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EDGEWORTH EXPANSION FOR U-STATISTICS
BASED ON AN M-DEPENDENT SHIFT!

By WEI-LIEM LOH
Purdue University

Under mild assumptions, an Edgeworth expansion with remain-
der o( N~1/2) ig established for a U-statistic with a kernel h of
degree two using observations from an m-dependent shift.

1 Introduction

Let &1, &2, ... be a sequence of independent and identically distributed ran-
dom variables and f : R™t! — R be a measurable function. For j > 1,
let X; = f(&,...,&+m). The sequence Xi,Xs,... is said to be an m-
dependent shift and an immediate consequence is that (Xj,...,X;) and
(Xs, Xs+41, - - -} are stochastically independent whenever s — r > m. Next let
h : R? — R be a measurable function symmetric in its two arguments. We
shall assume throughout this paper that for some p > 5/3,

(1) Elh(X1, X;)F < oo, Vi<j<m+2
Then Eh(Xj, Xk) exists for all 5 < k. We write
hj,k(Xj,Xk) = h(Xj,Xk) — Eh(Xj,Xk), Vj < k,
and for N > 2, a U-statistic of degree two is defined as
N-1 N
Unv=2_ > hix(X;Xe).
j=1 k=3+1
Also we define for N > 6m + 1,
9(z) = Ehji(X;, Xi)|X; = 1], Vk —j > m,
1)b("l'.) y) hj,k(xa y) - g(:l:) - g(y)7 Vk — .7 > m,

A

N
On = (N-6m-1)Y g(X;),
j=1
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N-3m-1 N-1(54+3m)AN
Ay = ) Z (X X))+ > D hiw(Xs, Xa)
=1  k=3m+j+1 =1 k=j+1
3m N
(2) +> Bm-j+1e(X5)+ D (3m+j— N)g(X;).
=1 j=N—3m+1

Straightforward calculations show that Uy = Uy + An. In this paper, we
suppose that

3) o? = Bl (X)) + 23 0(X0)o(Xjan)] > O,
i=1

and

@) Elg(X))fF < .

Let 6% denote the variance of Un. Then by the stationarity of the X;’s, we
have

6% = (N -6m—12E[Ng*(X0)+23 (I - )e(X1)a(X;41)
i=1
= N3} +O(N?),

as N — oo. Next let

ks = oy B{e(Xs) + 33 e (Xn)a(X1) + 9(X0)g (K1)

=1
m+1 j+m ’
+6 . Y g(X1)9(X;)9(Xx)
i=2 k=5+1
2m+1 5m+2
(5) +3 ) Y $(Xmy1, Xam+2)9(X5)9(Xe)}-
7=1 k=3m+2

We observe that if E|h(X;, Xx)|® < co whenever j < k, then kg N~/2 is an
asymptotic approximation [with error O(N ~3/2)] for the third cumulant of
&X,IU ~N. Define

(6) Fy(z) = 8(z) - ()5 N /(2 - 1),

where ¢ and ® denote the standard normal density and distribution function
respectively.
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The main aim of this paper is to establish the validity of a single term
Edgeworth expansion for &K,IU ~ under mild conditions. In particular, we
prove

Theorem 1 Suppose (1), (8), (4) are satisfied and

(7) limsup EIE[C“E;':II y(Xj)Iﬁla RS Em: §m+2: s €2m+1]| <1
Jel—>00
Then
sup |P(65'Un < z) — Fy(z)| = o(N~1/?),

as N — oo.

