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Abstract

An asymptotic analysis of penalized likelihood hazard estimation using censored life time
data is presented. The counting process interpretation of censored data and the associated
martingale structure are employed. Asymptotic convergence rates in a certain symmetrized
Kullback-Leibler and in a related mean square error are obtained. A computable adaptive
estimator is proposed and is shown to share the same asymptotic convergence rates as the

original estimator. An example is also provided.
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1 Introduction

Censored life time data are common in life testing, medical follow up and other studies. Let T;
be the life time of an item and C; be the censoring time beyond which the item is dropped from
the study. One observes (X;,é;), ¢ = 1,---,n, where X; = min(7;,C;) and §; = Ij1;<c,)- Assume
that T; follow a common survival function S(¢) = Prob(T' > t). Of interest is the estimation of the
hazard function A(t) = —dlog S(t)/dt.

Conventional estimators of A(t) include various parametric maximum likelihood estimators and
the constraint-free nonparametric maximum likelihood delta sum corresponding to the Kaplan-

Meier estimator of the survival function; see, e.g., Kalbfleisch and Prentice (1980). Parametric

*Research supported by NSF under Grant DMS-9101730.



estimators are restrictive, while the delta sum is “unreal”. In between the two extremes, estimators
with nonrestrictive constraints such as the penalized likelihood estimators provide a proper balance
between regularity and adaptiveness in the estimation. As a general method, penalized likelihood
method estimates a function of interest 7 via the minimizer of L(7n|data) + AJ(7n), where the L,
usually a minus log likelihood, measures the lack of fit of 1 to the data, the J, usually a quadratic
functional, measures the roughness or irregularity of 7, and the smoothing parameter A, a positive
constant not to be confused with the hazard function, controls the tradeoff between the smoothness
and the goodness-of-fit of the estimator. Penalized likelihood method was introduced by Good and
Gaskins (1971) in the context of nonparametric probability density estimation. Its use in hazard
estimation was proposed by Anderson and Senthilselvan (1980), Bartoszynski, Brown, McBride and
Thompson (1981), and O’Sullivan (1988). Cox and O’Sullivan (1990) conducted a general asymp-
totic analysis of penalized likelihood estimators, of which O’Sullivan’s (1988) hazard estimator is a
special case.

The purpose of this article is to conduct an asymptotic analysis of O’Sullivan’s (1988) hazard
estimator in a manner different from that of Cox and O’Sullivan (1990). The Cox-O’Sullivan anal-
ysis treats density estimation, regression, and hazard estimation all as general function estimation
problems, yielding convergence results in terms of functional space norms. In contrast, the current
analysis and its parallels (Gu and Qiu 1991a, b) adapt to the specific stochastic structures in dif-
ferent problems, leading to problem-specific convergence results under problem-specific conditions.
The general theoretical framework, however, is common in all these parallel analyses. The specific
stochastic structure in the current analysis features the counting process interpretation of censored
life time data and the associated martingale structure; see, e.g., Fleming and Harrington (1991,
Chapters 1-2).

The development in this article is organized as follows. Section 2 defines O’Sullivan’s (1988)
estimator and conducts preliminary analysis: In §2.1, the estimator to be analyzed is formally
formulated and its existence is discussed. In §2.2, a symmetrized Kullback-Leibler is derived under
the counting process framework to assess the estimation precision, and the martingale structure
of the data is reviewed for later reference. In §2.3, the smoothness conditions characterizing the
roughness penalty are discussed. Section 3 calculates the asymptotic convergence rates of the

estimator in the symmetrized Kullback-Leibler and the related mean square error: In §3.1, a linear



approximation is analyzed. In §3.2, the distance between the estimator and the linear approximation
is calculated, and the convergence rates of the estimator are obtained. In §3.3, a numerically
computable semiparametric adaptive estimator is proposed and analyzed. Section 4 presents an

example.

