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Abstract

For various applications one wants to know the asymptotic behavior of w(8]X), the
posterior density of a parameter given the mean of the data rather than the full data
set. Here we show that w(6]X) is asymptotically normal in an L' sense, and we identify
the asymptotic variance as a function of the variances of the random variables, modified
by the gradient of the mean. The location of the limiting normal is also identified. The
main results are proved assuming that Xi,...,X,,... are independent, but not necessarily
identically distributed. Our result may be used to construct approximate HPD sets for
the parameter which is of use in the statistical theory of standardized tests. It may also
be used to show that the covariance between two test items conditioned on the mean is
asymptotically nonpositive and, consequently, to base a hypothesis test of independence
on a quantity which does not explicitly use the parametric family. Finally, our result leads
to an explanation of why the size distribution of sand grains on a riverbed may tend to

normality if sampled sufficiently far from the source.



§1 Introduction

Suppose we want to estimate a finite dimensional parameter (61, ...,6;), distributed
according to the density w(61,...,84), with respect to Lebesgue measure, where w is
continuous and bounded. We have data in the form of Xy,...,X,, where each X; takes
values in a k-dimensional minimal lattice L assumed to be regular with common step

length ¢. Now the joint density is

w(eii)pe‘li (X1)7 e )pr(Xn)7

where pef(Xi) is the probability mass function for X;. For brevity we write X™ =

(X1,...,Xy), and denote the parameter space by  C R4.

Given that n is sufficiently large it is of interest to look at highest posterior density
(HPD) regions of w(6%|X), the posterior density given a summary statistic such as the mean
X. As a consequence, the asymptotic behavior of the posterior density of the parameter
given the mean is of interest. Aside from the convenience of such a procedure, it is already
virtually always used informally. Furthermore, it is desirable from a modeling standpoint
since X often arises naturally. For instance, in educational testing problems it is the

student’s score on a multiple choice test.

It has already been proved that w(6¢|X) is asymptotically normal when the X;’s are
identically and independently distributed (IID), see Clarke and Ghosh (1991), hereafter
referred to as CG. Even when they are not identical, if X is sufficient then w(8;|X) =
w(f1|X™) by the factorization criterion so conventional asymptotic normality results in
the independent not identical (INID) case apply. However, there are examples where
the X;’s are not identical and X is not sufficient. One is the Rasch model, see Lindsay,
Clogg and Grego (1991). We still expect w(6|X) to be asymptotically normal even though
existing results do not apply. In addition, it is expected that the asymptotic variance will
not be the Fisher information since X is not the MLE in general. The discrepancy between
standard error of the limiting normal of w(8;|X) and the Fisher information tracks the

degree to which X fails to be sufficient.

One methodological implication of our results is the following. Denote the mean

and variance of any X; by the k-dimensional vector u;(6¢) and the k x k matrix ¥,(61)
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respectively. So, the mean of X is the mean of the y;’s, i™, and its variance is the sum of the
2i’s, n¥. We show that the asymptotic variance is the inverse of nJ,, ,(60)*%"1(80)Jn, 1 (60)
where J,, ,(6o) is the k x d Jacobian matrix of fi,(0), regarded as a function from 2 — R¢,

Consequently, it is seen that the resulting normal is nondegenerate only when d < k.

In addition to applications in estimation, asymptotic normality of w(6|X) has impli-
cations for testing the independence of test items. In Junker (1991), a heuristic argument
suggested that a hypothesis test of the independence of test items z and j could be based
the behavior of

CoV(X;, X,|X), (1.1)

provided it is nonpositive. We give conditions under which expression (1.1) is asymp-
totically nonpositive for independent random variables. Note that expression (1.1) is a
manifest quantity — that is, it can be calculated from the data without reference to the un-
derlying parametric family. This supports Junker’s program of characterizing the desired
properties of standardized tests, namely unidimensionality and local asymptotic discrim-
ination, in terms of manifest quantities. As a result, it is possible to test whether the

desired properties are satisfied directly from the data.

Another application of the result is for the evaluation of the influence of dimensionality

on test item bias. This was used in Ackerman (1991).

It is a curiosity that, as outlined in Section 4, our results below can also be used to
explain why the size distribution of sand grains on a riverbed tends to normality when
one samples sufficiently far from the source. Due to sorting through transportation, the
observed size distribution downstream will show concentration around a typical grain size,
say §, and a quadratic, i.e. normal approximation will be available. Data and more details

may be found in Ghosh (1988) and Ghosh, Mazumder, and Sengupta (1991).

The structure of the paper is as follows. In Section 2 we state and prove our results
for the case of INID lattice valued random variables. There are three results: The first
guarantees that a local limit theorem is uniformly good over compact sets in the parameter
space; the second gives the desired result when the parameter space is compact; the third
gives an extension to noncompact parameter spaces. In Section 3 we explain the relevance

of (1.1) to educational testing and then use the results of Section 2 to show that (1.1)
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is asymptotically nonpositive. This requires a technical lemma which is used to show
that E(X;|0)is a good approximation for E(X;|X,6). The result then follows by using a
standard identity and examining posterior covariances. In Section 4 we briefly explain the

application to grain size distribution.

