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Abstract

As a sequel to an earlier article by Gu and Qiu (1991), this article describes and illustrates
a dimensionless automatic algorithm for nonparametric probability density estimation using
smoothing splines. The algorithm is designed to calculate an adaptive semiparametric solution
to the penalized likelihood problem, which was shown by Gu and Qiu (1991) to share the same
asymptotic convergence rates as the nonadaptive infinite dimensional solution. The smooth-
ing parameter is updated jointly with the estimate in a performance-oriented iteration via a
cross-validation performance estimate, where the performance is measured by a proxy of the
symmetrized Kullback-Leibler distance between the true density and the estimai-. Simulations
of limited scale are conducted to examine the effectiveness of the technique. The method is also
applied to some real data sets. The algorithm is implemented in a few Ratfor routines which
will be included in later versions of RKPACK (Gu 1989).
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1 Introduction

Probability density estimation is a fundamental problem in theoretical and applied statistics. Given
samples drawn from an unknown density f, the classical parametric estimation assumes that f
belongs to a parametric family known up to a few parameters, and the common practice is to
estimate the unknown parameters from the samples via the maximum likelihood (ML) method;
see any standard textbook, e.g., Bickel and Doksum (1977). When prior knowledge about f is not
sufficient to justify a parametric family, however, nonparametric methods have to be employed. A
recent review of nonparametric density estimation can be found in Silverman (1986). See also Tapia
and Thompson (1978). It appears that the existing practical nonparametric density estimators are
by and large univariate, with the exception of the work by Scott (1985).

This article follows the penalized likelihood approach to density estimation pioneered by Good

and Gaskins (1971). In the closely related context of nonparametric regression, penalty smoothing,

“or smoothing spline, has emerged as one of the most successful multivariate methods available;
see, e.g., Wahba (1990) and Gu and Wahba (1991b) for a recent review. In the density estima-
tion context, however, two intrinsic constraints, the positivity constraint that a density must be
positive and the unity constraint that a density must integrate to one, have to be enforced. Once
these intrinsic constraints are conveniently taken care of, one may expect a similar success of the
smoothing spline technique in density estimation. In this article, I shall provide positive evidence
to suggest that it is indeed a promising prospect.

The idea of Good and Gaskins (1971) is to estimate the density f by the minimizer of a
penalized likelihood score L( f) + AJ(f), where the L( f) is a goodness-of-fit measure, usually taken
as the minus log likelihood, the J(f) is a roughness penalty, and the X is the smoothing parameter
controlling the trade-off between the two conflicting goals. Good and Gaskins (1971) took J(f)
as a quadratic functional in 1/f, which takes care of the positivity constraint but leaves the unity
constraint to the numerical problem. Leonard (1978) proposed the logistic density transform f =
e/ [ €9 and worked with g which is free of both constraints, but the many-to-one feature of the
transform in usual function spaces introduces extra theoretical and computational inconvenience.
Silverman (1982) proposed to estimate g = log f which is free of the positivity constraint, and to
augment the penalized likelihood score by a term [e? to effectively enforce the unity constraint

when J(f) is a quadratic functional in derivatives of g = log f. O’Sullivan (1988) devéloped an
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algorithm to calculate Silverman’s (1982) estimator using B-spline approximations in one dimension.
Asymptotic convergence rates are established by Klonias (1982) for the Good-Gaskins +/f-based
penalties and by Silverman (1982) for the Leonard-Silverman log f-based penalties. In a recent
article by Gu and Qiu (1991), a simple surgery on the usual function spaces was proposed to
make the logistic density transform one-to-one, an asymptotic theory was developed in parallel to
that of Silverman (1982), and an adaptive semiparametric estimator was proposed and justified,
which paved the way for the current development. The development of Gu and Qiu (1991)isin a
dimensionless generic setup and hence the current development is dimensionless.

The choice of the smoothing parameter A has major impact on the performance of the resulting
estimate. In the context of kernel density estimation, various cross-validation schemes have been
developed to automatically select the smoothing parameter there, see, e.g., Scott (1986) for a review
and references. Wahba (1977) developed a generalized cross-validation method for use in the context
of orthogonal series density estimation. O’Sullivan (1988) adapted a certain cross-validation score
in the kernel method literature to choose X in the calculation of Silverman’s (1982) estimator. In
this article, I shall propose and examine a somewhat different approach to automatic smoothing
parameter selection, which nevertheless is influenced by the earlier developments.

The remaining of the article is organized as follows. In Section 2, I briefly review the basic
idea and a few facts in the theoretical development of Gu and Qiu (1991) and set up the numerical
problem. In Section 3, a performance-oriented iteration scheme is proposed to calculate a density
estimate with a proper choice of smoothing parameter, and a cross-validation performance estimate
is derived for use in the iteration. In Section 4, an algorithm is proposed to carry out the compu-
tation. Simulation results of limited scale are presented in Section 5 to illustrate the effectiveness
of the procedure proposed in Section 3 and to examine various practical aspects of the algorithm
proposed in Section 4. A few real data examples are presented in Section 6. Section 7 concludes
the article with a few remarks on the implication of the current development and possible future

topics.