PROOF. Without loss of generality, we assume that 5/3 < p < 2. To prove
Theorem 1, we shall study the characteristic function (c.f.) of 85 Un. Let
¢n denote the c.f. of &]T,IU N, that is

¢n(t) = Eexp(itd ' Un),
and for k3, as in (5), let
#iv(t) = (1 - Z2N)
be the Fourier transform [ exp(itz)dFn(z) of Fi in (6). By the smoothing
lemma of Esseen [see for example, Feller (1971), p. 538], it suffices to show
that 2
N*/%logN 1) — &% (t
(8) / ¢N( ) ¢N( )ldt — O(N_l/z),
—N1/2]logN t
as N — oco. However (8) is an immediate consequence of Propositions 1,
2 and 3 whose statements and proofs are provided in Sections 2, 3 and 4
respectively. This proves Theorem 1. O
REMARK. Gotze and Hipp (1983) showed that (7) holds if ¢ has a
probability density f¢, with respect to Lebesgue measure and gf : R™t! —
R is continuously differentiable such that there exist y1,...,¥2m+1 € R and
an open subset 2 D {y1,...,yz2m+1} satisfying f¢, > 0 on Q and
m+1
Zl a_zjgf(xla (R ) x1+m)l(z;,...,z1+,,,)=(y,-,...,yj+,,,) # 0.
J=
REMARK. If the observations are independent and identically distributed
[that is m = 0], (7) reduces to the well known Cramér’s condition.
In the case where Eh%(X;,X;) < oo whenever 1 < j < m + 2, the
variance 012\, of Uy exists and we have
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Theorem 2 Suppose that (38), (4) are satisfied,

Eh*(X1,X;) <oo,  V1<j<m+2,
and
lili?suPElE[e“E;:L‘l WXy o Emraye ooy Eampa]] < 1.
—00
Then
sup | P(oy'Un < z) - Fn(z)| = o(N /%),
as N — oo.

PROOF. The proof of Theorem 2 is similar to that of Theorem 1 and hence
is omitted. O

We end this section with a brief review of previous related literature.
There has been a great deal of research done on U-statistics based on inde-
pendent and identically distributed observations. In this paragraph, we shall
assume that the observations are independent and identically distributed.
U-statistics were first discussed by Hoeffding (1948) who also showed the
asymptotic normality of &K,IUN under very weak conditions. The rate of
convergence to normality was investigated in increasing generality and pre-
cision by Grams and Serfling (1973), Bickel (1974), Chan and Wierman
(1977), Callaert and Janssen (1978) and Helmers and van Zwet (1982). In
particular, Helmers and van Zwet showed that if p > 5/3 and (1) and (4)
hold, then
(9) sup |P(65'Un < z) — ®(z)| = O(N~/?),

z

as N — oo. If furthermore we have Eh%(X;,X;3) < oo, then &5 can be
replaced by oy in (9).

If the independence assumption were relaxed, Berry-Esseen type bounds
were obtained by Rhee (1988) for U-statistics based on m-dependent obser-
vations and by Zhao and Chen (1987) for finite population U-statistics.

Regarding the corresponding more involved problem of Edgeworth ex-
pansions, Callaert, Janssen and Veraverbeke (1980) and Bickel, Gotze and
van Zwet (1986) established for a U-statistic with independent and identi-
cally distributed observations, the validity of a one [and two| term Edge-
worth expansion with remainder o(N~1/2) [and o(N~1)] respectively.

REMARK. In their Theorem 1.2, Bickel, Gotze and van Zwet stated
that one of the conditions needed in obtaining a one term Edgeworth ex-
pansion is that E|¢(X;, X2)|P < oo for some p > 2. Since independent and
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identically distributed observations are a special case of an m-dependent
shift, we observe from Theorem 2 that this condition can be relaxed to
E¢2(X1,X2) < ©00.

Under dependent observations, the only result that we are aware of is by
Kokic and Weber (1990) who established the validity of a one term Edge-
worth expansion for U-statistics based on samples from finite populations.

2 The c.f. for small values of the argument
In this section we begin by studying ¢x(t) for small values of |t|, namely
|t| < N1, where 0 < €1 < (3p — 5)/(2p).
Proposition 1 Let 5/3 <p <2 and 0 < &1 < (3p—5)/(2p). Then
N€1 *
~(t) — t -

_N21 t
as N — oo.
PROOF. It is well known that
|mlr+1

,m}, Vo € [0, 1).

. Y (i)
1) == 3 ) < ming 2y
= ! r!

