Nelson [1990]). Let fy denote the p.d.f. of the normal distribution N (g, X)
with mean y and covariance ¥. Furthermore, assume Ey, (h) is available, i.e., E¢, (k) can be easily
computed. Let the samples be {X;,1 < i < n} from f, and {Z;,1 < i < n} from fy. Then the

control-variate estimator of E¢(h) is
66— Bon - o), (7.1)

where

~def 1 A def 1
0 InE), v Iy wz), (72)

and f is some function of {X;} and {Z}.
Inducing positive correlation between § and §y is central to obtain var(*) < var(f). We hope
to obtain such positive correlation by obtaining a sample path {X;} that is similar to the sample

path {Z;}. Similar sample paths can arise by using the same Uniform (0,1) random numbers
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to obtain {X;} and {Z;}, if we are careful to synchronize their use. Typically, in Algorithm 1 we
might use one random-number stream to generate directions, another to generate g using the inverse
transformation, and a third to accept or reject y based on a(y | z;). Synchronization is simplified
and the sample paths more similar if a(y | z;) = 1, since then the third stream is unnecessary.

In Sections 7.1, 7.2 and 7.3, we discuss an adaptive external control-variate sampling algorithm
for which we first obtain the initialized estimates of 3, the normal mean p and covariance ¥, then
present the asymptotical result. In Section 7.4, we discuss an alternative that requires stronger

assumptions, but that is better when applicable.

7.1 Initialization

Choose a starting normal distribution N(y,X). Let no denote the number of iterations of
Algorithm 1. Let {X9,1 < i < ng} be the sample from f(z), and let {Z?,1 < i < no} be the
sample from fn(z). Let Y? = h(X?),C? = h(Z?),i = 1,2,---,m0, Y° = (YL, Y2,---,Y2Y, and
C®=(cY,C3,---,C8 ). Choose

Q

S 0y 0
ax def VOO

000

o}

where

Sgoge = (no—1)"1Y (C? = C%)?, Sgoye = (no — 1)) (C7 - CONYP - Y0), (7.4)

=1 =1
Co S o, yo= 2 nZOY" (7.5)

7.2 Updating Sampling Scheme

Now, we choose

def 1
p g =y x (7.:6)
no =
=1
5 Y iii(xq — B)(XO - pY (7.7)
_ng.l.l'—’ DX -1 )
= J=
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Let fy be the p.d.f. of N(a, %), and let
de 2
ond E; (h) = /R h(z)fn(z)dz. (7.8)

We assume @y is known.
Therefore, for Step 1in Algorithm 1, generate Z} ~ N(ji,3), and set X§ = ZJ, restart Algorithm
1. Let n be the number of iterations. Then, we have the samples {X},1 < ¢ < n} from f and

{Z},1< i< n} from fy.

7.3 Estimation and Asymptotic Result

Let
~ de 1 n
v € =Y @), (7.9)
i=1
j el Lgp oy
6 = n;h(L), (7.10)
& % 6- By - on), (7.11)

where 0y is given in (7.8). Hence, we have the following asymptotic result for the estimator 6*.

Theorem 7.1 If [px |h(z)|f(z)dz < oo and if [k |h(z)|fn(z)dz < o0, then given {X,1 < i <
no} and {Z9,1 < i < np},
nango0 = E¢(h) a.s., (7.12)

where 0* is given in (7.11).

Proof: Similar to the proof of Theorem 4.3, given {X?,1 < i < ng} and {Z2,1 < i < ng}, we have
Oy — Oy, as n — 00 a.s., and § —> E¢(h), as n — oo a.s., which yield the result. [ |

For the above adaptive external control-variate sampling algorithm, we don’t require that the
second moment E;(h?) exists. If Es(h?) éxists, the following alternative external control-variate

sampling algorithm will be better.
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7.4  Alternative Estimation and Corresponding Asymptotic Result

Pilot sampling again yields fy and 8, where for Step 1 in Algorithm 1, generate Z§ ~ N (i, 3),
and set X} = Z). Oy = n~13" h(Z}) and § = n~1Y"%  A(X}) are still determined by (7.9) and
(7.10), respectively. But, we choose '