2 Formulation and Preliminaries

2.1 Theoretical background

Let X;,4=1,-.-,n, be independent and identically distributed random samples from a probability
density f on a finite domain X’. The goal is to estimate f from the data X;. Assuming f > 0 on
&', one can make a logistic density transform (Leonard 1978) f = €9/ [, e and estimate g instead,
which is free of the positivity and unity constraints. To make the transform one-to-one, Gu and
Qiu (1991) propose to impose a side condition on g, such as g(zg) = 0, zo € X, or [, g =0. A
smoothing spline density estimator is then defined as the minimizer of a penalized log likelihood

score
1 A
ol . g4 2
ni§=lg(X,)+log/Xe + 2J(g) (2.1)

in a function space H, where J is a roughness penalty and X is the smoothing parameter. The space
H is taken as a Hilbert space in which evaluation is continuous so that the first term of (2.1) is
continuous, and the members of H have to comply with a side condition mentioned above to make
the second term of (2.1) strictly convex. The roughness penalty J is taken as a square seminorm
in H with a null space J of finite dimension M. A finite dimensional J, avoids interpolation and
a quadratic penalty renders theoretical and numerical simplicity.

A Hilbert space in which evaluation is continuous is called a reproducing kernel Hilbert space
(RKHS) possessing a reproducing kernel (RK) R(-,-), a positive definite bivariate function on X,
such that R(z,-) = R(-,z) € M, Vz € &, and < R(z,-),9(-) >= g(z) (the reproducing property),
Vg € H, where < ., > is the inner product in H. As a matter of fact, starting from any positive
definite function R(:,-) on the domain X', one can construct a RKHS H = span{R(z,-),Vz € X}
with an inner product satisfying < R(z,-), R(y,*) >= R(z,y), which has R(.,-) as its RK. The
RK and the inner product in a RKHS determine each other uniquely. Details can be found in
Aronszajn (1950). With J as a square seminorm, H can be decomposed as H = Hy @ J., where
Hs={g: J(g) € (0,00)} is a RKHS with the square norm J. Denote the RK of H; as R;. Note
that the norm in J; does not appear in the definition of (2.1), so the smoothing spline density
estimator is solely determined by Rj, a basis of J, , say {¢,})L,, and the smoothing parameter .

As a specific example, consider the cubic spline estimation on X = [0,1] with J(g) = 01 g2.

Different side conditions lead to different Ry and J) , although the final density estimate after the .



transform e/ [ €9 remains the same. Two examples follow. If one specifies f g = 0, then J, = {(--
5)} and Ry(z,y) = ko(z)ko(y) —ka(|z —y]), where ky = (k] —1/12)/2, ks = (kf —k3/2+7/240)/24,
and ky = (- — .5). If one specifies g(0) = 0, then J; = {(-)} and Ry(z,y) = f3 (z — u)+(y — v)+du,
where (-)+ is the ‘positive part of (-). More discussion and examples can be found in Gu and Qiu

(1991). See also Section 4.

2.2 Numerical problem

The space H is usually infinite dimensional, and the minimizer of (2.1) in X is in general not
computable. To remedy this pfoblem, Gu and Qiu (1991) proposed to calculate the minimizer of
(2.1) in an adaptive finite dimensional space H, = J @ {Rs(X;,:),i=1,---,n}, and proved under
certain conditions that such an adaptive solution shares the same asymptotic convergence rates as
the solution in . Based on this result, the current development seeks to calculate the minimizer
of (2.1) in H,, for an appropriately selected A.
Write & = Rj(X;,-). By definition, a function in H,, has an expression
n M
g=Y cti+ Y dp, =Ec+o'd, (2.2)

i=1 v=1
where ¢ and ¢ are vectors of functions and ¢ and d are vectors of coefficients. Substituting (2.2)
" into (2.1), note that

n n n n
J(g) =< ;c,-g,s : ;cjg,- >= ;;cichJ(Xi,X,—), (2.3)

the numerical problem becomes to minimize
1 - A
Ax(e,d) = ~=17(Qe+ 5d) + log /X exp(€7c + $7d) + 5T Qe, (2.4)

with respect to ¢ and d, where Q is a n X n matrix with (¢, 7)th entry &(X;) = Ry(X;, X;) and §
is a » X M matrix with (¢, v)th entry ¢, (X3).

To minimize (2.4) with a fixed smoothing parameter A, a standard practice is to apply the
Newton iteration. Let uy(h) be the mean of A calculated under the density e?/ [ e9, Vg(f,R) be the
covariance of f and h under the density €9/ [ e9, and V,(h) = Vy(h, h). Write §j = £Té+¢Td as the
current iterate of g. It can be verified that 8A)/dc|; = —Q1/n+p;(€) +AQ¢ = —Q1/n+ e + AQE,
" 9ANbdly = ~8T1/n + us(d) = —5Ta/n + ng, P Ar/0cDET); = Vy(£,ET) + AQ = Veg + Q.
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0%A,/0d0dT|; = V3(p, dT) = Vs 4, and 824, /0¢0dT|; = V5(¢, ¢T) = Vi 4. The Newton updating

equation is thus

Vee +2Q Vg c—¢ | [ Q1/n—ps—2Qe (2.5)
Ve  Vop )\ d-d §T1/n - pg
After rearranging terms, (2.5) becomes
Vee +2Q Veg c | [ Qi/n—pe+Vey (2.6)
= , .
Voo Vop )\ d 5T1/n— ps + Vag

where Ve, = V5(£,5) and Vg4 = V(9. §).