§2 Asymptotic normality of the posterior given the mean

Recall that by Bayes rule we can write the joint density for (0, X) as
w(6)po(X) = w(6|X)m(X) (2.1)
where w(|X) is the posterior density for © given X and m(X) is the mixture of densities
m(X) = /Q w(6)pe(X)do. (2.2)

We prove a local limit theorem so as to approximate pg(X ) by a normal density uniformly in
g. This implies m(X) is well approximated by a mixture of normals. Assessing convergence
under a fixed member of the parametric family, pg,, forces the posterior to concentrate on
a shrinking neighborhood of 6y, allowing identification of the asymptotic variance. The
proof that w(#]X) is asymptotically normal follows by obtaining an upper bound on the
L' distance between w(6|X) and the target normal denoted n(6;6y,8). This upper bound
has three terms which tend to zero. They come from adding and subtracting two densities

each of which is a step toward the desired normal.

To introduce our approximations we require some notation. We denote the sum of

the first n outcomes by S,(X) = > X, with mean pu™(8) = E¢S™(X) = > 1,(8), where
=1 =1

pi(8) = EpX;. Analogously, we write £*(0) = Y ¥;(0) where £;(0) = VargX;. The
J=1

average mean is g™(0) = (1/n)u™(6); the average variance is & = 2*(6) = (1/n)Z"(6).

We write J, n(6) = Viin(f). Outcomes of random variables are denoted by the appro-

priate lower case letter. Where no confusion will result we omit subscripts, for instance

dependence on n. To define the location of the limiting normal we require the following.

Definition 2.1: A sequence of functions < fr() > |72, is locally invertible at 6 if and
only if there is a neighborhood Ng, of 8y so that for all n

fnlNeo : N, _’fn(Neo)
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is invertible, for 6 € N we have that f,(6) € fn(Ny,)® and the set [ fn(INg,) contains
n=1

an open set around lim f,(6), assumed to exist.
n—oco

Now, the target normal is

~ nJ, (6 E1(6,)J (0 1/2 (2B T S—1 =1 (p_j
n(6;8,,0) = [nJp,n(bo) (zw()do/)Z ()7 _(2)(6-0)7,,n(80)87 2 (00) I (9-0) (2.3)

where § = (5")"(X) near 6 since A" is assumed to be locally invertible at 6y, and
| - | denotes the determinant. Note that the variance in (2.3) is no longer %(6;), but a
modification depending on the parametrization. In places where the slope of z™ changes
rapidly as a function of the true value the variance increases, where ™ is relatively constant
the variance in fact decreases. Note also that (™)~ is well defined only when k and d are
equal. We allow k to be formally different from d so that their roles can be distinguished.
In fact, a result is possible in the case that k& > d provided that @ is redefined as in CG.

We remark that the limiting normal can be expressed (under further hypotheses)

in terms of an asymptotic variance J,(0)!X71(0)J,(8) where J,(6) = lim J, ,(6) and
n—r00

$(0) = lim 2(8), provided the limits are well defined. However, this form is not as useful

for applications.

To obtain the limiting form (2.3) we use two normal approximations. It is well known
that the density of X can be approximated by a sum whose leading term is a normal
density and successive terms are normal densities multiplied by polynomials. The rate at
which the distance between pg(X) and its normal approximation of r terms tends to zero
in supremum norm depends on the number of moments assumed to exist. One such result

can be found in Bhattacharya and Rao (1976, §22) henceforth referred to as BR. We write

00.,(%) = g S LtE O o (AE @) )

for the r term approximation to pg(X), where f; is a polynomial of degree 3r in k variables

and g g) is the normal density with mean 0 and variance £(6). A variant on (2.4) is

do.n(X) = = S T E T ON) (R @) (25)



in which the variance matrix is evaluated at 6. Mixtures of the densities in (2.4) and (2.5)

with respect to 6 are denoted

me(X) = [ w(O)aar (X0, (2.6)
and v
maso(X) = [ w)t00, (X} (2.7)
respectively.

Our first result is an INID analog of Theorem 22.1 of BR. To obtain it, we use
characteristic function (CF) arguments. The CF of X is

£i(8,1) = Epe'tXi),

Since the X;’s take values in a common lattice their CF’s have a common fundamental
domain which we denote by F*. Central to the statement and proof of the result is a
proper subset Fy of F*,

Ey = {t e R*:[t]| < C},

where C 1s a constant. Let K be a compact set in the parameter space. We require that

C satisfies the following.