Hence
¢n(t) = EénUN(1+itoy'Ay)+O(E|tsn AnP)
(11) = E&PNUN(1+itox' An) + O([tP N*-%/2),

The last equality uses the fact that E|Ay|P = O(N?) [see for example
Lemma 5-1 of Rhee (1988)]. Define for 1<a<b< N,

s = (N-em-1) Y g(X), Ww>1,

|i—a|Ali-b|>vm

S‘Sf? = (}N-
As Uy = S(S?b), for all @ < b, it follows from (11) and Lemma 1 [see
Appendix| that
1R
o (t) — e A1 - 2N

= Eitoy'Anen On
(12) FO(IEPN*=*#/%) + of([t]* + [¢[f)e /4N 112,
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as N — oo uniformly over |t| < N®!. It remains to approximate the term
Eitoy' A neiton On, Following a method of Tikhomirov (1980), we write

N-3m-1 N .
3 Y Eitonte(X;, Xe)eon 0w
i=1 k=3m+j+1
N-3m-1 N a1 (1)
= > > BlteRl(X;, X Sk

j=1  k=8m+j+1

—1ya(l-1) (D —1g(r)
it (%, X0) 3 L1 S5 — g’
r=21=1
41— () a1 o(4)
Hita R (X, Xo) [J[0F o =50) — 11 Sy
I= 1
N-3m—1

=X S s aagtn x [T el -

=1 k= 3m+.7+1r—

(13)  x[BN'SIE) +O(°N"2),

as N — oo uniformly in . The last equality uses Lemma 3 and the inde-
saa—1lra(i—1) o

pendence of S:,(rk) and ¢(X;, X)) H{;ll[e’taNl(Sj,k ~Sik) _ 1]. Furthermore

using Lemmas 1, 2 and 3, we have

N-3m~-1

> Z Zzt N {EY(X;, Xk)

=1 k=3m+j+ir=2

% H[eita—l(s(l 1)—-5(2) 1]}[E 1taNISJk]

Z Z itse_t2/2a;3N_5/2
=1 k=38m+j+1
j+m (k+m)AN
(B Y Y (X Xe)9(Xa)g(Xs)]

a=(j—m)vl b=k-m

(14) +ol[t| P(Jt])e /AN /2]

N—3m—1 N
2

as N — oo uniformly over |t| < N1, where P(|t|) is a generic linear combi-
nation [not depending on N| of non-negative powers of |t|. Also for conve-
nience of notation, P may represent different linear combinations at different
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occurrences. Thus it follows from (13) and (14) that

N-3m-1 N —
S Y Eitei(Xj, Xp)e P On
j=1  k=3m+j+1

2m+1 bm+2

~ *””N"“tsE[so-s 3 Y $(Xmtt, Xamr2)9(X;)9(Xx)]
i=1 k=3m+2

(1) +O([tPN"2) + oflt| P(je))e™* /AN /%),

as N — oo uniformly over |{| < N, In a similar though less tedious way,
we have

N-1(i+3m)AN s
Eitoy Z Z hj,k(Xj,Xk)e’taN On
k=5+1

N- 1(J+3m)AN ()
= itogt Y. Y. E{h; k(X,,Xk)e'taNS

j=1 k=j+1

and

a1 3m
BN 0nitog [y (3m - 5+ 1)g(X;)
j=1
N
(17) + 3 (Bm+i-Ng(X)] = O(lN~/),
j=N-3m+1

as N — oo uniformly in |t|. Thus it follows from (2), (15), (16) and (17)
that

Eito 3 Ay eon'On
" 2‘. /2.3 32m+1 5m+2
= —e /EN_ PeEBe;® Y. Y. (Xme1, Xame2)g(X)9(Xe)]
j=1 k=3m+2

O(ItIN_3/2 + It|2N—1 + It|6N—2) + o[|t|P(|t|)e_t2/4N_1/2],

as N — oo uniformly over |t| < N°1. Hence we conclude from (12) that

St - S = en() - 2N
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= O(|t|N"32 4+ |t2N~1 + [t|°N "2 + [t N2~2#/%)
+ol|t|P(t])e /AN,

as N — oo uniformly over |t| < N¢* and hence

/Nel |¢N(t) — ¢;V(t) |dt — O(N—I/Z)’

-N=1 t

as N — oo. This completes the proof of Proposition 1. O

3 The c.f. for moderate values of the argument
First define constants €3 and €4 to satisfy

(18) 0 < 6(m + 1)eso, HE|g(XD)*] /2 = €4 < 1.

