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Abstract

We investigate the convergence rates of a sequence of empirical Bayes decision rules
for the two-action decision problem with the underlying distributions belonging to a class
of discrete exponential family. The asymptotic optimality of the empirical Bayes rules is
studied under the situation where the assumption regarding the unknown prior distribution
is limited to the minimum. It is found that the sequence of the empirical Bayes rules under
study is asymptotically optimal, and the order of the associated convergence rates is either
O(exp(—cn)) for some positive constant ¢ or O(n 2% exp(—2n!~#)), «a >0, 0 < B < 1,
depending on two different situations related to the unknown prior distributions.

AMS 1980 subject classification. 62C12.

Key words and phrases: empirical Bayes, asymptotically optimal, rates of convergence.



1. INTRODUCTION

Since Robbins (1956, 1964), empirical Bayes procedures have been extensively studied
in the literature, e.g., see Samuel (1963), Johns and Van Ryzin (1971, 1972), Lin (1972,
1975), Singh (1976, 1979), Van Houwelingen (1976, 1987), Van Ryzin and Susarla (1977),
Karunamuni (1988), Nogami (1988) and Liang (1988), among the many others. Many of
the authors were concerned with the asymptotic optimality of the empirical Bayes pro-
cedures. They established the best possible rates of convergence of the empirical Bayes
procedures based on certain assumptions regarding the behavior of the unknown prior dis-
tributions. Several empirical Bayes procedures were constructed according to the assump-
tions. However, since the prior distribution is unknown it is hard to verify the assumptions.
Hence whether or not the concerned empirical Bayes procedures achieve or near the best
possible rates of convergence is doubtful. In this sense, one may be interested in limiting
the assumptions regarding the unknown prior distribution to the minimum and seeing how

good the performance of the empirical Bayes procedures can still be.

In this paper, we investigate the convergence rates of a sequence of empirical Bayes
decision rules for the two-action problem with the underlying distributions belonging to a
class of discrete exponential family. The asymptotic optimality of the empirical Bayes
decision rules is studied under the situation where the assumption regérding the un-
known prior distribution is limited to the minimum. It is found that the sequence of
empirical Bayes decision rules under study is asymptotically optimal, and the order of
the associated convergence rates is either O(exp(—cn)) for some positive constant ¢, or

O(n~2* exp(—2n'~#)),a > 0,0 < B < 1, depending on two different situations related to



the unknown prior distribution.

2. The Two-Action Problem

Let X denote a random observation with probability function f(z|8) = h(z)6*5(6),
z=0,1,2,...;0 < 8 < Q, where h(z) >0 for all z =0,1,..., and where @ may be finite
or infinite. Consider the problem of testing Hy : 8 > 6y against H; : § < 8y with the loss

function
2.1) L(8,) = (1= 8)(00 — )L10.00)(8) + (6 = 60) (s, 0) 6,

where 6y is a known positive constant, 0 < 8y < @,i(¢ = 0,1) is the action deciding in
favor of H;, and I4 is the indicator function of the set A. It is assumed that the parameter

6 is a realization of a random variable © having an unknown prior distribution G over
(0, Q).

For a decision rule d,d(z) is defined as the probability of taking action 0 for given

X = z. Let r(G,d) denote the Bayes risk associated with the decision rule d. Then

(2:2) r(G,d) =) [bo — ¢(2)]d(2) f(2) + C,
where
_ h(@)f(z+1)

¢(z) = E[O|X = ] is the posterior mean of © given X = z,

" h(z + 1) f(z)

Q
(2.3) f(z)= / f(z|8)dG(8) is the marginal probability function of X, and
0

Q
c= [ (6-8)dG(6).
o

We consider only those priors G such that fOQ 8dG(0) < oo to insure that the Bayes risk

is always finite and hence the problem is meaningful. This assumption always holds true
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when @ is finite. For example, in a negative binomial distribution,
f(z]8) = ("ﬁ_f;l)ef(l —0)",0 < 0 < 1, where r is a positive integer. In such a case,

Q=1

From (2.2), a Bayes decision rule, say dg, is clearly given by

(24) d(z) = {0 otherwise.

The minimum of Bayes risks among the class of all decision rules is: r(G) = r(G, dg).
Let B(6y) = {z|e(z) < 6p}. Define

. ) su B 60) 1fB(90) # ¢,
(2.5) m= { —1p ( if B(6,) = ¢,

where ¢ denotes the empty set.