Assumption A: (i) On /nE; we can use the expansion given in Theorem 9.9 of BR modified
in the same way as Theorem 9.12 of BR. (ii) For t € /nE; we have that

n Sn(g)—1/2
st 1,6, = J—) ~ 1 S /2,

]:

(iii) For 6(8) = sup;en suPse s+ —E, (g) 1£i(6,t)| we have that

0 = sup 6(0) < 1.
geK

Assumption B: For » > 1 suppose that on K
1 n
9(6) = sup = 3 Byl X; ™"
n ]=1

exists and is bounded.



Assumption C: We have that on K

for some 11,772 > 0 and all n, where Id is the d by d identity matrix.
Our result is the following.

Proposition 2.1: Under Assumptions A,B, and C we have that

supsup (1411221 pa(a/m) — gor(afm) (2.8
1

n(k+r)/2)'

= O(

Remark: The above assumptions A, B, and C hold if the f;’s are jointly continuous in
(t,8), uniformly in j. This is the case in the Rasch model and in the generalisation of
that model considered by Tsutakawa and Johnson (1990). More generally, suppose X; is
distributed according to a probability function p(z;, 8, a; ) where the dependence on i is only
in the third argument. Then, assumptions A, B, and C hold if (i) p(z;, 6, @) is a continuous
function of (6,a), which ranges over a fixed compact set; (ii) the moments Eg o)X |2
are continuous and finite for (6, &) in the compact set; and (iii) for some positive constants
m and 77, the variance matrix (6, a) is continuous and satisfies n11d < %(6,a) < n.1d

on the compact set.

Proof: First we show that

Q@ — /—j’n(g) 741
sup sup (1 w1 ) Ipa(a/n) — gor(a/n)
1

The CF of S™(X) is
TRCOES | FACS)
j=1

and the CF of Y, = (S™(X) — u™(6))/+/n is

F0,8) = Fr(6,t])/m)e V")
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By the inversion formula we have

P(S"(X) = )= Goye / F(6,)e= 0 gt
Using t = t'/y/n we obtain
P(S™(X) =€) = s [ F6.u//me oy
~ YT ke | g TV

£ 1 —i(t
S . ¢ ’
(2m)F nk/2 /\/77_7—‘* f(@,t)e
from which we see for Y, = (1/4/n)(S™(X) — nig") that

1 1
n —(t:ynf)
o A /\/_ A dt.

£— "592
7= dt

P(Yn = yne) =
By differentiation we obtain

g(_i)lﬂl .
B _ B i(t,Yn
YnEPG(YnE) — (27T)knk/2 /\/«F[]-‘* [D f (9, t)]e ( f)dt

for vectors 8 = (f,...,Pr) where B; > 0 are integers summing to |8] < r + 2 and D*

denotes the differentiation operator (Dy, )1, ..., (Dy, )P*. Vectors raised to powers  mean

that each entry in the vector is raised to the corresponding entry in 3.

We have a similar result for the Fourier transform of gg.(X), which we denote §p.(),

namely,
g(_i)lﬂl ~ i
V. qor(Yne) = By /R D2 gan(p)em Ot

where

Gor(t Zn—(y V2P (it {X })e—lltll /2.

1=1

The ]Sj(it : {xv})’s are polynomials with coefficients depending on cumulants .

Now we have the upper bound

Y (P6(Yne) — q0r(Yre))

K
<7 | [P R OO O

" / \D? 7 (6, 1)|dt
VnF*—/nE;

s [ IDPa@ll. (2.10)
Rk — /R E,
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Since the domain of integration excludes a ball with radius increasing as /7, the presence of
the exponential factor implies that the last integral tends to zero at rate O(e_m') for some
r’ > 0. The middle integral tends to zero at an exponential rate also: After differentiating

f™(8,t) and observing that the exponential factor has norm 1 one can transform back to

F* — E;. The product f(6,t) can be bounded from above by O(6%), in which §x < 1.

The first integral in (2.10) requires Theorem 9.12 in BR, which is based on Theo-
rems 9.9 and 9.10, also in BR. Examination of the proofs of those theorems shows that
our assumptions give an upper bound for the integral of order o(1/n™/?) uniformly in 6.

Now (2.10) gives (2.8) by the same triangle inequality argument as was used in the proof
of Proposition 2.1 in CG. O

We remark that we can dispense with Assumption A(i) by making use of the other
assumptions with Theorem 9.11 and Lemma 14.3 in BR. The first integral in (2.10)is
broken up into two parts, say I;; and I o, the range of integration for I3; being the set
n™/2r+2) E,. Using the moment assumptions it can be seen that A(i) holds by use of the
expansions given in Theorem 9.11 of BR (modified as in Theorem 9.12 BR). These facts
imply I1; = o(n_r/z). To bound one part of the integrand in I;2 we can use the estimate
given in Lemma 14.3 of BR on the set v/nEy — n"/2("+2) B, For the part of the integrand
involving a normal density as a factor we can use a direct argument similar to that used

for the third term in (2.10)).