3 Performance-Oriented Iteration

The performance of a smoothing spﬁne estimate is largely determined by the choice of the smoothing
parameter A. In this section, I shall describe an iteration scheme which updates A and g jointly
according to a performance estimate. The numerical calculation of the quantities involved shall
be described in Section 4. Its practical performance is simulated in Section 5. This procedure
owes its motivation to Gu’s (1990) self-voting generalized cross-validation for smoothing spline non
Gaussian regression.

Let L(g, go) be a loss function for estimating go by g. Given the data drawn from e%/ [ %, our
objective is to find an estimate g which delivers a small L. To calculate the minimizer of (2.4) for a
fixed A, one naturally iterates on (2.6). Now, noting that (2.6) actually defines a class of estimates
with a variable A, one may make better use of (2.6). Specifically, starting from the current iterate
g, instead of calculating the next iterate based on any prespecified A, one may choose a A which
delivers a small L among the class of estimates defined by (2.6) and calculate an update using
such a A. Such an iteration scheme tries to minimize the loss function L which is of direct interest,
instead of the penalized likelihood score Ay with fixed A, which the Newton iteration is after. When
such a performance-oriented iteration converges at A, and g., say, however, g, is apparently the
fixed point of the Newton iteration for minimizing Aj,, and hence is the minimizer of Aj,.

I choose L(g,g0) = g, (90 — 9) + 1g(9 — 90), the symmetrized Kullback-Leibler between g and
go- Note that such a L is not easily computable for the class of estimates defined by (2.6) even with



a known go. So approximation (or modification) is necessary. By the mean value theorem, it can
be shown that L(g, go) = V(g9 — go), where ¢’ is a convex combination of g and go. As a first step,
I replace V(g — go) by V(g — go) where the density e/ [ €f is the best current guess of the true
density e%/ [ e%. Since V,(h) is continuous in g, this approximation is good when g and § are close
to go. Now V;(g—go) = V5(g9) —2V3(9,§) +2V;(g,§— go) + C, where C'is a constant depending only
on § and go. Further, it can be shown that pz(g) — pg(9) = Vyr(g,§— g0) = V(9,5 — 90)(1 +0(1)),
where g” is a convex combination of § and go and the o(1) term is small when § is close to go.

Putting things together, I shall try to minimize a proxy of L,

L3(9,90) = V3(9)/2 = V5(9,3) + 15(9) — Hao(9):

in calculating an update from § using (2.6) with a variable A. Note that Lz can also be considered
as a proxy of V(g — go), a weighted integrated mean square error with the true density as the

weight function.

The first three terms of L; are readily computable, but the fourth term needs estimation.
Assume that Vj 4 is nonsingular, which amounts to the existence of the ML estimate in J, and
that Q is nonsingular, which is true with probability one when the domain & is continuous and
the true density is finite. Define H = Ve + AQ, E = Vg — Vo e H We g, ug = Q1/n — pg + Ve g,
ug = STafn — pg + Vg, gl = g — Vol 7lug, v = Veg — ke, 09 = Vg9 — pg, and vy =
vy —Vy e H g, It can be shown that d = E~uyy and ¢ = H~'(ug — Vg 4d), and that the estimate
defined by (2.6) has an expression

g = tc+o’d
= ETH Y (Q1/n) + ETH  og + (¢ — Vo e HHE)T E  ugye. (3.1)
Straightforward calculation yields
p(g) — Vs(9,9) = “'l’gH_l’"'E - ’U’é:]gE—luMg- (3.2)
Also straightforward but tedious calculation gives

Vs(g) = uf B ug + ul B ugye — A (wg — Ve g B ugie) "HT QH " (ug — Ve g E Mugge). (3.3)

To estimate pg4(g), the only source of information is the empirical distribution of the data. For

the last two terms of (3.1), sample means simply give

(Q1/n)TH 've 4 (§T1/n - V¢,§H_1Q1/n)TE—1u¢|5. (3.4)
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For the first term, care must be taken, noting that the naive sample mean is always positive.
Writing
poo(§TH'Q1/n) = —Zugo(eTH-ls(X D

1—1
it can be seen that the problem of the naive sample mean is the use of X; itself in the estimation

of g (T H-1¢(X;)). Using the empirical distribution of the remaining n — 1 data to estimate
Ko (6T H-1£(X;)) and adding them up, one obtains

Z S E(X)THTE(X:)

(n 1—1 _7;61
- ZZ«X ) - L Ze(X )T H1E(X)
1—1 j=1
= 1(Q1/n) 1 ———trace(QH Q). (3.5)
n(n —1)

Adding (3.2) to one-half of (3.3) and subtracting (3.4) and (3.5), the estimated Lj(g, go) is given
by
foogy) = TCQETQ)  (Qu/n)THTN(Qa/m) UeH e+ uylTuge
g\9,9) = n(n—1) n—1 2
A (ug = Ve g B luge)THIQH " (ug — Ve g B ugye)
3 .