In this section we prove

Proposition 2 Let e1 be as in Section 2 and €2 as in Lemma 4 (see Ap-
pendiz). Then

/ ¢N(t) — ¢’1kv(t)|dt= O(N—I/Z)’
N21<|t|<eaN1/2 t

as N — co.

PROOF. For |t| > N°©1, define

_ NlogN
(19) v = |'_tzlog€4J’
_ 5_58(m+1)
(20) &1 = 5-——
CiNlogN
(1) n = [,
nA(N—-3m—1) N
An(n) = 3 > (X, X)

ji=1 k=3m+j+1
nA(N-1) (+3m)AN 3m
(22) + 3 Y k(X Xe)+ > (8m— 5+ 1)g(X;),
=1 k=j+1 j=1



EDGEWORTH EXPANSION FOR U-STATISTICS 9

where |z | denotes the greatest integer less than or equal to z and [z] denotes
the smallest integer greater than or equal to z. Then it follows from (10)
that

[én (2)]
= |Eeon ON=Bn([1 + it671 An(n)]| + O[Elts AN (n)[?]
(23) = |Een (Un-An([1 ¢ ito  An(n)]| + O(t|PnN1~%/2),

since E|An(n)|P = O(nN) [see Rhee (1988)]. Next defineforl <a<b< N,

e s9m) = W-6m-1)) o(X;),
j=1

s¥m) = (W-6m—-1) 3 g(X;), W1,
ienl)(n)

where Q‘(,"g(n) ={j:lg—a|>vm,|j-b > vmn+1-37>vm} We
shall now approximate Eit&ﬁlAN(n)e‘talTrl(UN ~Axn(n)), As in the proof of
Proposition 1, we write

n N
Yo S Eitsnte(Xj, Xi)en Un-an ()
§=1 k=3m+j5+1

n N cpa—1 (0) cia—1a(1)
— Z Z E{ita'ﬁl'l,b(Xj,Xk)e'taN (Un-5;, (n)—-AN(n))eztaN §;y (n)
j=1k=3m+j+1

+itoy (X, Xk)e“az?(UN—S}f’,,) (n)-An(n))

v r=1 — a1 olr
% Z H[ett&Nl (SJ(.’,‘ l)(71)"5_7(-,',2(71)) _ ]_]e'taNISJ(,k)(")
r=21=1

itog (X, Xi)e 0N Tn5iR(n)-An(m)

(25) ﬁ[eeta,;l(s}f;”(n)—s}f,{(n)) _ 1] RSy
=1
To bound the r.h.s. of (25), we first observe from Lemma 5 that

n N
13 Y Eitey'e(X;, Xy)eton ON =53 (r)-An(m))
J=1k=3m+j+1
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u
% H[eital;l(s}f;1)(,;)_5}2(1:)) . 1]e“"§1 S’(";‘)(n)l
=1

= al ke s1a—17pa(l—1) )
< Y Y Bltegte(X;, Xe) T[N Gin (-5 _y

j=1k=3m+j+1 =1
(26) = O([t|]nN—%/%),

as N — oo uniformly over N¢! < || < eaN1/2, Also from Lemmas 4 and 5,
we get

n N

1> Y. Eite (X, Xx)
j=1k=8m+j+1

Gton (Un—S{3 (n)-An (n)) jito3' S {3 (n) |

X
; 3 51 itoyy1sM(n)
< Y D (BNt e(Xy, Xi)||| Be™n Six )]
J=1k=3m+j+1
(27) = O(jtlnN—3/),
and
| Xn: f: Eito ! . ito g (Un—5'Q (n)-An(n))
Woyn d)(XJ’Xk)e s
7=1k=3m+j+1
u r—1
x 3" TJ (e 55 V)-8 _ g ion'sidio))
r=2 =1
n N u
< XX DABleRw(X; X
i=1k=3m+j+1r=2
r—1
x [ [e‘taE’(S,(-,'[ V(n)-s{)(n)) _ 1} Eeitn'550 ()
=1
(28) = O(tjnN"%/%,