To set up the statement and proof of our next result requires more notation. We

define shrinking neighborhoods in the sample space and in the parameter by

kn
\/—ﬁ}

C ot 1 oy - Ky
Un - {9 . l:un(e) ,un(90)| S \/ﬁ}

Un={X": |Ena(8) — Fin(60)| <

where kn/+/n, ki, /+/n — 0 and ||-|| is a norm on L. Both sets are dependent on , although
this has been suppressed in the notation. To work with these sets we will require that the

error terms in Taylor expansions are small uniformly in n. We use the following definition.

Definition 2.2: A sequence of functions < ¢,(6) > |32, is uniformly Taylor expandable

at o if and only if (1): each g, is continuously differentiable on an open set Ny, containing
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80,(2): there are a;, B > 0 so that for all » and all § € Ny,
B> IVgn(Oll > o
and (3): on Ny, Vg, has maximal rank.

The defining conditions in U, and U’ can be equivalently expressed as ||§ — 6p|| <
kn/ay/m and |6 — 6o|| < kI /an/n where a = inf ||V un(6')|| and the infimum is over 6’ in
a ball of radius € centered at 6. The rates of shrinkage of the neighborhood that are seen

to be most useful are k, = ¢v¥én n and k], = ¢'vV4n n, where ¢’, ¢ > 0 and ¢/ — ¢ > 0.

Obtaining the desired convergence requires choosing ¢’ — ¢ large enough.

Our next result makes use of the properties of the summands in (2.4), particularly
the polynomial form of the functions f; 9 and the fact that the coefficients are continuous
functions of §. Without further remark we use results from BR §7 and §9. Now, for
compact parameter spaces proving the desired result will only require examination of the

steps in the proof of Theorem 2.1 in CG.

Theorem 2.1: Assume the hypotheses of Proposition 2.1 are satisfied and that w is

positive at 83. Assume also that
<Ba(0) > 152, <B7UO) > o1, < T4 n(0)Z7(60)Jun(6) >

are uniformly Taylor expandable and that < f,(6) > |32, is locally invertible at 6y.
Finally, suppose there is a neighborhood Ny, of §; and a, 8 > 0 so that for 8, §' € Ny, we
have that

BId> Jun(0)S71(0') T, n(8) > ald, (2.11)

uniformly in n. Then if {2 is compact we have that
Eg, / o (68]X) — (6 8o, 6)]d6 — 0, (2.12)
Q

as n — oo, where n(6;6y,0) is as in (2.3).

Remark: If we replace 8y where it occurs in the target density n with g and apply
Sheffe’s theorem (see BR pg.6) it is seen that the result continues to hold. As a result
the dominated convergence theorem implies that posterior normality holds if the mode of

convergence is changed to expectation with respect to m(X).
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Proof: In reviewing the proof of Theorem 2.1 in CG, it can be seen that most of the steps
go through with only cosmetic changes. For instance, we use m,(X) and m,. 5, as defined
in (2.6) and (2.7) rather than their IID analogs. Also, we replace u(6), £(8) and J,(6)
by fn(8), £(0), and J, (). There are, however, steps where the modifications are not
merely a matter of notation. They are step 1, part 1; step 3, part 3; and step 4, parts 3
and 5. It will be seen that they follow largely by the uniform Taylor expandability and

local invertiblity assumptions on sequences of functions.

For step 1, part 1, (2.11) ensures that the last inequality in proving the extension to
(2.12) in CG continues to hold. Part 2 relies on the properties of (2.4), U, and U,, as
before. The product |f; s(v/n(X — fin(8)))es (s (v/n(X — in(6))) remains bounded by a

constant, for n large enough and 6 in a compact set. Part 3 only requires cosmetic changes.

Step 2 continues to hold, subject to cosmetic changes, once step 1 is extended. Part 1
is obvious. Part 2 only requires that one observes Py, (U¢) tends to zero by the moment

conditions.

Step 3 uses the assumptions on < £71(4) > [¢2,. Part 1 is unchanged, and part 2
follows by the same techniques as before. The main difference occurs in part 3: the uniform
Taylor expandability of < £71(8) > |2, can be used to obtain the appropriate analog of
(2.29) in CG. |

Step 4 requires a bit more observation. While parts 1 and 2 continue to hold, part 3 re-
quires the local invertibility and uniform Taylor expandability of < f,(0) > |32, to ensure
the INID analog of (2.33) in CG goes to zero by straightforward modifications of the earlier
technique. Part 4 is again cosmetic. Part 5, the last one, requires that the Laplace integra-
tion in (2.38) of CG and the bounding of the difference in the exponents in (2.40) of CG be
generalized. The latter is covered by the uniform Taylor expandability of < J, ft’n(G)i_l (60)
Jun(8) > |52;. The former follows by the same techniques as before. (One observes that
(2.11) controls the analog to (2.39) in CG.) So, the earlier proof has been adopted to give
a proof of Theorem 2.1. O

We remark that for applications one typically requires the parametric family defined
for a parameter space {2 which contains the support of w as a proper subset. Furthermore,

Proposition 2.1 can be extended to give a sequence of approximations in which the errors
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decrease as the number of terms included increases. In Theorem 2.1 we have only used
a one term expansion. Higher order correction terms can be obtained by a more careful

analysis of expression (2.30) in CG using the same techniques.