2 Formulation and preliminaries

2.1 Penalized likelihood estimation

Consider independent observations (X;,6;), ¢ = 1,---,n, and assume independent censorship. As-
sume A(t) > 0 wherever S§(t) = Prob(X; > t) > 0 and let () = log A(¢). In the remaining of
the article, I shall only use e” to indicate the hazard and reserve the symbol A exclusively for the
smoothing parameter. Let f(¢) = e g (t) be the probability density of T;. The likelihood of the

data is

TS0 57X} = [H{S00)m0),

=1 1=1
Note that S(t) = exp(— J €”). The penalized likelihood estimate of 7 is defined as the minimizer

of the functional
1& Xi " A
- =3 tenx) - [ e+ Sa) (21)
n =1 0 2

in a Hilbert space H, where the first term is the minus log likelihood. The J is taken as a square norm
in H or a square seminorm with a finite dimensional null space J; C H, where a finite dimensional
J1 prevents interpolation, the conceptual equivalent of a delta sum. Evaluation [t]n = n(t) is
assumed to be continuous in 7 € H, Vt € {t: § > 0}, which is necessary for (2.1) to be continuous
in its argument 7. This formulation is slightly more general than that of O’Sullivan (1988). An
example is given in Section 4.

Assume that 7(t) is continuous in ¢, Vn € H. By the Riemann sum approximations of fOX" e

and the continuity of evaluation, (2.1) is continuous in 7. Now

/ea’“"'ﬁ”2 < {/e"l}a{/e”?}ﬁ = exp{alog/e771 +,310g/e"2} < a/e’“ —I—ﬂ/e772

for @, € (0,1), a + B = 1, where the first (Holder’s) inequality is strict unless e™ e and the

second is strict unless fe™ = [ €™, so (2.1) is strictly convex in 7.



Theorem 2.1 The minimizer of (2.1) exists in H and is unique whenever it ezists in J .

The theorem is simply a corollary of Theorem 3.1 of Gu and Qiu (1991a).

2.2 Martingale structure

Let N(t) = I[x<ts=1]- Under independent censorship, the quantity e"®dt is the conditional prob-
ability that N(t) make a jump in [¢,t + dt) given that X > ¢. Letting 79 be the true hazard and
7 the estimate, it is easy to show that the symmetrized Kullback-Leibler between two Bernoulli
distributions with failure probabilities e (*)dt and e"(®dt is (e7®) — em))(5(t) — no(t))dt + O((dt)?).
Weighting by the probability 5§(t) = Prob(X > t) and accumulating over [0, cc),

SKL(mo,7) = [ (¢ = e™)(1~ m)3 (22)
defines an appropriate measure for assessing the estimation precision. Note that SKL is not a
distance in the usual sense. Nevertheless, a quadratic norm V(n) = [5°n?%™ 5 defines a distance
V(% — no) which approximates SKL(7o, 7). Note that e™(*)§(t)dt is the probability that an item
fails in [t,t 4 dt), so V(7 — no) is actually a properly weighted mean square error.
Let Y (t) = Ix>4 and A(t) = f2Y (u)e™du. Under independent censorship, M(t) = N(¢) —
A(t) is a martingale. EM(t) = 0 and EM?(t) = EA(t) = [ e™§. Given any deterministic contin-
uous function k on [0, 00) (so it is locally bounded predictable), the Stieltjes integral f§ h(u)dM (u)

is also a martingale so long as [;° h%e™§ < co. It follows that
t ¢ N ¢
E/ th—/ he”°S:E/ hdM = 0 (2.3)
0 0 0
and
¢ t ¢ 3
E{/ hdM)? = E/ h2dA = / h2em §. (2.4)
0 0 0
Further,
t ¢ 5 t ¢ .
E{/ hdN —/ hem$)? = E{/ Rd(N - A) +/ et (Y — §))?
0 0 0 0
¢ ¢ _
E{/ hdM)? + E{/ he™(Y - §))?, (2.5)
0 0
where E [J hdM [{ he™(Y —8) = Osince [j he™ (Y —5) is predictable. Note that 67(X) = [ ndN

and [{¥ e = [ Ye". The functional (2.1) shall be written as

_ %i{/ ndN; — /Y,-e"} + %J(n) | (2.6)

=1



for later reference. From now on, integrals with unspecified limits shall be understood as over
[0, 0).
The results quoted in this subsection are mainly taken from Fleming and Harrington (1991,

§2.7). See also Gill (1984).

2.3 Smoothness assumptions

Assume that e™(*)5(t) decays fast enough as t — oo so that V() = [72e™§ < oo for 5 € H. V(7)
defines a statistically interpretable metric in H as discussed in §2.2. The nonrestrictive constraints
imposed by AJ(7n), or the smoothness of functions in H, shall be characterized via an eigenvalue
analysis of J with respect to V.