as N — oo uniformly over N¢1 < [t| < ea N1/2, Hence it follows from (25)
to (28) that

n N
(29) |Z Z Eité"ﬁlq[)(Xj,Xk)e"taxrl(Uzv—AN(n)” - O(|t|nN_3/2),
§=1k=3m+j+1
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as N — oo uniformly over N¢! < |t| < 2 N!/2. Similarly, we have

n j+3m )
(30) 'Z Z Eit&&lhj’k(xj-,Xk)e’t&Nl(UN—AN(n))I — O(ItlnN‘s/z),
J=lk=j+1
and
3m
(31) |3 Bitag! (3m — 5 + 1)g(X;)e"ox On=AnD| = o(jg v =212),
i=1

as N — oo uniformly over N < [t| < e2N1/2. We conclude from (29), (30)
and (31) that

(32) | Eitoj Ay (n)eon On—An ()] = O(|t|nN-3/2),
as N — oo uniformly over N¢! < [t| < g2 N1/2, In the same way, we have
(33) |Eeita;1(UN—AN(n))| — O(N'l),

as N — oo uniformly over Nt < |t| < e2N'/2. We now conclude from (23),
(31), (32) and (33) that

lon(t)| = O(N-l + |t|nN-3/2 + lthnN1—3p/2)’

as N — oo uniformly over N¢* < |t| < e2N'/2 and hence

(34) |én (2)/tldt = o(N~1/%),

-/N‘l <|t|<ea N /2

as N — oo. Furthermore it is clear that
(35) [ 8 (e)/tde = o(N V)
[t|=N°1

as N — oo. Proposition 2 now follows from (34) and (35). O

4 The c.f. for large values of the argument

Let €3 be defined as in Proposition 2. Then we observe from (7) that there
exists a constant 0 < 4 < 1 such that

. m+1 K
(36) ‘E|‘E[e’t2:'i=1 g(XJ)lé'l) o g‘m.) §m+2; seey £2m+1]| <1- v

for all [t]| > 0, 1e2/2.
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Proposition 3 Let 3 be as in Section 2. Then

/ on(t) — oy (2) |dt = o(N~Y/2),
eoNY/2<|t|<N1/2log N t

as N — oo.

PROOF. For sufficiently large N, let n denote a positive integer satisfying

n—2m log N

(37) [m] -3= f*m]-

We observe as in the proof of Proposition 2 that

lén (2)]
(38) — IEeita;1(Un—An(n))[1 + ité';ylAN(n)“ + O(ltlpan—Sp/Z)

as N — oo uniformly in ¢, where Ay(n) is as in (22).
We shall now approximate the first term of the r.h.s. of (38). For
simplicity we let 4; i denote the o-field generated by the random variables

&,1€[j,7+m|Ulk,k+m]U[n+1,00). With S}?,c)(n) as in (24), we observe
from Lemma 6 that
| Bitoy (X, K)o ton On—anl)]
- o am1 a(0)
_ |Eit&§1¢(Xj,Xk)e'taNl(UN_S}v?(")-A"("))E[e'tale}g‘ (")Mj,k,n”
[t165" Bl (X;, Xi)|[N 7Y,

IA

and hence

n N
1Y, X Eitsy'd(X;, Xp)e"n Un-anm)| = o(tjnN3/2),
J=1k=3m+j+1

as N — oo uniformly over |t| > e, N1/2,
In a similar way, we have

(40) |Ee.-ta;1(vn—AN(n))| — O(N7Y),
n j+3m

(41)!2 Z Eit&&lh]’,k(x]-,Xk)eitazTrl(UN—AN(n))I — O(ltlnN—5/2),
J=1k=j+1
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and
3m