A straightforward computation leads to that the posterior mean ¢(z) is increasing in
z. By the definition of m,p(z) < 6y iff £ < m. Therefore, the Bayes decision rule dg can

be represented as:

_J1 ifz >m,
(26) dG("’)‘{o if z < m.

When the prior distribution G is unknown, Johns and Van Ryzin (1971) and Liang
(1988) have studied this two-action problem using the empirical Bayes approach. Johns
and Van Ryzin (1971) have proposed some empirical Bayes decision rule and studied the
corresponding asymptotic optimality under certain assumptions relating to the behavior of
the tail probability of the unknown prior distribution. They established the best possible
rates of convergence to be of order n~! where n is the number of the accumulated past
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data. Liang (1988) proposed an alternative empirical Bayes decision rule, say dj, and
found that the rate of convergence of dj, is of order exp(—cn) for some positive constant ¢
under a very weak assumption that m < co. Liang (1988) also found that the assumptions
made in Johns and Van Ryzin (1971) always imply the finiteness of m. However, the case
where m = 0o was not discussed. The basic assumption that fOQ 0dG(6) < oo was used in

Johns and Van Ryzin (1971) and Liang (1988).

3. The Empirical Bayes Rules and Its Aymptotic Optimality

First, we recall some property related to this decision problem. Note that the class of
the probability functions {f(z|0) | 0 < § < @} has monotone likelihood ratio in z. Under
the loss function (2.1), the class of monotone decision rules is essentially complete; see
Berger (1985). Hence, it is natural to desire that the proposed empirical Bayes rule be

monotone.

Foreachj =1,2,...,let (X;, ©;) be a pair of random variables, where X is observable
but ©; is not observable. Conditional on ©; = 6;, X; has probability function f(z|6;).
It is assumed tilat ©;,7 =1,2,..., are independently distributed with common unknown
prior distribution G. Therefore, (X;,0;),7 = 1,2,..., are iid. Let X, = (X1,...,Xy)

denote the n past observations and let X,4+; = X denote the present random observation.

For each z = 0,1,2,..., let fo(z) = % > I;3(X;). Mimicking the form of the
j=1

posterior mean ¢(z), (see (2.3)), let

h(z)fa(z +1)
h(z + 1) fn(z) + 6(n,z)’

(3.1) on(z) =

)



where

(3.2) { §(n,z) = 365 ' [h(z) + Goh(z + 1)|e(n, @, B), and

e(n,a,B) =(nf +an"'ln n)'/?, «>0,0< B < 1.

One may use @,(z) to estimate ¢(z) and obtain an empirical Bayes rule based on ,(z).
However, pn(z) does not possess the increasing property. A smoothed version of ¢, (z),

say $n(x), is defined as follows. Let

(3.3) @n(z) = (orgnfgcz en(y)) A Q,
where a A b = min(a, b). Then, we propose an empirical Bayes decision rule d,, defined as:

0 otherwise.

Since @, (z) is nondecreasing in z, the empirical Bayes decision rule d, is a monotone

rule. Note that the past data X, is implicitly contained in the subscript n of @, and dp.

Consider an empirical Bayes decision rule d,,. Let r(G, dy, ) be the Bayes risk associated

with the rule d,,. Then,

(3.5) r(G,dn) = )_[60 — ¢(2)|Enlda(2)If(2) + C,

where the expectation F, is taken with respect to X,. Since 7(G) is the minimum Bayes
risk, 7(G,dn) — r(G) > 0 for all n. The nonnegative regret risk r(G,d,) — r(G) is used as

a measure of the optimality of the empirical Bayes decision rule d,,.

Definition 3.1. A sequence of empirical Bayes rules {d,}32; is said to be asymptotically

optimal of order o, relative to the unknown prior distribution G if 7(G, d,)—r(G) = O(ax)
as n — 0o, where {d,} is a sequence of positive numbers such that a, = o(1).
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The sequence of the empirical Bayes rules {d,} has the following asymptotic optimal-

ity.
Theorem 3.1. Let {Jn}?=1 be the sequence of empirical Bayes decision rules defined pre-

viously. Assume that fOQ 8dG(8) < oco. Then, the following results hold.

(a) If m < oo, r(G,d,) — r(G) = O(exp(—cn)) for some positive constant c.

(b) If m = oo, 7(G,d,) —r(G) = O(n™2* exp(—2n'~#)), where a >0, 0 < B < 1.