A bilinear form B is said to be completely continuous with respect to another bilinear form
A, if for any € > 0, there exist finite number of linear functionals ly,---,{; such that {;(n) = 0,
j =1,--+,k, implies that B(n) < €A(n); see Weinberger (1974, §3.3). To possibly achieve noise
reduction in estimation, the effective model space dimension has to be kept finite, while to make
the estimation nonrestrictive, the effective model space dimension should be expandable as more
data become available. Penalized likelihood method just tries to implement this, where for fixed
A the dimension may be kept down via keeping AJ bounded and the dimension expansion may be
achieved by letting A — 0 as n — oo. To make this possible the following assumption must be

made.
Assumption A.l. V is completely continuous with respect to J.

A.1 is equivalent to assuming that V is completely continuous with respect to (V 4+ J). Under
A.1, using Theorem 3.1 of Weinberger (1974, p.52), it can be shown that there exist ¢, € H and
0<p, T oo, v=012,---, such that V(¢,,¢,) = 6,, and J(¢,,¢.) = p,b,,, where §,, is the
Kronecker delta; see Gu and Qiu (1991, §4). The notion of smoothness is characterized by the rate

of growth of p,.
Assumption A.2. p, = ¢, v", where r > 1, ¢, € (f1,02), and 0 < 1 < (2 < 0.

The asymptotic convergence rates of the estimators directly depend on 7.



3 Asymptotic analysis

3.1 Linear approximation

Assume 79 € H. Let 7; be the minimizer of the quadratic functional
e o 1 A
- =3 [ naNi— [¥iery SV —m) +5I(0) (3.1)
i=1

Write .= Y, n.¢, and o = 3_, M0, Where 1, = V (1, ¢,) are the Fourier coefficients of n with
basis ¢,. Substituting these into (3.1) and solving for 7,1, one obtains 7,,1 = (8, + M,0)/(1 + Apy),
where 8, = (1/n) X%, [ ¢,dM;. By (2.3), (2.4), and that [¢2e™S = V(¢,) = 1, EB, = 0 and
EpB? = n~!. It then follows that

EV(m—m0) = EY (= 1o) = O(n~A7Y" 4 X)

=1
n
EX(m—m) = EXYpu(lh— o)’ = O(n"AT7 +2),
=1
as n — oo and A — 0; see Gu and Qiu (1991, Theorem 4.1). See also Silverman (1982, §6).
Theorem 3.1 Under A.1 and A.2, as n — oo and A — 0, V(91 — 10) = Op(n~ A7/ + X) and
A (71— 1m0) = Op(n~ A7 4 X).

3.2 Approximation error and main result

Let L(n) = —(1/n) Y1 {[ ndN; — [Yie"} and B, r(a) = L(n + ak) + (A/2)J(n+ ah). It can be

shown that
. 102 . . " .
0 = By (0) = —— E{/(n — m)dN; — /(n —m)Yie"} + AJ (A, % — m1). (3.2)
i=1

Similarly, define Li(n) = (1/n) Xie,{[ ndNi — [nYie™} + (1/2)V(n — no) and Cpp(a) = Ly(n +
ah) + (A/2)J(n+ ah). It follows that

0= Coppen 0= =5 [N [(h=m)¥iem) V=0, 11+ M (s (59
Equating (3.2) and (3.3), some algebra yields
/(ﬁ —m)(e? = eM)Y + A (7 —m) = V(m —10,%—m) - _/(77 —m)(e™ —e™)Y, (3.4)
where Y = (1/n) Y1, Y;. One needs the following assumptions to proceed.
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Assumption A.3. For 77 in a convex set By around 7 containing 7 and 7y,

ey, ez € (0,00) such that c;e™® < M) < cpe™®) uniformly on {t : 5(¢) > 0}.
A.3 assures the equivalence of the V distance and the SKL in By.
Assumption A.4. 3¢z < oo such that fd)?,e""gl/z < cg, Yr.
A.4 requires a faster decay of § than merely appropriate for defining V. By A.3,
e (= m)Per¥ < [(h-m)e —em)Y. (33)
Writing 7 = >, ¢y and 71 = >, 7,100,
| [Gi=m)2em¥ = V(o - m)
|2 Y = 1) = ) [ Buue™(¥ = )
voop