(3.6)

One may call (3.6) a cross-validation score since (3.5) is a cross-validation estimate of y14, (§T H~1Q1/n).

The performance-oriented iteration can then be conducted by minimizing (3.6) in each iteration.

4 Algorithm

In this section, I derive an algorithm to carry out the performance-oriented iteration of Section 3.
The key issue is the efficient evaluation of (3.6) at multiple A values.

First assume that @ is nonsingular. Let @ = GTG be the Cholesky decomposition of Q
where G is upper triangular, and G~TV;¢G~! = UTUT be the Householder tridiagonalization
of G™TV;¢G~! where U is orthogonal and T is tridiagonal. It follows that H~! = G~1U(T +
AN)-WTG-T. Write F = UTG-TQ = UG, B = UTG_TV&,JS, g = UTGTug, and § =
UTG-TQ1/n = UTG1/n. It follows from (3.6) that

Lolg.00) = trace(FI(T+ AD7IF)  §U(T+AD™Yg % (T + A)hig + ufy B ugye
9\990) = n(n — 1) n—1 2




_A (’&E - BE_]"U.¢|§)T(T + /\I)_2(’&£ — BE_LU"ME)
9 g ’

(4.1)

where E = Vg4 — BT(T + AI)™'B and ugpe = ug — BT(T + AI)Vize.
I propose the following algorithm.

Algorithm 4.1 Given data X; and functions Ry and {¢,}L,, perform the following.
1. Initialization:

(a) Calculate @ = GTG and collect G1/n and ST1/n.

(b) Calculate the solution of (2.4) for a large fired A as the starting estimate §.
2. Iteration:

(a) Collect all §-specific quantities in (2.6).

(b) Calculate G-TVe G~ = UTUT.

(c) Calculate F = UTG, B=UTG" TV, 4, it = UT(G1/n + G~ Tv¢), and § = UTG1/n.
(d) Search for a A to minimize (4.1).

(e) Update § via d = E"'uy) and ¢ = G™U(T + AI)~'(@; — Bd).

(f) Check convergence. If converged, terminate; otherwise, goto 2.(a).

Q = GTG in step 1.(a) takes n3/6 flops. Step 1.(b) can be carried out by executing step 2
for a fixed A, with step 2.(d) and F and § in step 2.(c) omitted. I take § = 0 (the uniform
distribution) as the starting estimate for step 1.(b), and fix the X at the diagonal average of T
evaluated at § = 0. Such a Newton iteration in step 1.(b) usually takes less than 10 steps to
converge. It is necessary to calculate a starting value using step 1.(b) before entering the iteration
of step 2, because (2.6) is the Newton iteration without a line search, which may diverge for
small A’s from an arbitrary starting point. Step 2.(b) consists of two separate operations. To
preserve the nonnegative definiteness of G~V ¢G~! under rounding error, I calculate a Cholesky
decomposition Vg ¢ = DT D, solve for G~T DT, and multiply back, which in general takes (5/3)n
flops in total; saving is possible when V¢ is computationally singular. (Direct calculation takes 2n3
flops.) The Householder tridiagonalization in general takes (2/3)n® flops, and saving is possible
via the distributed truncation of Gu ef al. (1989). In total, step 2.(b) takes at most (7/3)n3
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flops. In step 2.(c), F = UTG in general takes n® flops and the remaining quantities all take
O(n?) flops, and any saving in the Householder tridiagonalization is passed on to this step. In step
2.(d), each evaluation of (4.1) takes O(n?) flops due to the bandedness of (T + AI). Step 2.(e)
takes another O(n?) flops. In total, the linear algebra calculations for each iteration takes at most
(10/3)n>+ O(n?) flops. Most of these calculations can be conducted using LINPACK facilities, and
the flop counts are mainly based on the LINPACK manual (Dongarra et al. 1979). Steps 2.(a) and
2.(f) will be discussed later.

Now consider the case of a singular . With a continuous domain X, a prespecified side
condition for g, and an infinite precision arithmetic, a singular @ only occurs with probability 0.
In practical situations, however, a convenient side condition could be data specific, data recording
is subject to rounding, and of course the calculation can only be carried out to a finite precision,
so the handling of a singular @ is of practical importance. With a possible reordering of the data

index, called pivoting in LINPACK, the Cholesky factor G of a singular @ has a form

G- G Gy
0O O
where G is nonsingular upper triangular. Let
. Gy Gy ,
0 I

where 6 is some nonzero number. With an abuse of the notation, I shall also use G to denote its
nontrivial portion (G1,G), which also satisfies @ = GTG. Partition G~ = (K, L). It follows that
GK =1I and GL = O. Further, note that J(g) is a norm in H; and J(€Te) = T Qe (cf. (2.3)), it
follows that ¢7L = 0, and hence LTpe = LTV; y = 0, Vg ¢eL = O, and Vsel = O. Now it can be
shown that (2.6) is equivalent to

