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Abstract

Let X; = 8 + 0Z;, where Z; are i.1.d. from a distribution F, and —oo < 8 < o0, o > 0 are
unknown parameters. If F is N(0, 1), a standard confidence interval for the unknown mean # is
the ¢ interval X i, /2-\/’7. The question of conservatism of this interval under nonnormality is
considered by evaluating the infimum of its coverage probability when F' belongs to a suitably
chosen class of distributions F. Some rather surprising phenomena show up. For F =‘{all
symmetric unimodal distributions}, it is found that for high nominal coverage intervals, the
minimum coverage is attained at U[—1, 1] distribution, and the { interval is quite conservative.
But for intervals with low or moderate nominal coverages (t,/2 < 1), it is proved that the
infimum coverage is zero, thus indicating drastic sensitivity to nonnormality. This phenomenon
carries over to more general families of distributions. Our results also relate to robustness of
the P-value corresponding to the { statistic when the underlying distribution is nonnormal.
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Robustness of confidence intervals

1 Introduction

Consider a standard location-scale set up: X; = 8+0Z;,i = 1,...,n; here (Z;,...,Z,) is a random
sample from a distribution F. If F is N(0,1), and o? is known, a standard frequentist confidence
interval for unknown @ is given by the z interval: X + zaﬂ%, where X = %ZZ: X; and 2, is the
(1-a/2) percentile of the N(0, 1) distribution; for unknown o, the relevant interval is the ¢ interval:
X £ to/27, where s = \/n—h Sor(X; — X)? and 24/, is the (1 - a/2) percentile of the “Student’s
t” distribution with (n — 1) degrees of freedom. For latter reference, T,,(X) = /n X /s will denote
the t statistic.

Suppose now that the assumption ‘F is normal’ is not justified. A natural question would
be to seek how much we would lose in terms of coverage probability if we still use the above
mentioned confidence intervals (as practitioners often do). Let p,(F) and p,(F") denote respectively
the coverage of the z interval and the ¢ interval when the underlying distribution is F. If F has
finite second moment, an easy application of the central limit theorem shows that both p,(F’) and
p:(F) — 1 —a as n — oo. This is often described by saying that these intervals are asymptotically
robust against nonnormality. However, the central limit theorem per se does not give any indications
about the sample size required for the normal approximations to be approximately valid for any
specified F. Further, if F' does not have a finite second moment, Logan et al (1973) showed that
the limiting behavior of p;(F’) can be quite strange.

Our main focus will be directed towards the small sample behavior of the ¢ interval un-
der nonnormality. Departure from normality will be modeled by requiring F' to belong to a
suitably chosen class of distributions F, and we will judge the sensitivity of the intervals by
considering the natural quantity p = }‘Ielf:;__ p(F). In section 2, we consider ¥ = F; = {F :
F is symmetric and unimodal (about 0) }, and examine the performance of the ¢ interval. We first
show that, for n (sample size) = 2, the minimum coverage Fléljljl p:(F) is attained at symmetric
uniform distributions if the critical value t = t4/3 > 1, whereas for critical values less than 1, the
minimum coverage is, in fact, zero. Next, we prove the surprising result that if £ < 1, the infimum
coverage over JF, is zero for all n. For intervals with higher nominal coverages (and general n > 2),
we prove that if the cut-off ¢ > n—1, the infimum coverage over the class F; is attained at symmetric
uniform distributions. By a combination of moment theory techniques and numerical methods, we
next demonstrate that the threshold beyond which the infimum is attained at a symmetric uniform
is, in fact, much lower than n—1 (though dependent on 7). Generally, for the intervals with nominal
coverage > 0.95, the minimal coverage is quite close to the nominal coverage, thus implying con-
servatism. Some discussions follow on the nature of the infimum coverage for ¢ between 1 and the
threshold. The section ends with exploration of the class of symmetric contaminations of N (0, 1).
We again find that the ¢ interval is conservative for high critical values, whereas for intervals with

nominal coverage < 60%, the infimum coverage over this class gets significantly worse.
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Robustness of confidence intervals

Section 3 explores the class of arbitrary contaminations of N(0,1). We show that in small
samples, the t interval behaves well, but its coverage can be significantly worse than the nominal
coverage for moderate sample sizes. Section 4 looks at the robustness of the P-value of the t test.
Due to the obvious duality, our findings on the t interval apply directly to considerations of the
P-value. For arbitrary contaminations of N(0,1), we show that surprisingly the maximum P-value

differs more drastically from the nominal value as the sample size increases.