{Z Z(l + A ) (1 + App)(fy — 77u,1)2(77u - 77#,1)2}1/2

IN

(E X0+ 207 1+ 2007 [ uduem(F - 5P

(V + M) = m)Op(n~ 22N, (3.6)

fl

where Cauchy-Schwartz, that
([ dupuem(¥ = 5 < [ 61em52 [ gem5 BT - 5 < ¢}/, (3.7)
and that 33,(1 4 Ap,)™! = O(A~Y/") (Gu and Qiu, 1991a, Lemma 4.2) are used. Similarly,
Ja=m)en —em)7 = ¢ [(m = m)i—m)e? (38)

where ¢ € [¢1,¢9), and

| [ (n=no)(a=n0)e™T =V (m=no, =) = (VAT 2(m=n0)(V AN (=) Opln 20707,
(3.9)
Combining (3.4) — (3.9) and letting nA?/" — oo,

(eaVAA)(A—m1)(140p(1)) < le=1|V (=10, =) +(V + M) 2(11 =00 ) (V + AT )2 (=11 ) 0p(1).
(3.10)



Theorem 3.2 Under A.1 — A.4, as A — 0 and nX2/" — oo, V(i — n1) = Op(n™2A7Y/7 4+ X) and.
A (7 —m) = Op(n~IAY7 4 2).

The proof of the theorem follows from (3.10), Cauchy-Schwartz, and Theorem 3.1.

Theorem 3.3 Under A.1 - A.4, as A — 0 and n)\¥/" — oo, V(i — 10) = Op(n—l,\—l/T + ),
A (H = no) = Op(n~ A7 1)), and SKL(7) — n0) = Op(n~ A1 + A).

Theorem 3.3 is a direct consequence of Theorems 3.1, 3.2, and Assumption A.3.

3.3 Semiparametric adaptive estimator

The space H is infinite dimensional and the estimator 7 is in general not computable. To make
the procedure practically applicable, appropriate finite dimensional approximation of A is needed.
O’Sullivan (1988) calculated the minimizer of (2.1) in a function space spanned by the B-spline bases
on a finite interval. In this subsection, I shall propose a data-adaptive semiparametric estimator
and analyze its asymptotic convergence.

Given a square norm in J, , H has a tensor sum decomposition such that J is a square norm in
HOJ,. A Hilbert space in which evaluation is continuous is known as a reproducing kernel Hilbert
space possessing a reproducing kernel, a positive-definite bivariate function R with the reproducing
property that (R(t,-),n) = n(t), where {, -} is the inner product in the space; see, e.g., Wahba (1990,
Chapter 1). Let Ry be the reproducing kernel in the space HSJ, with J as the inner product. The
proposed adaptive estimator is the minimizer %, of (2.1) in H, = J; & {Rs(X;,-),i = 1,---,n}.
Theorem 2.1 remains valid when H is replaced by H,.

Let h € HOH, C HO Jy. It follows that A(X;) = J(Rs(X;,-),h) = 0. So .7 [h2%dN; =

n L GRA(X) = 0. By (23) - (25), B{[ 6,#udN — [ ,6,e™5} = 0 and

_ ~ 1 ~ _ ~
([ pu0udl — [ ps,em8) = - [ g282em 5 + B{[ u0ue™(¥ =5, (3.11)
where N = (1/n) Y7 N,.
Assumption A.5. ¢4 < oo such that [ ¢3¢ﬁeﬂ05‘ < ey, Yo, p.

Lemma 3.1 Under A.1, A.2, A.4 and A.5, as X\ — 0 and nA*™ — oo, V(h) = AJ(h)o,(1) for
he HoHs,.