KTV e K +01 O KTVey Ge Gifn— KTps + KTV,
o 0 0 bca = 0 ’ (42)
VoK 0 Vig d STafn—ps+ Vi

where ¢3 = (O, I)c is the tail portion of the partitioned c. This is an indefinite linear system due
to the linear dependency of &;, in which ¢y could take any value. ¢7¢ is unique, however, and all

“that is needed is to calculate a solution of (4.2), which can be accomplished by replacing the center
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piece of O in the left-hand-side matrix of (4.2) by AI. Such a procedure is readily implementable
by simply replacing the G~T and G~ in steps 2.(b), 2.(c), and 2.(e) of Algorithm 4.1 by G~T and
G-

Observational data of large (and not that large) size often come in prebinned. Let m; be the
replicate counts of X;, m = (my,---,m,)T, and N = 3, m;. One may consider the replicates
as rounded from distinct independent observations. It is easy to see that (2.6) remains good for
prebinned data with m /N replacing 1/n. Formulas (3.1) through (3.4) are also valid after such a

substitution. The counterpart of (3.5), however, can be shown to be
2 (@m/NY HH(Qm/N) - ————trace(@TH1Qm)
N -1 N(N -1) m ’

where Q,, = Q diag(mi/ 2, N m,ll/ 2). Algorithm 4.1 is directly applicable after a few adjustments
in the formulas. ‘

Let us now turn to the calculation of the integrals ¢, pg, Ve ¢, V4, and Vz 4, which make up the
derivatives in step 2.(a) of Algorithm 4.1. To ensure the numerical stability of a derivative-based
algorithm like Algorithm 4.1, the evaluation of derivatives has to be highly accurate, say to at least
seven digits. The numerical evaluation of integrals practical to the current problem, however, can
hardly meet such requirement, especially in high dimensions. To overcome this difficulty, I propose
the following solution. Note that in the original numerical problem (2.4), the integration measure
in [ef is not specified, although it is understood as uniform on the domain X". From a numerical
perspective, however, (2.4) is well-defined with any reasonable measure, say v, appearing in the
definition of the integral. When » is a reasonable approximation of the uniform measure vy for the
purpose of [ e in a neighborhood near the sought-after solution of (2.4) under vy, say do, one may
expect the solution §, of (2.4) under v to be a reasonable approximation of §o. Taking a discrete
measure v on a set of points on X, call it an integration mesh, and driving the iteration under v,
one can virtually calculate the integrals appearing in Algorithm 4.1 under v close to the machine
precision. This strategy may be perceived as using a fixed quadrature rule for all the integrals
involved, but no matter how poor the quadrature rule might be for approximating any or all of
the integrals under vy, such a consistent measure replacement ensures the numerical stability of
Algorithm 4.1. In practice the robustness of §, under different » may be simulated by calculating

the estimate under a few different integration meshes.
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In summary, the implementation of Algorithm 4.1 takes as inputs the RK Rj, the null space
basis {¢,}M ,, the data X; possibly with replicate counts m;, and an integration mesh with possible
weights. The convergence is declared when consecutive iterates of €9 on the integration mesh differs

by less than a prespecified precision requirement.

5 Simulation Results

In this section, two sets of simulations, one on [0,1] and one on [0, 1], are conducted to examine
the effectiveness of the technique developed. Applications to some real data sets will be presented
in Section 6.

For the univariate simulation, I took a density on [0, 1] proportional to

%e—so(z—.s)’-’ + %e—so(z-.nz, (5.1)

which is basically a mixture of N(.3,.01) and N(.7,.01). I used the cubic splines with the RK
Rj(z,y) = ka(z)k2(y) — ka(|z — y|) and the null space basis ¢(z) = = — .5 (cf. Subsection 2.1).
Fifty replicates of data of size n = 100 were drawn according to (5.1) using a pseudo random
number generator. The algorithm of Section 4 was applied to the fifty cases to calculate the cross-
validated smoothing spline density estimates. Fixed-) solutions of (2.4) were also calculated on a
grid log;q A = (=7)(.2)(—3) for all the fifty replicates. The symmetrized Kullback-Leibler (SKL)
g0 (90 -9)+ pq(g — go), the Kullback-Leibler (KL) pg,(g0 — g) — [ €% + [ €9, and the mean square
error (MSE) V,,(g—go) were collected for all these estimates. An integration mesh with 300 equally
spaced points on (0,1) was used in all the integrations involved, including the calculation of SKL,
KL, and MSE.

For all the fifty replicates, the best A’s were covered by the span of the grid, so were all but
one cross-validated A. The best SKL, KI., and MSE on the grid were identified and were compared
with those of the cross-validated fits. The left frame of Figure 5.1 gives the comparison of the 50
cross-validated SKL versus the corresponding best SKL on the grid. Two cases, the best and the
worst cross-validated SKL, are marked differently from the other cases. A point on the dotted line
indicates a perfect performance of the cross-validation. Corresponding plots for KI. and MSE look
similar. The efficacy of cross-validation in all the three scores, defined by the ratio of the minimum

score on the grid over the score at the cross-validated fit, is summarized in a box-plot in the right
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Figure 5.1: The Efficacy of Cross-Validation in the Univariate Simulation.

frame of Figure 5.1, where there are actually 3 outliers for SKL and KL and 5 for MSE with visual
overlaps. The best cross-validated fit corresponding to the plus in the left frame of Figure 5.1 is
plotted in the top frame of Figure 5.2 as the dashed line, superimposed with the true density as
the solid line and the raw data as the finely-binned histogram in dotted lines. The worst case
corresponding to the star in the left frame of Figure 5.1, which is the one with a cross-validated
log,o A = —7.25, is similarly plotted in the bottom frame of Figure 5.2, where the best possible fit
is also superimposed as the dashed line with long dashes.