The principal achievements of this article are that we establish the surprising result that even
if only symmetric unimodal populations are allowed, the minimum coverage of the ¢ interval is
zero for all sample sizes whenever the cut-off ¢ is less than 1, but for intervals with high nominal
coverages, the nominal and minimal coverages are close. The case of known ¢, in which case the

standard interval is the z interval, is briefly commented on in the concluding section, Section 5.

2 Symmetric Unimodal Distributions
2.1 Preliminaries

Let X; = 0+0Z;, i = 1,...,n, where Z,...,Z, are i.i.d. from a distribution F € F; =
{ F : F is symmetric and unimodal about zero}. The class F; contains heavy tailed (Cauchy, Dou-
ble Fzponential, t) as well as short tailed (symmetric uniforms and triangular) distributions. Be-
cause of the location structure,  can be ignored, and we will consider F%l;:_ : Pp(|Ta(Z)| < t) as our
criterion, where ¢ > 0 is arbitrary but fixed. Sometimes we will switch to the equivalent statis-
tic S.(2)) = {f:l Z,}/{i1 Z2}?2, T, and S, are one-one, increasing functions of one another.

i= i= v

We need the following definition and the subsequent result from Benjamini (1983).

Definition 1 Let F and G be two symmetric distributions on R. F is stretched with respect to G
if {F7'(p)— F~40.5)}/{G"(p) — G~'(0.5)} is increasing in p for 0.5 < p < 1, where F~1(p) =
inf{z : F(z) > p}.

In particular, a symmetric distribution (G, obtained as a scale mixture of another fixed symmetric
distribution H (G(2) = f;° H(£)dv(o) for some v), is stretched with respect to H. Also, note
that stretching allows a comparison between F and G even when G is discrete. This was explicitly

used by Benjamini.

(F>:Q)

Theorem 1 (Benjamini) Let F' and G be two distributions on R, symmeiric around0. If F >, G,

andt>n—1, then Pp(T,.(Z)>1t) < Ps(T,(Z)>1t) O

For a proof, see Benjamini (1983); also see Basu (1991). Using this result and some numerical
evidence, Benjamini showed that for F = the Normal scale mixture family, }'IEI';_ Pp(|To(2)| < )

is attained at N(0,1) for all n > 2,if ¢ > 1.8.
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Robustness of confidence intervals

Theorem 2 Foranyn > 2, infrer, Pr(|Ta(Z)| £t) = Pumig(ITa(Z2)| £t) for t>n-10

Proof: Any F € F, can be written as F(2) = ofoU,(z)dG(s), where U,(z) is the cdf of the U [—s, 5]
0

distribution and G is a distribution on [0, 00) (Khintchine representation). Thus, F >, U [-s, s].
The conclusion follows from Theorem 1 and scale invariance of 7,,(Z) m

2.2 Sample of size two

The following corollary follows immediately from Theorem 2.

Corollary 1 For n = 2, Fléljfrl Pr(IT(2)| < t) = g7 for 1210

“t = 1” corresponds to a nominal coverage of 50% for » = 2. We next examine the sensitivity of
the t interval when t < 1.