6% 6 g0y - On), (7.13)
where
IB** def SQIZI (7 14)
- Sg_lgl ’ )

and

Sigt = (n=1)7"3(CH=C1, Sgpyr =(n—-1)7"Y(CF - CY)(Y! -Y1), (7.15)
=1 =1
ct = Z ZYI and Y} = h(X}), C} =h(Z}), i=1,---,n. (7.16)
1—1 1._1

Let

o B, () - 0% and wi [ W (@)f(@)dz (7.17)

Then, finite variances yield convergence, as stated in Theorem 7.2.

Theorem 7.2 Given {X?, 1<i< no}, if 0% and pb are finite, then
Jim §** = E¢(h) a.s. (7.18)

Proof: Similar to the proof of Theorem 7.1, given {l?, 1< i< ng}, we have nli)rgo Oy = Oy a.s.,

and nlLIgloé = E¢(h) a.s. Now, it suffices to prove that lim (0 — On) =0 a.s. Since

—Z(clyl nC1Y1)

|7y — o) 1=l —— = 18w = 6w |
C'IC'1
On—6n| 1 _
< Ol ”'-5-( S G Y |cl|-|Y1|),
ngl 1=1 1—1
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and by Theorem 3.6 of Chapter 4 in Revuz [1975],

1

1)2 25 0% + 6% as n— oo,
1—1
1
)2 25 pz as n — 00,
1—1
and
.S, 1 .S,
Soigr 2% 0%, C' 25 0y, and ¥' 25 Ef(h) as n — oo,
then

0 < lim |f*(fy - 6n) < Iim | 3 - 6n) |

n—oo

™ |6y — On | l ( E( 12 4 E(Yl)z

=

IA

0 a.s.

ICII-IY’II)

Consequently, 3**(0 — On) 25 0 as n — 0. So, f** 2% E¢(h) as n— oo.

Furthermore, if ji is chosen to be the mode of f and 3 is the minus inverse Hessian at i when

applicable, or if 4 and 3 are any intuitive guesses, we don’t need the sample {X?,1 < i < np}. In

this case, the condition “ given {X?, 1< i< ng}” in Theorem 7.2 is no longer needed.
s g 44 g

8 Discussion

The uniform distribution of directions in Step 1 of Algorithm 1 can be modified by transfor-
mations. For example, suppose the integral is originally posed as [q h(w)f(w)dw and we linearly

transform the variables using g = Cw. Since in the algorithm z;,; = z; 4 Ad;, iterations are now

Cleipn = O™z + 2di)

or

= w; + AC7'd.

g
+

20

Notice that if we use §** for E¢(h), we don’t need to obtain the sample {Z9,1 < i < mo}.



The point C~1d; lies on the surface of the ellipsoid wTCTCw < 1. The unit direction is

C14;
IC-2d; ||’
The marginal distribution is proportional to ||C~d; ||, the distance of the point to the origin, since
C~1d is the projection to the surface of points in the ellipsoid, which are uniformly distributed
[Devroye, 1986, p. 567].

Thus, unless C scales all components equally and with no rotation, even a simple conversion such
as meters to kilometers modifies the sample path and the performance of the algorithm. Intuitively,
choosing directions uniformly on the sphere is good when the integrand is close to spherical, which
might often arise by choosing units that are comfortable to the analyst. Kaufman and Smith [1991]
discuss optimal distributions for directions.

Throughout this paper, the assumed form of the integral to be estimated has been [¢ h(z)f(z)dz.
Equivalently, one could consider the importance-sampling transformation to [ h*(z) f*(z)dz where
f* is a density on S and h*(z) = h(z)f(z)/f*(z) for all z € S. Such a transformation can be useful
in two ways. First, the associated conditional density f*(z + Ad) is more tractable than f(z + Ad);
for example, when 5 is bounded choose f* uniform over 5, and when S is unbounded choose f* to
- be some multivariate normal density. Second, the variance of the estimator based on h*(z) might
be less than the variance based on h(gz); the ideal is for h*(z) to be constant over all z € S. The
choice of the form of the integrand can dramatically affect performance for the algorithms in this
paper, as well as for many other solution methods. However, the results of this paper do not depend
on the particular choice.