Proof: Similar to (3.6),
V(k) =122 ki / $uPudlN ~ / $u$ue™ 5} = (V + AT)(R)Op(n 22"y,

where (3.11), (3.7) and A.5 are used to bound E{[ ¢,¢,dN — [ ¢,¢,e™5}2. O
Let i, be the projection of 7 onto H,. Note that Bﬁ,ﬁ—'f]n(o) = 0 and that J(n,,7—n,) = 0. It
follows that

M=) = [(h=m)dl - [(1=na)(e" - )Y, (3.12)

where M = (1/n) 3" ; M;. Using the technique used in (3.6),
= )] = 13200 = o) [ $u] = (V 4 A2 = 3)Op(n 7 2N, (3.13)
Similar to (3.8) and (3.9), letting nA?/" — oo and using A.3 and Lemma 3.1,
| [G=ma)(E = €®)¥| = A3 = m)(V + A0 = mo)op(1) (3.14)

Theorem 3.4 Under A.1 - A.5, as A — 0 and nX¥™ — oo, MJ (71— n,) = Op(n™ A" + \) and
V(i) = nn) = 0p(n~IAYT 4 X).

The proof of Theorem 3.4 follows from (3.12) — (3.14) and Theorem 3.3.

I shall now calculate V(f, — m,). From By, 4. _n (0) = Bs s _4(0) = 0, noting that J(7 —
Nns M) = J( ~ Ny fin) = 0 50 J(A, 5 — Fin) = J() — M) + J (M, M — 7n), it can be shown that
J o= 1)(E = €)Y + AT = 1) + M=) = [(1= 1) + [ (o~ ) = ™7

+ [(1=m)(ee - Y (3.15)

Modify A.3 to include 7, and #, in Bo. It follows that, as A — 0 and nA%/" — o,

V(o = 1) + (V + AT )(fin — Mn)op(1) < /(ﬁn - nn)(eﬁ" - enn)f/, (3.16)
| [ = )& = emPI = (V 4+ A2 = )OIV = )ap(D), (317

and
| /(ﬁ — na)(€™ — M| = (V + AJ)Y%(5 = mo)(AT)?(5 = mn)op(1). (3.18)



Combining (3.15) — (3.18) and (3.13), and substituting in the results of Theorems 3.3 and 3.4,

(2 + AT (i = 1a)(1 + 05(1)) < (V 4+ ATV 2 (10 = )op(n™ /2N 4 XV2) 1 0y (n™IA71" 4 ).
(3.19)

This proves the following theorem.

Theorem 3.5 Under A.1 - A.5, as A — 0 and n)%/™ — o0, AJ (i — 1) = Op(n~IA™Y" + X) and
V(fin — 1) = Op(n~1A7Y7™ 4+ X).

The next theorem follows from Theorems 3.3, 3.4, 3.5, and Assumption A.3.

Theorem 3.6 Under A.1 - A.5, as A\ — 0 and nA?/" — 0o, V(ii, — 10) = Op(n =AY 4 X,
A (i = m0) = Op(n=IA=YT 4 }), and SKL(f, — mo) = Op(n™ 1A~/ 4 X).

The results of this subsection remain valid when H, is reduced to J; & {Rs(X;,-),8; = 1}.

4 Example

Consider the following example. Suppose 3T, < oo such that §(7.) > 0 and (T, + 0) = 0, which
amounts to having a type I censoring scheme active at time 7T, though not necessarily exclusively.
Without loss of generality let T, = 1. Take J(7) = f; 71? and H = {n: J(n) < c0}. Assuming that
7o is bounded from above and below on [0, 1], it can be shown that A.1 and A.2 are satisfied with
7 = 4 in A.2; see, e.g., Silverman (1982, p.802). A.3 is asking that the members of By stay in a
strip centered at 79 with a fixed width, which appears reasonable though not directly verifiable.
A.4 is trivial in this example since V(¢,) = 1 and §~/2 has an upper bound $§(1)"1/2 < oo.
In general, A.5 can not be directly verified because ¢, are not available in explicit forms. In a
suggestive special case where e™§ = 1 on [0,1] and H is reduced to the periodic restriction of
{n : J(n) < oo}, however, ¢, are sines and cosines and hence are uniformly bounded, and in turn
A5 follows. To construct H, one needs only to identify J, and Ry. Jy = {1,t}. If the square
norm in Jy is taken as 1?(0) + %%(0), then H o J. = {n : n(0) = #(0) = 0,J(n) < oo}, and
Rj(t,s) = [5(t — u)4(s — u)du, where ()4 = max(-,0); see, e.g., Gu and Qiu (1991a, §2). The

numerical calculation of 7, shall be studied elsewhere.
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