For the bivariate simulation, I took a density on [0, 1]? proportional to

%6—24.5{(9:1—.3)2+($2—.5)2} + §6—24.5{(1:1—.7)2+(:c2—-.7)2} + %6—24.5{(31—.75)2+(.1:2—.25)2}’ (5.2)
which is a mixture of N((.3,.5)T,1/49), N((.7,.7)T,1/49), and N((.75,.25)T,1/49) with the small
mass out of [0,1]% chopped off. I used null space basis ¢1(x) = z1 — .5 and ¢o(x) = z2 — .5, and

the RK
4 4

Ry(z,y) = E(z,y) = >_wi(2)E(t;,y) — Y wr(¥)E(z, t:) + Y > wi(z)wr(y)E(t;, 1), (5.3)
7=1 k=1

7j=1k=1

where wj(z) = .25 + Yoo; 4u()¢u(2), E(z,y) = ||z — yl|*log|lz - yl|, and ¢ = (0,0)7, ¢; =
(0,1)T, t3 = (1,0)7, and ¢4 = (1,1)T. On a domain X = (—o0,0)?, ¢1, ¢, and Ry as given above
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Figure 5.2: A Good Estimate and a Poor Estimate in the Univariate Simulation.
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define a smoothing spline satisfying the side condition Z;=1 g(t;) = 0 with a so-called thin plate

penalty proportional to

o0 o0
70)= [ [ @+ 28+ Eodimdas, (5.4
—c0 J—o0

see, e.g., Gu and Wahba (1990, 1991a). On a finite domain, however, the J corresponding to Rj
in (5.3) can not be written explicitly as in (5.4).

Again fifty replicates of data of size 100 were generated according to (5.2) and the cross-validated
fits were calculated. Solutions of (2.4) were also calculated on a grid log,;q A = (—5)(.2)(—1), which
covered the best A and the cross-validated A in all the cases. An integration mesh of 500 uniform
random points was used in all the calculations including the evaluation of SKL, KL, and MSE. The
counterpart of Figure 5.1 is presented in the first row of Figure 5.3. To assess the impact of the
integration mesh on the conclusions one may draw from these plots, a second random integration
mesh of the same size was also used to calculate SKL, KL, and MSE of all the fits calculated
under the first integration mesh. Similar plots are repeated in the second row of Figure 5.3. For
the case with the maximum discrepancy between the two SKL evaluations at the cross-validated
fit, the SKL as a function of A evaluated under the two integration meshes are plotted in the
left frame of Figure 5.4, where the dotted line is the self-evaluation using the fitting integration
mesh and the dashed line is the cross-evaluation using the second mesh. The cross-validated fit is
superimposed as the stars. The cross-evaluation agrees with the self-evaluation at the smoother
end. And as the estimate gets rougher and rougher, discrepancy increases with the cross-evaluation
being pessimistic and the self-evaluation being optimistic. This is typical of all the fifty cases. To
obtain some information about the robustness of the cross-validation under different integration
meshes, the second integration mesh was also used to calculate the cross-validated fits. The right
frame of Figure 5.4 plots the cross-validated log;, A’s under the two integration meshes. The true
density and the cross-validated fits corresponding to the plus and the star in the (1,1)st frame of
Figure 5.3 are contoured in Figure 5.5 in the log scale. In the two frames for the estimates, the
five solid contours are at the same levels (1/4,1/2,1,2,4) as the solid contours in the true density
frame, and the dotted contour in the good fit is at a higher level (8). The data are superimposed
in the estimate frames as circles. A center slice is taken at the dotted lines in the contour frames
and a comparison of the conditional densities at the center slice is presented in the last frame, with

the true density as the solid line, the good fit as the long dash line, and the poor fit as the short
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dash line.

Finally, I report that the algorithm converged without incidence within 20 iterations in all the
cases calculated in the two sets of simulations presented above. The number 20 was set as the
maximum number of iterations allowed, and in the cases I monitored the algorithm rarely ran more

than 10 iterations.

6 Examples

In this section, I apply the algorithm to three real data sets, of which the first two appeared in the

nonparametric density estimation literature.