Theorem 3 Forn =2, F}gjf,__ Pr(|To(Z)|<t)=0 Vt<10O

Proof: An anonymous referee has graciously provided us with the following constructive proof. Let
Uy, U, beiid. ~ U[—1,1]. For a > 0, define X; = sign(U;) |U;|/*, i = 1,2. Clearly, X;, X, arei.i.d
from a distribution F' which is symmetric and unimodal about zero. Notice, T2(X, X2) = I%i-%i—l
For 0 < t < 1, simple calculations show that {(z;,zs) : [T2(2z1,22)| < t} is simply the region
within the square [~1,1] ® [-1,1] bounded by the two straight lines (1 — )z, + (14 t)z; = 0 and
(1+ t)z, + (1 — t)z, = 0. Integration yields P(|Tx(X1,X5)| <t) =3 [1 - (%;—:)"‘] which goes to 0
as @ — 0. This completes the proof =

Thus, there is a surprising discontinuity at the point ¢ = 1, below which the infimum coverage

is zero, whereas at t = 1, the minimum equals 0.5, and then it continuously increases.

2.3 General n

We first prove that the assertion of Theorem 3 holds for all » > 2. In fact, it holds for a very
general class of distributions F.

Theorem 4 Let F be any nonempty family of distributions on R satisfying

(i) F € F= F is continuous at 0 and symmetric,

(i) F € F = for any o > 0, the distribution G defined by G(y) = F(¥), also belongs to F,
(#) Fi,F,beF=> aFi+(1-a)F,€F forany0<a <1

Then, filéi;Pp(lT,]ISt) =0 Va>2 if t<1 O
3
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The idea behind Theorem 4 is simple. Suppose, for fixed ¢t < 1, the above infimum = v (say) is
strictly positive, and is attained at F' € F. Consider G(z) = (1 — €)F(Z) 4+ eF(z), where ¢ and o

are both positive and small. Then
Ps(ITl <t) < (1-eP (|T,,| <t]X; iid. F(é))

+ne(1 = 9P (Tl S 81X ~ FO), Koy X B FC))

+ zj: (?) e(l—e)

The 1st term in the above expansion equals ¥ by scale invariance of T},, whereas the 3rd term
is small for sma]l ¢. For the 2nd term, since X,, is much larger than the other X;’s with high
probability, Z X; = X, and E X? ~ X2, making |T,,| = 1. Hence, the 2nd term is approximately

equal to 0 smcet < 1. Thus, PG(IT | £t) < (1-€)*y+ asmall term < v, leading to a contradiction.
The formal proof is available in Basu and DasGupta (1992).

The subclass of continuous distributions in the symmetric unimodal family F; satisfies condi-
tions (i), (ii), and (iii); so does the normal scale mixture family. Hence, Theorem 4 holds for both
of these families. “t = 1” corresponds to nominal coverages of 50%, 62% and 68%, for n = 2,5
and oo respectively. Thus, for n > 5, and for an interval with nominal coverage < 62%, the infi-
mum coverage is zero. This is striking, and it shows that the ¢ interval becomes very sensitive to

nonnormality for critical values ¢t < 1.

We next proceed to examine the case when ¢ > 1. Notice that by Theorem 2, for general =,
infrer, Pr(|Ta(Z)} < t) is attained at U[-1,1] if ¢ > n — 1. This result, however, is not of much
practical use. For example, if n = 6, it does not cover even the 99% nominal interval. We propose

a different line of attack in the following:

() We can write F;g]f__ Pr(|To(2)| <) = igff h(s1,...,8,) dG(s1)...dG(s,), where
h(s1y...y8n) = P(|T.(U)} < t) with U = (Uy,...,U,), Ui’s are mutually independent

U[-si,s;] r.v.’s and G is any distribution on [0, 00) (Khintchine representation).

(i¢) Suppose, we assume that Z;’s are independent, and Z; ~ F; € Fy, ¢ = 1,...,n (instead of
Ziyeoy 2y idd. from F € F), thus embedding the “infimum problem” into a larger class
(from now on, we will refer to it as independent embedding). In this setup, the infimum
problem reduces to mf S (81, +y80)dG1(51) .. .dGr(5,).

ll)n

Clearly, “(i2)” is not the same as “()”. However, they are the same if the infimum in “(i7)”
is attained at G; = ... = G,,.
(727) Tt follows that “(4¢)” is equivalent to i;;fo P(|T,(U)| £ t), U.’s independent ~ U[-s;,s;].
4