(42) | Eitoy'(3m - j + 1)g(X;)en Un=2n ()| = O(|¢| N~5/2),
i=1

as N — oo uniformly over [¢| > e2N1/2. From (22), (39), (41) and (42), we
get
(43) | Eits5! A ()N Un=8n ()| = O(|t|nN—3/2),

as N — oo uniformly over |t| > €3 N1/2. Now it follows from (38), (40) and
(43) that
|¢N(t)| = O(N_l + ltlnN—3/2 + |t|PnN1—3p/2),

and from the definition of n, we have

(44) |éw(t)/tldt = o(N /%),

/;2N1/25|t|5N1/2 log N

as N — oo. Proposition 3 follows from (35) and (44). o

5 Appendix

Lemma 1 Suppose that (3), (4) are satisfied and r is a fized nonnegative
integer. Then
BN = Pl - BRNYA) ol (f + o) TN,

as N — oo uniformly over 1 < a <b< N and |t| < N, where

ks = o7 °E{g%(X1) +3 f:[gz(Xl)g(X,-H) +9(X1)g*(Xj41)]

m+1 j+m =
+6 ) Y 9(X1)g(X;)g(Xk)}-
i=2 k=j+1

PROOF. Let 6‘53 denote the standard deviation of Sgb) . We observe that
the third cumulant of (&gg ‘I.S"S,'b) is asymptotically &3N~1/2 with error
O(N~—3/2) uniformly over 1 < a < b < N. Hence it follows from Heinrich
(1982) p.513 that

BT = P SN o+ )TN,
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as N — oo uniformly over 1 < a < b < N and |t| < N*+® where § is a small
positive constant. We remark that Heinrich stated his result only for the
case of a sum of 1-dependent random variables. However the extension to

m-dependence is straightforward. Since 1 — (a(r) /6n)? = O(N 1) uniformly
over 1 <a<b< N, we have .

Ee.ta;,‘sy,? — getenleihei1sl)

eI — BN ol + [tF)e VAN,

as N — oo uniformly over 1 < a < b < N and |t| < N€. This completes
the proof of Lemma 1. O

Lemma 2 Let 5/3 < p< 2, pl+q¢gl=1andl1 <a<b< N wih
b—a>3m. Then
Eits 5 (X, Xs){explits it (S — 8T - 1

atm  (+m)AN

= -t SN2 Y Y $(Xa, Xb)g(X;)g(Xk)
i=(a-m)Vvl k=b-m

+O(|tI3N—7/2 + |t|2+3/qN—2—3/(2q))’

as N — oo uniformly ina, b and t.

PROOF. We observe that

0 a+m (d+m)AN
s{-sW=-em-1[ X oX)+ X 9(X)
j=(a—m)v1 k=b—m
For 1 < ¢ < N, we define
(e+m)AN
(45) R =itég (N—-6m—1) > g(X;).
i=(e~m)v1

Then

Bits 3y(Xa, Xo){explits ! (51 - 53] - 13
= Eitoy " ¥(Xa, Xs)[(e®* — 1 — R)(e® — 1 - Ry)
(46) +R;(e™ — 1 — Ry)) + Ry(e® — 1 — R;) + RuRy).
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The last equality uses the observation that
E(Xa, Xp) = E[(Xa, Xp)| Ra] = E[¢p(Xa, Xs)|Rs] = 0.
Next we observe that

Eita—]?rl"»b(xa: Xb) Ra Rb
atm  (b+m)AN
= —it’e;*(N-6m—-1)E > Y. 9(X)e(Xi)¢(Xa, Xs)

i=(a—m)vl k=b-m
atm  (b+m)AN
= —it’e*NPE YT Y 9(X)e(Xk)(Xe, Xb)

i=(a—m)Vl k=b—m

47)  +o(t* N/,
as N — oo uniformly in a,b and ¢. Furthermore it follows from (10) that

Elté 5t (Xa, Xo)[(e® — 1 — R,)(e® — 1 - Ry)
+R,(e® — 1 — R) + Ry(ef* — 1 — R,)]|

6 E|t6 7 (Xa, Xs) RaRY?| + 2Eto 5 (X0, Xp) Ry R3]
6[t|o 5" [E[w(Xa, X) P /P[(E| Ral?) /9(B| By [*) /2

+(B| Rs|)"/2(B| Ro|*) /1]