It is of interest to generalize one step further so as to obtain a result in the case of
noncompact parameter spaces. Qur technique of proof will be to reduce the result to the
compact case. Thus we define two mixtures, one over a compact set K, the other over its

complement. They are

. w(6) _
mi(X) = Kmpe(x)de,
W),
mice(R) = | rzspeX)ds

where W is the probability with density w. Our result is Theorem 2.2.

Theorem 2.2: Assume the hypotheses of Theorem 2.1. In addition, assume that for some
6 >0, ﬁ B (B(1(60),6)) contains a nonvoid open set around 6y and that the moment
generat?r?gl functions gg,;(t) for the X;’s are defined on a common open interval around
zero for ¢ in an open set around 6. Suppose that inf;eninfocx g¢i(t) is bounded away

from unity for |t| > 0, where K is a compact set with nonvoid interior around 6y. Then,

if a common large deviation result holds for 8 outside K we have that
Ey, / lw(8)X) — n(6;60,0)|do — 0,

where n(6; 6o, 8) is as in (2.3).

Proof: The structure and techniques of the proof of Theorem 3.1 in CG continue to be
valid. It is enough to deal with the INID analogs of (3.2), (3.3) and (3.4) in CG. The INID
analog of expression (3.2) in CG goes to zero by Theorem 2.1. The remaining quantities

(3.3) and (3.4) in CG go to zero provided that

- w(@)p(X16)d0 7,y
fK w(0)p(X16)d6

in the INID case. By the reasoning in CG, to show (2.13) it is enough to show that

(2.13)

Py, (mge(X)e™ > Py (X)) < e, (2.14)
for some r, ' > 0.
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Choose K to be compact with nonvoid interior, contained in
(116 : |7n(8) — Ea(80)] < 6} (2.15)
n=1

On K we have that |z,(8) — 5(6o)| < 6.

We upper bound (2.14) by
Poo(1 = a(680)] > 6/2) + Pay(IX — fin(80)] < /2, mic=(X)e™ > Bay(X)).  (2.16)

The first term in (2.16) is of order O(e~™"") for some " > 0, see Chernoff (1952). The

second term is bounded from above by

> Py, (X).

| X —fin (60)1<6/2
e""mpye>Ppg
For § € K°, we have |X — [i,(0)] > 6/2 and we use e""mge > Py, to obtain the upper
bound

o [ e (®)Po(1X — )] > 8/2)a8

which is of order O(e™™*) for some p > 0, by the large deviation assumption when r is

small enough. As a result, (2.14) holds. O

We remark that these results can be extended to the case that d < k. The main
difference in hypotheses is that stronger moment conditions must be assumed. We have
not done this here since the case d = £ = 1 is the most important for applications to ed-
ucational testing: the psychometric orthodoxy strongly favors unidimensional parameters

for discrimination purposes and test items are typically examined on an individual basis.

§3 Implications for testing independence of test items

In this section we make use of Proposition 2.1 and Theorem 2.1 to obtain a result which
has implications for item response theory (IRT), the statistical theory of standardized tests.

Specifically, in Junker (1991), the condition

Cov (Xi,leX) S 0, (3.1)
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for ¢ # j, is studied as a verifiable condition that can be used to imply unidimensionality
and local asymptotic discrimination, the two main hypotheses of IRT. See also Joag-Dev
and Proschan (1983). Expression (3.1) is a “manifest” condition in that it can be esti-
mated from the data alone; it does not explicitly involve the structure of the unobservable
parametric family. By contrast, “latent” conditions do explicitly use the parameter. It
is argued in Junker (1991) that in IRT settings one should base inference on manifest

quantities as far as possible.

Here, we use the results of Section 2 to obtain an asymptotic form of (3.1). This
is useful for two applications. The first, and more important, is that one can base a
test of the independence of items ¢ and j on the convergence of Cov (X;, X;|X) to a
nonpositive number. The other is that it can be used to obtain a partial converse to
a characterization result for tests which satisfy strict unidimensionality and are locally
asymptotically discriminating; for definitions see Junker (1991). Stating what exactly the
test is, and proving the characterization are of a specialised nature which we do elsewhere.

Here we restrict our attention to obtaining a general asymptotic version of (3.1).

In the proof of Theorem 3.1 below we make use of an identity in Junker (1991).
Effectively, this reduces the quantity in (3.1) to

Cov (E(X;|X,6), E(X;|X,0)X). (3.2)

We show that (3.2) tends to zero as n increases. Note that the quantity in (3.2) is zero

when the X;’s are IID. Indeed, it is straight forward to see that for any :
_ 1 — _ o _
E(X;|X,0)=-) E(XX,0)=EX|X,0) =X,
(Kl%,0) = 1 D2 BOGIR,6) = BRI
which is close to E(X;|0). That is,
|E(Xi|X,0) — BE(X:]6)| (3.3)

is small in probability. We obtain a version of (3.3) for use in the INID case; this is given

in Proposition 3.1.