Robustness of confidence intervals

The problem is thus reduced to evaluating P(|T,(U)| < t) (as in (4¢7)) and a finite dimensional
minimization. These are obtained numerically and a numerical minimization is the only feasible
method of attack, as far as we can see. The numerical results indicate that for each n < 10, there

exists a threshold t, (dependent on n) such that for critical values ¢ > ¢,, the infimum is attained

when s, =...=s, = 1. Thus, for ¢t > t,, our numerical results indicate that F}éljf:_ Pp(|T,| £ 1)
equals Py(_1,1)(|Tn| < t). This was not attempted for n > 10 because of the intensive nature of the
computations. The threshold t,’s are shown in Table 1.

Table 1: Threshold ¢,
Sample size (n) | 2 3 4 5 7 10
tr=n-1 1.0 20| 3.0 40 | 6.0 | 9.0
[ 1.00 { 1.73 | 1.91 | 1.92 | 2.00 | 2.25

A comparison of nominal and numerically obtained minimal coverages for critical values above
i, is given in Table 2. Examining these values, we infer that for moderate sample sizes and high
nominal coverages, the t interval is conservative for symmetric unimodal distributions.

Table 2: Minimum coverage of the ¢ interval in Symmetric Unimodal Family

Sample size (n) 2 3 5 7 10
Ps(|T,| <t)=0.80 |} 0.75 [ 0.77
Ps(|T,| <t)=0.90 || 0.86 | 0.87 | 0.89
Ps(|T,| <t)=0.95 ] 0.92 | 0.92 | 0.93 | 0.94 | 0.945
Ps(|T,] <t)=0.99 || 0.98 | 0.98 | 0.98 | 0.983 | 0.986

Remark: For the family 77 = {F : F is symmetric and strongly unimodal about zero}, we have
inf Pp(|T.(Z)| <t) > inf Pr(|Tn(Z)| < t). But, since U[-1,1] € FFT, our numerical results
FeFsT ~ FeF ~
indicate that FiI}l_i;T Pp(|To| £ 1) = Py, )(|Ta| £t) fort>t, and 2<n <100
€F;
The results described so far settle our problem whenevert < lort >t,. For1 <t < t,, our
answers are not complete; but we do give useful bounds. Suppose, we broaden our consideration
to all “orthant symmetric” random vectors Z. The random vector Z = (Z;,...,Z,) is said to be

orthant symmetric (o.s.) if it has the same distribution as Z, = (6:Z1,...,6,Z,) for every choice
of = 1, ¢ =1,...,n. If Z has an o.s. distribution, then P(|S,(Z)| < s) = [ P(|W§| <
a+

$)AN(E), where O+ = {£ = (€1,...,£:) 1 &> 0,50, & =1}, W, = S £A,;, where A; = £1 with
i=1
probability %, A;’s are independent, and A is a (suitable) measure on Q* (see Efron (1969)). It
follows that inf P(|S.(Z2)| < s) = inf P(|W§| < s). Numerical minimization of the latter
(0.8.) Z ~ £ea+

5



Robustness of confidence intervals

over £ € QF leads us to the following conjecture

Conjecture 1 Vk=1,...,n—1,if k<s<k+1, then Zinf P(S¥Z)<s)=1-5 0
0.5.

We have checked this conjecture numerically up to n = 10. A complete analytic proof was not
possible. Now, since i.i.d. samples from symmetric unimodal distributions constitute a subclass
of the class of all orthant symmetric random vectors, the bound in the conjecture provides a
lower bound for F}él; 1 Pr(S%(Z) < s). We also obtain upper bounds by computing the probability
for a fixed, suitably chosen, mixture of 2 symmetric uniforms. The reader is referred to Table 3
in Basu and DasGupta (1992) where numerical values of these bounds are reported. This Table
shows that the conjectured lower bounds are sometimes indeed useful. Also, the discontinuity at
the point s = 1 comes out sharply; for s < 1, the infimum over F; is zero (by Theorem 4), whereas
for s > 1, the infimum over F, is > 0.5 (if Conjecture 1 is valid).