In Section 5, we have proved that the algorithm is asymptotically unbiased and that if condi-
tional correlations are nonnegative, the variance of the estimator is reduced. The desired result
is that the algorithm converges (almost surely) and moreover that the variance of the estimator
is reduced. In our empirical experience and from our intuition, we have no examples of negative
conditional correlation.

Our interest in this problem is motivated by the need to determine properties of Bayesian poste-
rior distributions, such as probabilities, means, variances, covariances, and higher-order moments.
In this case h reflects the property of interest and f is the posterior density. However, often f is

known only up to a multiplicative constant ¢, since the shape of f depends only on the product of
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prior density and the likelihood function. An advantage of Algorithm 1 is that the value of ¢ is not
required. The sampling algorithms discussed “see” f only via g and a, which are a density and a
probability, respectively, for any value of c.

Empirical results on a variety of examples associated with posterior distributions are consistent
with the results of this paper. The results indicate good computational performance. Based on
empirical results and informal reasoning, we think that Markov chain sampling can also be used
for some problems that are not easily posed as integration. For example, the ith component of

observed values z might be sorted to estimate quantiles of the ¢th marginal distribution of f.

Appendix A: Proof of Theorem 3.1

For k = 1, the proof of Theorem 3.1 is straightforward, since the distribution of the random
direction D; is P(D; = 1) = I_J(D,- =-1)= % We consider now k > 2, where D; has a density.
We first prove Equation (3.2) and then Equation (3.3). For Equation (3.2), we haveall y #z € 5.

Let Y denote the random candidate for X;,, given X; = z determined in Step 4 of Algorithm
1. Let D; = (D}, D?,---,DF) be the random direction of Step 1, which is uniformly distributed
over the surface of the unit k-dimensional hypersphere. Thus, by Johnson [1987, pp. 125-127], the

components of the direction d; can be written

d} = sin 6, sinfy - - - sin Ox_o sin Oy
d? = sin f; sin @y - - -sin Ox_o cos Ox_1
d3 = sinf; sinfy - - -sin Ox_3 cos Oi_o
(A1)
df‘2 = sin 6, sin 05 cos O3
df ~1 = sin#; cosb,
d* = cos by,

where the random signed distance angles (01,02,-+,0,_1) have the distribution with density
function .
folbs,00,,0u) = (Z85) " sint=2615ink=26y. - sin By,
2

0<6;<m, j=1,---,k—2; 0 < by < 2m.

(A.2)
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Thus, the joint probability density function of (©1,©2,---,0_1) and the random signed distance
A;is
f@,A,‘(ah 027 STy ok—-la ’\) = f@(ola 02, Tty ok—-l) gl(A | ii(ela 02, Tty 0k—1)7£)7 (A3)

where d;(61,02,-,0k—1) déf_d,- is used for clarity. Now, the random candidate y = (y1,¥2, -+, ¥k)

is obtained by y = z + Ad; in Step 4.

So
hn =1+ Asinfy sinfs - - -sinOx_o sin O
Yo = 29+ Asinf, siné; - - -sin fx_3 cos O
Y3 =3+ Asinfy sinfy - - -sin fx_3 cos O
(A.4)
Yk—2 = Tg—2 + Asinb; sinb, cos b3
Yk—1 = Tk-1+ Asinb; cosb,
Yk =z + Acosb;.