We begin with a lemma which will be used to control the difference between p(X;|S,, 6)

and p(X;|6). In the course of the proof we use Proposition 2.1 twice, once for the density of
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S, and once for the density of S, — X;. We denote their one-term normal approximations
by ¢ = qgn and g; = qgn,. For brevity we write &; = n—l_—l- Z 2;(6). In addition, we assume
that the X;’s take values in a finite range, that their varia;:é:es are uniformly bounded above
and below by constant multiples of the d by d identity matrix, and that the set U, is re-
expressed as Un,s(8) = {s : v/n|2 — 5™(8)] < cv/n n}. Letting z denote a fixed value of

X; we have the following.

Lemma 3.1: Assume the hypotheses of Proposition 2.1 hold on a compact set K for

r = 1. Then there is an £ > 0 so that

b su |P9(Sn -Xi=s—1x)
eezg P Py(Sn =)

where x 4 is the indicator function for the set A.

1
—xz, 0 = O(=), (3.4)

Proof: Observe that by Proposition 2.1 we have that
Py(Sn—Xi=s—z)=q¢+T; (3.5)

and

Pg(Sn = S) =dq + T (3.6)
where the T; and T are error terms from the r = 1 term normal approximation satisfying

1

O(—n7z) (3.7)

sup|Ti|, sup|T| =
uniformly for 6 € K.
Now, consider the left hand side of (3.4) for fixed §. Add and subtract ¢;/q and use

the triangle inequality to obtain the upper bound

g+ T;

e

gi g
- E'XU,I(@ + I; —1lxy, , o) (3.8, b)

Apart from xy, ,(g), expression (3.8a) is, after adding and subtracting ¢7', bounded
from above by

N%+ﬂm—m@+ﬂ
q(¢+7T)

Ti —T| |, [T(s —q)
¢+T = q(g+T)

_ 1 1 1 (g: — q)

| <

(3.9)
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On Un,s(é) we have that there is an € > 0 so that
T>0 —1 a,b
09+ T 2 O(—572)- (3.10a, b)

In fact, ¢ may be chosen as small as desired by using small enough ¢ in the definition of

Un,s. Using (3.10a,b) we upper bound (3.9) by

O(nt==D/2) 4 O(nk=1+29)/2) 0. 4. (3.11)

Apart from xy, ,(s) expression (3.8b) is |g; — ¢|/¢ which is bounded from above by
O(nt**+)/%)|g; — g (3.12)

using (3.10a). Now (3.8) is bounded from above by the sum of (3.11) and (3.12).

Since the same quantity, |¢; — ¢|, appears in both expressions, we obtain an upper
bound for it. Let K denote a positive constant not necessarily the same from occurrence

to occurrence. Also, let m; = ) p;(8). By adding and subtracting
i#Ej

|57 /2e~ (DG - RED B GET T

we have that

K

= _ _ s/n—n" S -1 n—p"
lg — qi| < nk/zlm 1/2|g=n(s/n=p"(0))Z7 (s/n—R"(6))

_ (DGR R (-

i n—1 n-—
K

IS - (R

e~ ("D RED R (G -RE), (3.13)

Expression (3.13) is clearly O(n~*/2), which is enough to ensure that expression (3.11)
tends to zero, provided that we choose € small enough to force —1 + 2¢ < 0. (The first
term in (3.11) already goes to zero.) It remains to show that (3.12) goes to zero. This

requires that we obtain a faster rate of convergence to zero for (3.13).

First note that
IS|72 — 155712 = 0(1/n). (3.14)
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Inequality (3.14) follows by noting that |3| and |Z;] are controlled by the hypotheses on
the variances of the X;’s. Indeed, take a common denominator, multiply and divide by
|2]1/% 4 |5;|/2|, bound the denominator from below, and remove and bound the common
factor |Z;| to obtain the bound

K||Z:7'8 -1
Apply the identity & = ((n — 1)/n)Z; + (1/n)Z;, add and subtract |((n — 1)/n)Id|, and

use the triangle inequality. One term is O(1/n) immediately, the other term is seen to be

1/n) by Taylor expanding the determinant function at the identity.
P g

Now, if we use (3.13) in (3.12) we can note that e™* < 1, for z > 0 so that one of the
resulting terms goes to zero at rate O(1/n*~°/?). The other term is is bounded above (on

Uns) by

O(n/?)|e~m (5" (D (5 =" (9)) _ o=(n=1)(525~ 72097 (325~ 2] (3.15)

Since € can be made arbitrarily small, and |3|~!/? is bounded by assumption, we can use

the fact that e —e7¥| < |z — y| to see that, on U, 4(f), it is enough to show

S— m;

-_1,5—C My
- 3yl i
)5

n(E—am(O)E (2= a"(6)) - (n—1) )=o) (3.16)

n—1 n—1 n-1

for some ¢ > 0.