6.1 Buffalo snowfall data

The data are 63 annual snowfall accumulations in Buffalo from 1910 to 1973 as listed in Scott
(1985). I divided the raw data by 150 to map them into the [0, 1] interval. T used the same R;
and ¢ as in the univariate simulations of Section 5 to calculate three cross-validated cubic spline

fits using three different integration meshes. For the first fit, I used an equally spaced integration
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mesh of 300 points on (0,1), as in the univariate simulation, which amounts to assuming that the
density is positive and smooth on [0, 150] in the original data scale. For the second fit, I dropped 20
points from each end of the integration mesh, effectively restricting the probability mass to [10, 140].
For the third fit, 40 more points were dropped from the two ends and the effective support was
[20,130]. The data range from 25.0 to 126.4. The three fits are plotted in Figure 6.1 as dashed lines
of different dash lengths and running lengths. The raw data are superimposed as the finely-binned
histogram in dotted lines. The cross-validated log;o A are —5.18, —4.17, and —3.92 for the three
fits respectively. It can be seen that as the support extends farther into the no data area, the
cross-validation tries harder to take away the mass assigned to the empty space by the smoothness
of the estimate, resulting in less smoothing. It can also be seen from Figure 6.1 that the estimates
are less affected at the lower end because it is a very thin end (the second smallest data is 39.8).
Conversely, the support change at the thin end ideally shall not affect the cross-validation by much.
In fact, the cross-validated log;, A is —5.14 with a support [20,150] and is —4.26 with a support
[0,140] (cf. above). It is clear that the cut point at a fat end is a rather strong assumption and

hence has a rather major impact on the choice of the cross-validation.

6.2 Lawrence Radiation Laboratory data

The data are listed in Good and Gaskins (1980) as a histogram of 172 bins of length 10 MeV
constructed from the locations of 25752 events on a mass-spectrum. For such a huge data set in
one dimension, eyeballs should be able to do as good a job as any fancy smoothing technique. Here
my interest is simply to double check whether the proposed method gives a reasonable solution.
A cross-validated cubic spline fit was calculated on [250,2030] in the original MeV scale using
an integration mesh of 500 equally spaced points, where the interval extends 3 bins on each end
beyond the original histogram. Since both ends are very thin, the cross-validation is not sensitive
to the cut points. The estimate is plotted in Figure 6.2 as the solid line, and the original data are
superimposed as the dotted line. Visually I could see little difference between this fit and the fit
presented by Good and Gaskins (1980).
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Figure 6.1: The Distribution of Buffalo Annual Snowfall.
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Figure 6.2: A Mass-Spectrum from Lawrence Radiation Laboratory.
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6.3 Mathematics marks data

The data are listed in Whittacker (1990) and were used as a prime example there to demonstrate
Gaussian graphical models. It shall be possible to conduct similar analyses nonparametrically
using tensor product splines, but further computational and data analytical tools have yet to be
developed. See Section 7. Here I arbitrarily pick the Analysis marks and the Statistics marks of the
88 students and try to estimate the two-dimensional joint distribution using the technique developed
in this article. The marks are on the percentage scale. I transformed [0,100] to [-2,3] and used
the thin plate spline of (5.3) to calculate the estimate. I chose not to map [0, 100]? onto the unit
square for numerical considerations, noting that the side condition in (5.3) is E;ﬂ g(t;) = 0 but
three of the four corners of [0, 100]? are far away from the data. I used 30 x 30 regular integration
meshes on domains [0,100]2 and [0;80] x [0,90] (in the original scale) respectively, and calculated
the cross-validated fits. The estimates are contoured in the first row of Figure 6.3 in the log scale
at levels 1/4,1/2,1,2,4,8, with the data superimposed as the circles and the integration meshes
superimposed as the dots. Estimates were also calculated using the 80 X 80 meshes on the same
domains, which gave contours visually identical to those calculated under the 30 x 30 meshes. It
seems rather safe to take these fits as the solutions under the exact continuous integration measure.
I also mapped two random meshes of 900 points on [0, 1]* onto the domains and tried to calculated
the corresponding cross-validated fits. On the domain [0,100], the cross-validation drove the
algorithm to interpolate the data under the first random mesh but performed normally under the
second. On the domain [0, 80] x [0, 90], the algorithm performed normally under both meshes. The

cross-validated fits under the second mesh are similarly plotted in the second row of Figure 6.3.

7 Discussion

In this article, I developed and illustrated a dimensionless automatic algorithm for calculating the
smoothing spline density estimator of Gu and Qiu (1991). Simulation results suggest that the
algorithm is quite effective in selecting a good smpothing parameter. The Ratfor implementation
of the algorithm is currently available from me at chong@stat.purdue.edu, and will be included
in later versions of RKPACK (Gu 1989) for direct public access. With the help of the software, it

is hoped that the reliable routine use of nonparametric density estimation by nonexpert, even on a
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multidimensional and/or irregular domain, could be made feasible.

The real beauty of the smoothing spline approach to nonparametric multivariate problems is
in its structural construction of the estimators, in which tensor product splines with their built-in
ANOVA decompositions play an important role; see, e.g., Gu and Wahba (1990, 1991a, b). In the
density estimation context, tensor product splines may be employed to impose and /or explore vari-
ous independence structures of the joint probability distribution of qualitatively different variables.
Specifically, using tensor product splines, a function g of several variables, say z,, a = 1,---,d,