2.4 Symmetric contaminations

Instead of all symmetric unimodal distributions, in this section we look at the restricted class of
symmetric contaminations of normal, F§ = {F : F = (1—€)N(0,1)+ ¢G, G € Q,} where Q, =
{all symmetric (about 0) distributions G on R}.

We want to find F‘él}; . Pr(|To(X)| < t). Using independent embedding (see section 2.3), we em-
S
bed it into the problem of finding - inf - P, ..F.(|Ta(X)| < t), where X;’s are now independent,
1y-e3dmn S
and X;~ F, € F5, 1 =1,...,n.

-------

= . inf.eg‘ P(IT.(X)| < t|X; ~ F and independent)
S

11y

where G5 = {F* : F* = (1—€)N(0,1)+¢G*, and G* € Q) = {G, = 0.56(_,y +0.5833, v > 0} } O

Proof: Let F; = (1 - €)® + €G;, i = 1,...,n. It can be shown that Pp, _ r (|To(X)| < 1)
can be written as the integral of a suitable Borel measurable function h(z,...,2,) with re-
spect to the product measure Gy ® Go ® ... ® G, (for details, see Basu (1991)). Notice: (i)
S h(z1,...y2,) dGi(21) . . .dGp(2,) is alinear function of each of Gy, ..., Gy, and (44) Q, is the closed
(in weak topology) convex hull of QY (follows from Theorem A.5, p255, of Dharmadhikari and Joag-

dev (1988)). It follows that Gl,...l,Icl':f,.eQ, [h(z1,...,2,)dG1(21) .. .dGp(2a) = G;,...l,%l;eggfh(zl"“’

2,) dG%(z)...dG:(2,) which completes the proof m
Theorem 5 reduces the problem to (n-dimensional) minimization of an integral, and this inte-

gral can be exactly evaluated (see Basu (1991)). Numerical minimization for some cases shows that
6
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the infimum is attained when the v;’s are all identical. Combining Theorem 5 and the subsequent
numerical work, we thus get (for selected n and t): Flél}'_g Pr(|T| <t) = pyél; . Pp.(|T,| < t). These
minimum coverages are listed in Table 4 of Basu and DasGupta (1992). When nominal coverage
is > 70%, (nominal — minimal) coverage is small, but a drastic difference appears when nominal
coverage is < 60%. Thus, the phenomenon we observed for the symmetric unimodal family is

partially present for symmetric contaminations as well.

3 Arbitrary contaminations

In the previous section, we considered symmetric contaminations of normal. Here, we look at
the general e-contamination class, F* = {F =(1-¢€)N(0,1) + €G, G € Q }, where Q = {all
distributions G on ® with Eg(Z) = 0}. Such a class arises when we are 100 (1 — €)% certain
that the underlying distribution is normal and 100 €% uncertain about the form of the distribution.
Note that J* is not a superclass of F§, since here we are assuming finite first moment. As before,

we use the technique of independent embedding.

Theorem 6 - h}-fef_, P(|T.(X)| < t|X; ~ F; and independent)

= i < s~ 3
F;,..l.,I;‘f,.:egt P(|IT.(X)| £ t|X; ~ F} and independent)

where G° = {F*: F* = (1-¢€)N(0,1)+€eG*, G* = pby} + (1 —p)guy, with pv+(1—p)w =0} O

Proof: Following arguments similar to Theorem 5, P(|T,(X)| < t| X; ~ F; € F¢ and independent)
can be written as [ h(z1,...,2,)dG1(z1) .. .dG,(2,), where F; = (1—€)® +¢G; with G;’s satisfying
J2dG(z) = 0 Vi. The fact that it is enough to consider only two point G;’s for the minimization
now follows from Theorems 2 and 8 in Mulholland and Rogers (1958) m

By Theorem 6, the infimum problem in the independent (not i.i.d.) case is reduced again to
(2n-dimensional) minimization of an integral (this integral can be exactly calculated). Numerical
minimization shows that the minimum, again, is attained when F}’s are identical, thus giving us
the required infimum for the i.i.d. case. Table 5 in Basu and DasGupta (1992), where these minima
are listed, shows that the ¢ interval is conservative for small n, but as n increases, the minimum

coverages differ more from the nominal ones.