O(|t|2+3/qN—2—3/(2q))’

IN A

(48)

as N — oo uniformly in a,b and ¢. Lemma 2 now follows from (46), (47)
and (48). |

Lemma 3 Let r be a fized positive integer, 5/3<p<2andl1<a<b< N
with b— a > 3m. Then

N N S VI ()
IEitc‘rﬁlqb(Xa, Xb) H[e‘taNl(sa,b _Sa,,b) - 1” —_ O(lt|3N—5/2|tN—l/2|r——1)’
=1
and
r _ s
|Eit61§1¢(Xa, X) H[eitaﬁl(sgb 1)_sﬂ) _ l]e'tanlsi,'z
=1
— O(|t|3N_5/2|tN_1/2lr_1),

as N — oo uniformly tn a, b and t.
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PROOF. Let R, and R, be defined as in (45). We observe that

T aa=lrgl=1)_ g
|Eit&;’11/)(Xa,Xb) H[e'tazv (Sap " —Sap) _ 1]|
=1
= |Eiton (Xa, Xs)[(eF — 1 — R)(e® —1 - Ry)
+R,(e® — 1 - Ry)

(-n_g®

+Rb(eRa_1_R )+R Rb]H[ 110 1(S )_l]l

=2

T aa—1ia(=1)_ o)
(49) < OE|té3 ¢ (Xa, Xs) Ra Ry [[[e0% GCan " —5ud) — 1.
=2

The last inequality uses (10). By Holder’s inequality, the r.h.s. of (49) is
less than or equal to

Lo1gU=1)_ (D)
O[t|o { B|p(Xa, Xo) [[ [ Sei ~Sed) — 1)|p}1/r
i a-1)_ g
(50) X{E]RaRb " [ (17 e 1(S 1 S ) _ 1]|Q}1/q,

where p~1 4+ ¢~! = 1, []' denotes the product over all even integers [, 2 <
I < r and []" denotes the product over all odd integers I, 3 < I < r. By
virtue of m-dependence, the r.h.s. of (50) is bounded by

9|t|&;rl [El¢(Xa, X)P]/?(E|RaRy|7) /1

—17gU=1) _g(})
xH[E|e’ta N (Sep ' =5.4) _ |3]1/3

=2
< 9|t|a;vl[E|¢(xa,xb)|P1‘/P(E|RaRblq)1/q
(51) XH[EIt‘"l( s — siEs,

Since - l
[Bltoz*(sSY - sEOIFME = o(jt N1/,

as N — oo uniformly over 1 < a < b < N,2 <1 < r and t, it follows from
(51) that

(I-1) o)
Bt p(Xa, X) T[4 =50 _ 1]| = 0P N-"/2jen-1127-1),
=1

This proves the first statement of Lemma 3. The proof of the second state-
ment is similar and is omitted. O
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Lemma 4 Let €1 be as in Section 1, u and n be as in (19) and (21) respec-
tively. Then there ezists a constant o satisfying 0 < €2 < 1 A €3 such that
for sufficiently large N, we have

a—1a(v)
|Ee:t8N Sap (n)l < N_l,
whenever N < |t| < e2NV2, 1<a<b<Nand1<v<u

PROOF. Let (‘f (n) denote the standard deviation of Si b)(n) We observe
from Corollary 3 2 of Heinrich (1982) that

s (0)( 1—1 ()
| BRI < /8

whenever |t| < [BY)m)ERoz[wl)(n)/(m + 1))(m + 13N Blg(X1)[*],

where wa,b (n) denotes the cardinality of Qf:g (n). Hence

| Bt s, )(n)| | Ee;t[a‘")(n)/aN][a,‘,j’,,’(n)]“S.ﬁ',l’(n)|
(52) < e/,
whenever

< sn1) ()2

192[w{)(n)/(m + 1)](m + 1)*N3E|g(X1)|*

By writing out the explicit expression for &‘(zub)(n) and letting C; be as in
(20), we observe that for sufficiently large N,