can be written as

g=C+ Zga($a) + 2 ga,ﬁ(za, :L'ﬁ) +eet gl,---,d(wl, Tty :l?d), (7'1)
o a<lf

where C is a constant, g, are functions of one variable called the main effects, g, g are functions
of two variables called the two-factor interactions, etc., and these terms, except the constant, sat-
isfy certain built-in side-conditions such that the decomposition is unique. For a log likelihood
g, the constant shall be dropped to maintain a one-to-one logistic density transform. The inclu-
sion/exclusion of other terms in the right-hand-side of (7.1) may be exploited to represent various
independence structures. For example, the independence of all variables is represented by the
main-effect-only model, and the conditional independence of z, and zg given other variables can
be obtained by eliminating all terms involving both z, and zg (cf. Whittacker 1990). The exclu-
sion of all but two-factor interactions may partially ease the curse of dimensionality (cf. Huber
1985), and yet preserve sufficient varieties in the possible probability structures representable by
the models. Actually, a family with interactions of at most two factors represents a “minimal”
nonparametric generalization of the Gaussian graphical association models (cf. Whittacker 1990).
In general, the use of tensor product splines shall allow the fitting of nonparametric graphical as-
sociation models with both discrete and continuous variables (cf. Gu and Wahba 1991b). The
current development, however, is a bit shy of materializing the full potential of the methodology,
since it lacks the capability of handling multiple smoothing parameters, which are essential in the

fitting of tensor product spline models.

22



References

Aronszajn, N. (1950), “Theory of Reproducing Kernels,” Transaction of the American Mathemat-
ical Society, 68, 337 — 404.

Bickel, P. and Doksum, K. (1977), Mathematical Statistics, San Francisco: Holden-Day.

Dongarra, J. J., Moler, C. B., Bunch, J. R. and Stewart, G. W. (1979), LINPACK Users’ Guide,
Philadelphia: STAM.

Good, I. J. and Gaskins, R. A. (1971), “Nonparametric Roughness Penalties for Probability Den-
sities,” Biometrika, 58, 255 — 277.

—— (1980), “Density Estimation and Bump-Hunting by the Penalized Likelihood Method Ex-
emplified by Scattering and Meteorite Data” (with discussion), Journal of the American

Statistical Association, 75, 42 — 73.

Gu, C. (1989), “RKPACK and Its Applications: Fitting Smoothing Spline Models,” Proceedings

of Statistical Computing Section: American Statistical Association, 42 — 51.

—— (1990), “A Note on Cross-Validating Non Gaussian Data,” Technical Report 96, Dept.

Statistics, University of British Columbia.

Gu, C., Bates, D. M., Chen, Z., and Wahba, G. (1989), “The Computation of GCV Func-
tions through Householder Tridiagonalization with Applications to the Fitting of Interaction
Spline Models,” SIAM Journal on Matriz Analysis and Applications, 10, 457 — 480.

Gu, C. and Qiu, C. (1991), “Smoothing Spline Density Estimation: Theory,” Technical Report
91-19, Dept. Statistics, Purdue University.

Gu, C. and Wahba, G. (1990), “Semiparametric ANOVA with Tensor Product Thin Plate Splines,”
Technical Report 90-61, Dept. Statistics, Purdue University.

———(1991a), Discussion of “Multivariate adaptive regression splines” by J. Friedman, The Annals

of Statistics, 19, 115 — 123.

——(1991b), “Smoothing Splines and Analysis of Variance in Function Spaces,” Technical Report
91-29, Dept. Statistics, Purdue Um'vérsity.

23



Huber, P. (1985), “Projection Pursuit” (with discussion), The Annals of Statistics, 13, 435 — 475.

Klonias, V. K. (1982), “Consistency of a Nonparametric Penalized Likelihood Estimator of the
Probability Density Function,” The Annals of Statistics, 10, 811 — 824.

Leonard, T. (1978), “Density Estimation, Stochastic Processes and Prior Information” (with dis-

cussion), Journal of the Royal Statistical Society Ser. B, 40, 113 — 146.

O’Sullivan, F. (1988), “Fast Computation of Fully Automated Log-Density and Log-Hazard Esti-
mators,” SIAM Journal on Scientific and Statistical Computing, 9, 363 — 379.

Scott, D. (1985), “Averaged Shifted Histograms: Effective Nonparametric Density Estimators in
Several Dimensions,” The Annals of Statistics, 13, 1024 — 1040.

"

—— (1986), “Choosing Smoothing Parameters in Density Estimators,” in Computer Science and

Statistics: Proceedings of the 17th Symposium on the Interface, ed. D.M. Allen, Amsterdam:
North-Holland, pp. 225 - 229.

Silverman, B. W. (1982), “On the Estimation of a Probability Density Function by the Maximum
Penalized Likelihood Method,” The Annals oof Statistics, 10, 795 — 810.

— (1986), Density Estimation for Statistics and Data Analysis, New York: Chapman and Hall.

Tapia, R. A. and Thompson, J. R. (1978), Nonparametric Probability Density Estimation, Balti-

more: Johns Hopkins University Press.

Wahba, G. (1977), “Optimal Smoothing of Density Estimates,” in Classification and Clustering,
ed. J. van Ryzin, New York: Academic Press, pp. 423 — 458.

—— (1990), Spline Models for Observational Data. CBMS-NSF Regional Conference Series in
Applied Mathematics, Vol. 59, Philadelphia: STAM.

Whittacker, J. (1990), Graphical Models in Applied Multivariate Statistics, Chichester, U.K.: John
Wiley.

24