4 Robustness of P-values: tyranny of large samples

In our setup, if we desire to test the null hypothesis H, : § = 6, against the alternative hypothesis
Hy : 6 # 6y, the p value (or observed significance level) for the observed data z = (zy,...,2,)
is p, = PEE(|IT(X)| > t) = Pr(|Ta(Z)| > t), where t = T,(z) is the observed value of the

t statistic. Thus, our findings on the infimum coverage of the interval carry over directly to the
7
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problem of finding the supremum of the p value over the respective family of distributions. For
example, if we only know that the unknown distribution F belongs to a family F satisfying the
conditions of Theorem 4, and if we observe |T,,(2)] < 1 (n > 2), then Theorem 4 says that in
the worst case, we have p, = 1, i.e., we are always going to accept Hy. Reinterpretation of other

results, in terms of robustness of p values, follows similarly.

The preceding section suggests that as the sample size (n) increases, the maximum p value
over the class F¢ differs more from the nominal p value. However, the numerically intensive
method cannot be carried out for higher n’s. Instead, suppose, for large n, we consider F, =
(1 — €)N(0,1) + € G, where ¢ is small, and G = pb;_o) + (1 — p)éy, with ‘a’ small and ‘b’ large.
Eg(X) =0 implies p = %_;_b, making p close to 1. For n large, and X,,..., X, ii.d. from F, it can
then be shown that (see Basu (1991))

n

P(T(X)<t) < Y (Z)(l—e>'°e"-'°p"-'°P

k=n/2

1T(X)] < £ X1, o, Xi ~ N(0,1), Xegs - -+ X ~ 6(_a]

n/2 n
+ ;; (Z) (1-eFeF+ k=nZ/;+1 (Z) (1 —e)fe (1 ~p**).
Lower bounds on the p value of F, computed according to above are listed in Table 3. Consider
the case when the nominal p value is 0.10. If we allow 10% contamination (€ = 0.1), the p value of
F, is > 0.21 (0.35 and 0.54) for » = 20 (» = 50 and = = 100). Notice that F, € F*. Hence, the
supremum p value over F* is also > 0.21 (0.35 and 0.54) for n = 20 (» = 50 and n = 100).Thus,
over the contamination class, the p value of the t statistic is not very sensitive for small n, but the

lack of robustness gets more pronounced as the sample size n increases.

Table 3: Lower bounds on the p value (¢ = 0.1)
Nominal = 0.30 || Nominal = 0.10 || Nominal = 0.05 || Nominal = 0.01
n| 20 | 50 | 100 || 20 | 50 | 100 || 20 | 50 | 100 || 20 | 50 | 100
0.45| 0.60 | 0.76 || 0.21 | 0.35 | 0.54 || 0.14 | 0.24 | 0.42 || 0.04 | 0.09 | 0.20

5 Comments

In this article, we establish some explicit and surprising results about the robustness of the widely
used ¢ confidence interval under departure from normality. When the population variance o2 is
known, a frequentist optimal confidence interval, under normality, for the unknown mean 6 is the

z interval X + z, /2—\/"—5. Without loss of generality, we can assume o? = 1. Thus, X; = 0+ Z;, Z;’s
8



Robustness of confidence intervals

iid. from F with Ep(Z;) =0, Ep(Z?) = 1. To examine robustness against nonnormality, one can
take F' € F, a suitably chosen family, and consider }Iel-i;__ Pr (|7| < c) as a sensitivity criterion (here
c= %—ﬁz) The detailed technical results will appear separately. It turns out that consistent with
common belief based on simulation studies, the theorems show that the z interval is more robust

in comparison under skewness and very robust for broad general symmetric unimodal populations.
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