We first manipulate the left hand side of (3.16) into a more useful form. Note that it

18

S 1,5  _n . n ST Mio_y,S—T mi
(= O)IR (2 = i0) - (T - TS -
S—.’IJ— my S-1 _ -1 S—:L'_ m;
+n(n—1 n—l)(2 o )(n—l n—l) ,
3—:6_ m; s—1 S—:C_ m;
+(n—1 n—l)zz n—1 n-—l)l (3.17)

Since m; = u™(0) — pi(0) and 222 — B = (s/n — g"(9)) — L(u; — z) (3.17) is

n

n( = B OVETG = B0 - (G — BN O)ET — )
2n® s L ey i — T
+ (n_—l)—?_(ﬁ = AN0)ET ()
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S G

n—12' n
L L R T
HZ:?; B nriiﬁg?l(i:? B nnzzl)|
< o= = E = OIEE - 0) + (VA — P (0)8 (i - )
T — 9T = 0) 4l - EET =S - )
PRS- s RS - ) (318)

Now, for fixed z, on U, s(0) we have that

S —Z m;

| | = ==& = 5"(9)) + — (i — 2)/n|

< K|~ @(0)] + K(2)lpi — 2]

¢ -
< [y b

So, squaring and using (z + y)? < 2(z? + y?) gives

n—1 n-—1

s— n |ui—z|?

|2 <K (en

n—1 n-— n?

| ) (3.19)

on U, s(#). Here, we have used the fact that the norm defined by £~ is dominated by a
constant times the Euclidean norm. We use (3.19) and the restriction to U, () to upper
bound (3.18). (We also use other trivial bounds to handle the rational functions of n which

occur.) Our bound is

nn

O(™D) i = 2O() 4 i - 2f?0(5)

+ O(fn n) + '—’ini"l -7

n n

FO(T 4l — 2l ). (3.20)
By reasoning similar to that used to obtain (3.14), the matrix norm in the fifth term in
(3.20) is seen to be O(1/n). Consequently, rearranging gives

I 4l 210G 222) 4 s = 2P0 + (0 - 2°0(), (321

O(
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as an upper bound on the left hand side of (3.16), on U, ¢(f). Now, expression (3.16)
holds. The unformity over K is clear. O

We use the technical result in Lemma 3.1 to prove Proposition 3.1, the desired gener-

alization of (3.3) when the X;’s assume finitely many values.

Proposition 3.1: Assume the hypotheses of Lemma 3.1. Let X = % be an element of

U,(8). Then, there is an n > 0 so that as n increases

- 1
sup sup | E(X X, 0) — E(X:l8)lxp, ) = O(—). (3.22)
6K S n
Proof: Note that the left hand side of (3.22) is
|S2; P(2:|Sh, 0) — Sz, P(X;|0)]
< S P(afg) S K= s mm) (3.23)

Py(S, = s)

For each of the finitely many values z;, the quantity in absolute value bars in the right

hand side of (3.23) is controlled by the Lemma 3.1 so the proposition is proved. [

Finally, we state the main result of this section.

Theorem 3.1: If the hypotheses of Proposition 3.1 and Theorem 2.2 are satisfied then

Cov (E(X:|X,8), E(X;|X,0))X| 22 0. (3.24)

Proof: Note that

_ / o E(X:18, X)E(X;16, X (6% )8 (3.250)
B(eo,é)

+ / xo E(X:18, XVE(X;18, X (6 X )d6 (3.250)
B(Oo,e)c

+ / Yoo B(X:16, T)E(X;10, X )w(61X)d6 (3.25¢)

~(] BB XwX)d+ [ B8, Xyu(6lX)ds
B 0,¢

B(eo,e)c
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+/XUCE(X,-|9,X')w(9|X)d9) (3.26a,b,¢)

( / o E(X;16, X )w(6]X)d8 + / o E(X:18, X )w(6)X )b
B(60,¢)

B(BO:E)C

+/XUCE(Xj[9,X]w(9|X')d9). (3.27a,b,¢)

For terms (3.25a), (3.26a) and (3.27a) we use Proposition 3.1 to approximate the
integrands with vanishing error. For terms (3.25b), (3.26b) and (3.27b) we use the fact
that X;, X;, and x,, are bounded. Thus their conditional expectations are bounded so the

concentration of the posterior forces them to zero.

It remains to deal with terms (3.25¢), (3.26¢) and (3.27c) we use the local invertibility
of i™(6): Since £(6) is bounded above and below, we have that there is a M’ so that
on Uc |0 — 4| > M’w/-llnﬂ. Also, by the central limit theorem we have that, under 8,

the probability of the set |§ — 6| < M e—"n—" tends to unity for any M > 0. By the
boundedness of the integrands and the fact that the inequalities go in opposite directions

we can control (3.25¢), (3.26¢) and (3.27c¢).