Notice that if y = z+Ad;(61,02,- -, 0k—1), then y = z+(—A)-(—d;(61,602,---,0k—1)), and recall that
the support of fo(f1,02,-++,0k-1)is0<0; <m, j=1,---,k=2; 0 < Oy < 2m. Thus, for given y
and g, if (61,602, - ,0k-1, A) is a solution of Equation (A.4), then (7 —60;, 7 —0g,-- -, 7 — 02,01+
~m,—A) are also solutions of Equation (A.4). Therefore, the p.d.f. of the random candidate ¥ given

X;=zis

3(y1,y2,"'7yk) -1 0 d:(6,0 0p_1), 2
f _ ’ 0 s 0 —_ 7 LL7y ’ Y b
Y(y) | 6(61)62,-.-,6k—1,/\) | 9( 1,925 s Uk l)g (’\] ( 1,02 k 1) )
a(yl,yz,.--7yk) |"1 _fe(ﬂ-_glo.-,ﬂ —Ok_z,ek_1+7l)

a(ﬂ-_ela"',ﬂ-—ek—2’0k—1+7r7_/\)
gz(—’\ |(_i.z(7r - 01" e, T — 0k—2)0k—1 + 7r)a£)
9(y1,92," > k) -1
. -6y, —01_o.0L_1 —
6(71._01,_._,"._0]:_2’91:_1_ﬂ_,_)‘)I f@(ﬂ. 1y ' k—2,Vk-1 7[')
'g’i(—)‘ Idz'(ﬂ'—ol,"',ﬂ"—Ok_2,0k_1 _77)7£)- (A5)

Similar to Kendall {1961, pp. 15-17], we have

| a(y1>y27"'7yk)

3(01 02 .. 0k ) A) l:| )\ |k_1 . Sink—2 0]_ Sink_3 92 ...8in 0]5:—2, (A.6)
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and

I 3(1‘/1,?/2,“',%) l
8(71' - 01, Y B 0k—270k—1 = _’\)
| 6(y1,y27"')yk) | 3(01a027°"’0k—17’\) |
6(01’ 02’ e 70k—17A) a(ﬂ- - 01’ cee, T — 0k-—2)0k-—1 + T, —'A)
l 3(3/1, y2""’yk) (A?)

8(01702,' ",0k—1’A) )

Since di(ﬂ' - 017 ree, T — 0k—270k—1 + 77) = —di(01302, . '70k—1)7

g’l.(_’\ | dz(ﬂ- - 01, tee, T — 0k—2)0k—1 + ﬂ),@)
= g’i(—’\ I —d-i(01702’ v "ok—1)7£) = gi()‘ ’ d—i(017027 v 'aok—l)aﬁ)’ (AS)

where the second equality is by assuming Equation (3.1). And from (A.2),
f@(ﬂ. - 017 e, T — 0k—2, 0k—1 + 7T) = f9(017 02’ ST ok—l)I[O,ﬂ')(ek—l)y (A'g)

and

f@(ﬂ- - 01, e, T — 0k—270k—1 - 71-) = f®(01,027 e 70k—1)I[7r,27r)(0k—1)- (AlO)

Therefore, by (A.5) and (A.7) to (A.10), we have

(Y1, 92:° > ¥k) -1
- 01,02, -, 0k
fr(g) 18(01,02,.__,0k_1,/\)| fo(61,6; k-1)

-gi(A | di(61,02, - -+, 0k-1), 2)(1 + Ijo,r) (Ok—1) + I i ,2r)(Ok-1))

_ a(yl7y2,"'ayk) -1 ,
= 2| 5 G S 17 oy, 00m) 66A (01, -, 0k 2). (A1)

Thus, from (A.2) and (A.6),

W= (27r§ )2| A B

k)

g1(’\ | di(017027"',0k—1)7.$_)- (A12)

However, from (A.4) or from Step 4, we can find that | A |=||z—y|; andif A =% ||z —y ||, then
di(01702, STty ok—l) =t-=—
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Hence, the p.d.f. of the random candidate Y is

z
z

y—
Ik_lyi(llav_—glllll—;;—,z_), for y € 5 —{z}, (A.13)