Proof: Part (a) can be proved by a proof analogous to that of Theorem 2.1 of Liang (1988).

Hence, the detail is omitted here. In the following, we provide the proof for part (b) only.
When m = oo, by the deﬁnitic;n of m, p(z) < 6y for all z. By the definition of dn,

direct computation leads to

(3.6) r(G,dn) = 1(G) = ) [0 — ¢(2)|P{@n(z) = 60} f(=).

=0

Let F(z) denote the marginal distribution function of the random variable X and let
F.(z) be the empirical distribution based on X ,. Also, define F(—1) = F,,(—1) = 0. Let
Rn(z) = Fu(x) — F(z).

From (3.1) - (3.3), by the fact that ¢(z) — 6y < 0 for all z, following some algebraic
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operation, we can obtain: For each z =0,1,...,

(3.7)
{@n(z) = 60}

= U {(Pn(y) > 60}

y=0

= (J{r®) faly + 1) = h(y + 1) fa(y)bo = 806(n, )}

y=0

= |J{rW)Faly + 1) = [(y) + boh(y + D]Fa(y) + 6oh(y + 1)Fa(y — 1) 2 608(n,y)}

y=0

C U{B@)Raly +1) = [~(y) + 65h(y + 1)|Ru(y) + boh(y + 1)Raly — 1) > 608(n, y)}

y=0

c U ()Rl +1) > Lo(n, 10} U by + DRaly = 1) > Lo, )

y=0

U{IA(4) + 6oh(y + DIR () < = 32800}

c |J ({Raly +1) > e(n, 0, )} U{Rn(y) < —&(n, @, B)} U {Ra(y — 1) > &(n, &, B)})

y=0
C{zggan(Z)I > e(n, a, B)}.

By Lemma 2.1 of Schuster (1969), and (3.2) and (3.7), we obtain

P{@a(z) 2 6} < P{Sg}g|Rn(Z)| > &(n,a, B)}
< k exp(—2n€2(n, «, :B))
(3.8)
= kexp(—2n'~# — 2a In n)

= kn"2® exp(—2n' 7).

Note that in (3.8), the constant & is independent of the distribution F'; see Schuster (1969).
Also, the upper bound at the right-hand-side of (3.8) is independent of z. Therefore, from
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(3.6) and (3.8), we conclude

r(G,dn) — 1(G) < kn"2exp(~2n'") > "[8y — o(2)]f(2)

z=0

< kon "2 exp(—2n1~P)

= O(n™2® exp(—2n'~#)).

Hence, the proof of part (b) is complete.

4. Concluding Remarks

Johns and Van Ryzin (1971) have proposed some empirical Bayes rules for this-two-
action problem and investigated the corresponding asymptotic optimality under certain
assumptions regarding the behavior of the tail probability of the unknown prior distribu-
tion G. They established the best possible rates of convergence to be of order n™1. Tt
should be noted that the only assumption regarding the unknown prior distribution G we
made in this paper is: fOQ 8dG(0) < oco. This assumption always holds when @ is finite.
This assumption insures the finiteness of the Bayes risks so that the problem under study
is meaningful. In other words, Theorem 3.1 says that the convergence rate of the se-
quence of the empirical Bayes decision rules {d,}32, is of order n 2% exp(—2n'~#),a > 0,
0 < B <1, with no further assumptions about the unknown prior distribution G (i.e., no
matter whether m < oo or not), where the values of @ > 0 and 0 < 8 < 1 can be chosen
arbitrarily. Of course, the choice of the values of & and £ may effect the performance of

the empirical Bayes decision rule d,, for small to moderate n.

The empirical Bayes decision rule d,, is constructed in a way similar to the empirical
Bayes decision rule d* of Liang (1988). When m < oo,d* and d, are asymptotically
equivalent in the sense that both d;, and d,, have exponential rates of convergence. However,
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when m = oo, the rule d* cannot achieve the rates of convergence as described in part (b)
of Theorem 3.1. In Liang (1988), the empirical Bayes estimator for ¢(z), say ¢}, (z), may
overestimate ¢(z), and therefore, the rule dj, is forced to accept Hp biasedly. To reduce
such bias, our ¢,(z) is defined in a way such that ¢,(z) may underestimate ¢(z). Then,
we use the simple monotonizing technique by defining ¢n(z) = ( max ©a(y)) A Q to force

0<y<z

it back so that the bias may be corrected.
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