For instance (3.27¢) is controlled in L' by

Boy [ e ECG18, D0w(81X)d8 < K(Buix oy s sy [ Koe w6118
+E90X{|9_901>]\4\/@}/Xucw<6|X)d9)

S K(E%X{M—MSM\/@}/X{|e—é|2M'\/@}w(9|X)d9

+ 0o(1))
< K(BooX(10-00| <t/ o) / X{jo-aol (01 -brry /) V(01X )0)
+0(1)

in which the integral in the last expression goes to zero by the L' asymptotic normality
of the posterior, provided M — M’ is large enough. Thus (3.27¢) goes to zero in Pj,
probability. Terms (3.25¢) and (3.26¢) are similar. O

Corollary to Theorem 3.1 Assume the hypotheses of Theorem 3.1. If, in addition, the

densities of the X;’s are log-concave then we have, for any fixed 6y and ¢ > 0, that
Py, (Cov (Xi,leX) >e)—0. (3.28)
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Proof: By Junker’s identity, see Junker (1991, §4) we have that

Cov (X;, X;|X) = E(Cov (X;, X;|X,0)|X)
+ Cov (E(X;|X,0), E(X;]|X,8)|X) (3.29a,b)

By Theorem 2.8 in Joag-dev and Proschan (1983), see also Theorem 4.1 in Junker (1991),
(3.29a) is nonpositive. By Theorem 3.1, expression (3.29b) converges to zero in Pjy,-

probability. Thus, (3.28) follows. O

§4 Implications for grain size distributions

It is often observed that grain size distribution on a riverbed develops normality as
one moves downstream from the source. Here, we give a brief sketch of an argument as

to why this is so, based on Theorem 2.1. Details, along with data on an Indian river, are

available in Ghosh (1988) and Ghosh, Mazumder, and Sengupta (1991).

Suppose we are observing at a distance s from the source. We assume transportation
of grains is from the source and is over a period of T' units which we break up into n discrete
subintervals of a fixed length. For a grain or pebble, let 8 stand for its size, X; the net

h subinterval, j = 1,...,n, w(f) the size distribution at the source,

displacement in the j?
w(B|s) the size distribution at a distance s from the source, and p;(z;|0) the probability
function of X; given 6. We assume a lattice valued X; which will be true up to a roundoff

error.

Let s = 2?21 z; be the total displacement. It is clear that

_ w(f)Pe(S =)
w(bls) = Tw(8)Ps(S = 5)d6”

l.e., w(f|s) may be interpreted as a posterior, exactly as in Section 2. If s is large, time
for transportation 7', and hence n will be large also. Thus, Theorem 2.1 — the Bayesian
version, not under a fixed 6y — applies. Essentially, this means that observation at distance
s at a given time is equivalent to sorting out and keeping only those grains that can make
it. The grain sizes of the latter will tend to cluster around § and a quadratic approximation

will be available.

21



References

Ackerman, T. A. (1991). An examination of the effect of multidimensionality on parallel
forms construction. Presented at annual meeting of the National Council on Measurement

in Education, Chicago.

Bhattacharya, R. N. and Rao, R. R. (1986). Normal Approzimation and Asymptotic

Ezxpansions. Krieger, Malabar.

Chernoff, H. (1952). A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. Ann. Math. Statist., 23, 493-507.

Clarke, B. and Ghosh, J.K. (1991). Posterior convergence given the mean. Technical

Report 91-51, Department of Statistics, Purdue University.

Ghosh, J. K. (1988). The sorting hypothesis and new mathematical models for changes in
size distribution for sand grains. Indian Journal of Geology, Vol. 60, No.1, 1-10.

Ghosh, J. K. ,Mazumder, G. S. and Sengupta, S. (1991). Experimental-theoretical ap-
proach to interpretation of grain size frequency distributions. In Principles, Methods, and
Applications of Particle Size Analysis. Editor: James P. M. Syvitski, Cambridge Univer-
sity Press, Cambridge.

Holland, P. W. and Rosenbaum, P. R. (1986). Conditional association and unidimension-

ality in monotone latent variable models. Ann. Statist., 14, 1523-1543.

Joag-dev, K. and Proschan, F. (1983). Negative association of random variables, with

applications. Ann. Statist., 10, 286-295.

Junker, B. W. (1991). Conditional association, essential independence, and monotone

unidimensional item response models. To appear in Ann. Statist.

Lindsay, B. Clogg, C. and Grego, J. (1991). Semiparametric estimation in the Rasch model
and related exponential response models, including a simple latent class model for item

analysis. Journal of the American Statistical Association, 86, 96-107.

Tsutakawa, R. K. and Johnson, J. C. (1990). The effect of uncertainty of item parameter
estimation on ability estimates. Psychometrika , Vol. 55, No. 2, 371-390.

22