2
M= gz= i

¥l

27r12='
r(%) _ ,
Now having the distribution of the random candidate Y given X; = z, we find the distribution

where Cf =

of X;y1, given X; = z. Use the indicator variable W to express X1 as

Xipn=z+X-2)W, (A.14)

where W has the conditional distribution

P(W:1|L:Q,X=Q) = a(y|a), (A.15)
P(W:O|L~=;§,X:Q) = 1-a(y|z). (A.16)
We use the vector inequality (z1,2%,---,2%) < (2},23,- -+, z¥) if and only if :1:{ < x%, forall j =
1,---,k. Then
P(Xip St X=2)= / Plz+@-oW<tlXi=zY = y) fr(¥)dy. (A.17)
5-{z}

Thus, by considering the two cases W = 1 and W = 0 of Equations (A.15) and (A.16),

PX; St X;=2)= / fr(w)a(y | z)dy + / fy(g)(l —a(y | 2))dy | Iiz<sys

{y<t,yeS—{z}} S—{z}
(A.18)

where I,y =1 if z < t and 0 otherwise.

Therefore the distribution of X, has density

p(ylz) = fr(ya(ylz), for y#z, (A.19)
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and the mass at the point X;,; =z is

pzlz) = PXip=z|Xi=2) = 1-P(Xip1 €5-{z} | Xi=2)

= 1- / p(y | 2)dy. (A.20)
Thus, the transition probability kernel is

K(z, A)= P(Xips € 4| Xi =) = ple | )@ + [ ply | 2)dy (A21)

for any Borel set A C S. [ |

Appendix B: Proof of Theorem 5.2

By Equations (5.7) and (5.8), in order to prove Inequality (5.6) it suffices to prove

B ((i B(W(X.) | Doy Xia))? | Xo = J) <E ((i MX:))? | Xo = J) . B
i=1 : i=1

for every zo € S. And by the total-probability argument, it is sufficient to prove

Lo |
(B.2)
for every zy € S,dy € 0B, where 0B df:f{i € Rkl | dl= 1 }. To simplify notation, define the

E ((2 B(M(X:) | Dicy, Xiea))? | Do = dos Xo = 4) <E ((ih(&-))? | Do = do, Xo

difference by

AY f: Y Ay, (B.3)

1=1j=1

where

de
no () | B oo = 22

- E (E(h(g(_,-) | D;_1, X5 1)E(R(X;) | Bj_1,X;-1) | Do = do, Xp = ﬁo) . (B4

Notice that Inequality (B.2) is equivalent to A > 0. Now either i = j or i # j.

(a) For i = 7, by Jensen’s inequality for conditional expected values (e.g. see Billingsley [1986,
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Aii = E (h*(X:) | Do = do» Xo = 2) — E (B(M(X:) | Dic1s Xi1))? | Bo = do, Xo = 20) 2 0.
(b) For i > j, by the Markov property,

E (W(X:)h(X;) | Do = do, Xo = z0) = B (E(M(X:)h(X;) | Rj_1,X;-1) | Do = do, Xo = 2o) ,
(B.6)

and

(B(MX) | Dicys Xamt)E(W(XS) | Rjo1 X1) | Do = doy Xo = o)
(E (B(A(X:) | Dity Xima) E(W(X;) | Djo1s Xjo1) | Dyoas X

(E(A(X;) | jors Xj1) B (E(R(X:) | Dicy, Xir1) | Dyor, Xy
(E(A(X:) | Djm1> X)) E(M(X;) | i1, Xjo1) | Do = do, Xo = 2o)

From (B.6) and (B.7),

Aij = E (B(H(X)MX;) | Rjo1, Xj1) | Do = do, Xo = 20)
~E (E(h(XJ) | Qj-l,x]-_lw(h(x,-) | Dj-1,X;-1) | Do = do, Xo = o)
= E (E(WMX)h(X;) | Djo1, Xj1)

—E(h(X) | Dj—1,X;-1) E(A(X;) | Dj—1,Xj1) | Do = do, Xo = 2o) - (B.8)

Thus, by the homogeneity and the nonnegative conditional covariance assumption, A;; > 0. Since

Aj; = Ayj, all terms of A are nonnegative. [ |
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