A(V)(n) t? n—5u(m+1)
A RRES
N
i[CINlogN 5(m+ 1)NlogN]
5N 12 t2logey
(53) = logN,

2

forall1<a<b< N and 1< v < u. In asimilar way, it can be seen that

oy on 164 (m)]
192[w{)(n)/(m + 1)](m + 1)3N3E|g(X1)[®

o]

192(m + 1)2E|g(X4)|3’

(54)
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as N — oo uniformly over 1 < a < d< N and 1 < v < u. Let &3 satisfy
3

0'g 1}
192(m + 12E[g(X1)> *>

Then it follows from (52), (53) and (54) that for sufficiently large N,

0 < g2 < min{

lEeitagls&)(n)I < N1

whenever N1 < |¢| < eaNY/2 1 <a<b< Nand1<v<u This proves
Lemma 4. O

Lemma 5 Let u and n be defined as in (19) and (21) respectively. Then
for 5/3 < p < 2 we have

Blio (e, X6) [[[e7 G150 _ 1) = o5/,
=1

and

u r-1 —1)
EY [t8519(Xa, Xo) [ [#F o 0=S3) _ | = 0(je|v—2/2),
r=2 =1

as N — oo uniformly over 1< a<b< N and Nt < |t| < e, N1/2,

PROOF. As in the proof of Lemma 3, we have

Bltoyp(Xe, Xy) [[[27 G5 -50 _y

=1
< 6 Bl X)PIP Tl (S Y (n) — SO () 7112
=1
(55) < [tI6R IEI$(Xar Xo)[P]Y2{5(m + 1)ea N*/ 2675 [ E|g(X1) ¥ /3}~.

Since €3 < €3, it follows from (18) that for sufficiently large N the r.h.s. of
(55) is bounded by
8168 [BlY(Xa, Xo) ] /Pef < |t]o5"(El$(Xa, Xo) 7] /P ' N7
= O(t|N~*/%),
uniformly over 1 < @ < b < N and N** < [t| < e2NV/2, The last inequality

uses the fact that 0 < e < 1. This proves the first statement of Lemma 5.
The proof of the second statement is similar and is omitted. O
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Lemma 6 Let 1 < a < b < N. Then with the notation of Proposition 3,
we have
ia—1a(0)
| B[N os )| g )| < N7,

for sufficiently large N uniformly over 1< a < b< N and |t| > e, N1/2.
PROOF. We observe that
E[eitax_ls‘i?b) () |-4a 5 n]

(56) — E[/ eitagl(N—Gm—l) E;-.=1 g(xj)H*dF(&(m_i_l))lﬂa,b,n]’
1

where F (El(m+1)) denotes the distribution function of the random variable
€i(m+1) and [1; denotes the product over all positive odd integers ! satisfying
Ilm+1)¢[a—m,a+2m|Ub—m,b+2m|U[n+ 1 - m,o00). Thus the
absolute value of the r.h.s. of (56) is bounded by

« ite— —6m— l.(m+1) A
E[H I/et&Nl(N 6 1)Z’=l(m+1)—mg(XJ)dF(fl(m+1))||~4a,b,n]
l
" o —6m— {(m+1) i
= IIB( [ &5 @m0 Lstimsn-n oD P (G )| oo
1

a1 m+1 .
= {ElE[e‘taN (N —-6m-1) zj:l g(XJ)|§17 e £m7 §m+2a reey £2m+1]|}ko)

where ko equals the number of terms in the product [];. The second [last]
equality uses the independence [stationarity| of the ;’s respectively. Since

koZl_n—2m)J—3,

2(m+1
it follows from (36) that
| B[N Saa | g, 4 ] < (1 — ) l(n=2m)/2(m1)])-3
whenever (N — 6m — 1)65'|t| > 0 'e2/2. Thus we conclude from (37) that
IE[eitaEIS‘S?b)(n)|Aa'b,n” < N—-l’

for sufficiently large N uniformly over 1 < a < b< N and |t| > &2 N 12 o
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