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Abstract

In this paper, Bayesian analysis for a Poly-Weibull distribution using informative and non-
informative priors is discussed. This distribution typically arises when the data is the minimum
of several Weibull failure times from competing risks. A general recursive formula is developed
for exact computation of the posterior probability density function, posterior moments and
the predictive reliability, when the shape parameters are known. Computation by simulation
using the Gibbs sampler is also considered, for both known and unknown shape parameters,

and is compared with the exact formula.
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1 Basic Problem

1.1 Examples and the Bi-Weibull Distribution
Let us start with two examples.

Example 1.1  (in reliability theory). Suppose that the failure of a product can occur either
because of an initial cause (e.g., manufacturing error) or long-term cause (e.g., wearout). It is
frequently reasonable to assume that these two causes affect the product independently and have
(Weibull) W(64, B1) and W(6,, B;) distributions, respectively. The failure time of the product is
then the minimum of these (independent) failure times, and the resulting reliability function (1—

the c.d.f. ) of the product is

R(t) = exp{—(g;)ﬂl—(oiz-)ﬁz}, t>0. (1)

The corresponding distribution is called the Bi-Weibull distribution. As another example, Chuck,
Goodrich, Hecht and McCulum (1990) investigated the mechanical behavior of selected Silicon
Nitride (SigNy4) ceramics, which are candidate materials for advanced heat engines. They found
that, at high temperatures, the time-to-failure seems to follow a Bi-Weibull distribution, with

slow crack growth and damage accumulation being the two (independent) causes of failure.

Example 1.2  (competing risks in survival analysis.) Assume that a patient can die either
because of a stroke or a heart attack. If the survival times under the two risks are assumed
to be independently W(6;, B;) distributed, then the survival time of the patient has a Bi-Weibull
distribution. Mendenhall and Hader (1958) and Cox (1959) are among the early papers concerning
competing risks. Cox (1959) gave other examples where the above type of distribution arises.
For recent papers concerning competing risks, see Greenhouse and Wolfe (1984), Goetghebeur
and Ryan (1990). For simplicity, in this paper, we will utilize reliability language, rather than

attempting to simultaneously use reliability and survival analysis language.

The hazard rate corresponding to (1) is

—ER(t) _ futht | Byt
R(t) 6% 6%

The shape of the hazard rate is determined by 81 and fB2. If max(f1,02) € (0,1) (min(By,fF2)

t>0.

> 1), the hazard rate is decreasing (increasing). If #; < 1 and B3 > 1, the hazard rate is typically a



bathtub curve. Figure 1 illustrates the Bi-Weibull reliability functions and hazard rates for several
choices of 1 in (0,1) and B, in (1, 00). Note that if B, is close to 0, the hazard rate dramatically
decreases in the initial failure region (see Martz and Waller (1982, p81) for the definition of initial
failure region). Therefore, it is typically known that both 8; and B, are bounded away from 0;
this will be relevant in our later choice of the prior distribution.

Of course, more than two causes of failure or competing risks can be considered. Thus we will

consider the general Poly-Weibull model.

1.2 The Poly-Weibull Model

Suppose that a product (or a system) consists of m (> 2) different elements. The age (time, miles,
cyles, etc.) of the jth element is X;, which has a Weibull, W(8;, 8;), distribution with reliability

function
R(t) = P(X; > 1) = exp{—(1/6;)""}, for t > . 2)

Here 6; is the characteristic life and §; is the shape parameter. Suppose that the m elements are
connected in a series, and we do not know which element has failed when the system fails. (This
is often the case in reliability contexts, especially with field — as opposed to experimental-data,
but is perhaps less common in survival contexts.) Thus failure occurs at X = min(Xy,---, Xy,).
Assume that the m failure ages X;,---, X, are independent so that the overall reliability of the

product is

R(t) = ﬁ}zj(t) = exp{ - i_nj(t/oj)ﬁ’}, t>0, (3)

and the probability of failure before t is 1 — R(¢). Then X is said to have a Poly-Weibull distri-

bution, and its density is given by

d
VTR TICA R ;
Selggr) o

Here 6y, - -, 0,, are unknown parameters; we will treat both the cases where 81, - -, B are known
and unknown. When the §; are equal, the Poly-Weibull distribution is a regular Weibull distri-
bution, and the parameters 6y, - - -, 0, are not identifiable. Thus we will assume that §;, - - -, B

are distinct. Further details about (81, -, 8m) will be discussed in Section 1.4.



1.3 Data and Statistics

Let § = (61, +,0m) and g = (B1,+ -+, Pm). Assume that r units are tested independently, with

their ages having the common p.d.f. (4). Let t;,---,%, be the observed failure times, and

1)+, tr_, the observed times-on-test of units that have not yet failed. The likelihood func-
tion is
n m i—1 m
7 3 pit;” S(Br)
I’(o, ) = {Hz__zg]— expy — Z 9'6" ’ (5)
i=1j=1 b; k=1 Y
where

S(Bx) = it?k + Tf(t;)ﬁk. (6)
=1

=1
Note that simple sufficient statistics do not exist and classical approaches to the problem are

difficult.

1.4 The Prior Distribution

Assume that 0;,---,0,,, given ,5, are independent and that the prior density of §; depends only
on 3; and has the form
ﬂ 100 —(1485a;4 b;
7r1j(0j|,8j) = 7r1]-(0j|,6j,aj,b]-) = ﬁ 0,7' (1+6;a5) eXp{——zo—[‘;j-}, for 9]' > 0. (7)
] .

J

where a; > 0 and b; > 0. Thus ij has the inverse Gamma, ZG(a;,b;), distribution. Then the
joint density of 4, given ,ﬁ, is
1(616) = ] m;(6516;)- (8)
1=1
Furthermore, assume that fi,---,8,, are independent, and that §; has density m,;(8;) with

respective to some o-finite measure A;. Thus the prior density of ,5 is
. m
m2(B) = [ ] m2:(B)- (9)
=t

Choice of the distributions in (8) and (9) will frequently be based on engineering knowledge or
knowledge of previous similar products. No specific form for Wg(ﬁ) is required, but, for the reasons

given in Section 1.1, it is reasonable to assume that the support of §; is (¢;,0) for some fixed



¢; > 0. This will be seen to be needed for posterior moments to exist. In Section 2.6.2, indications
will be given that the analysis is often not sensitive to reasonable choices of the c¢;. Note that,
when only limited data is available, answers can depend significantly on the choice of 9, so that
careful modeling of sub jective information about g is important. Noninformative priors will not
be considered here; the standard noninformative priors for the ordinary Weibull distribution yield
improper posteriors in the Poly-Weibull problem.

Here are some methods for eliciting the priors in (7), (i.e., determining the a; and b;), once
the marginal prior m(ﬁ) has been determined.

Option 1: Specify the first two marginal moments for 0;. Assume that p,; and pg; are the

first and second moments of §;. Since
k/B; k .
E(0510:) = 87T (e; = 2)/T(es), i 0 <k < s, (10)
3
a; and b; can be determined by solving the equations

: 1 ® k/B; k
:EO’-‘:—/ 5P (a; — Symi(B:)dNi(B), k=1,2. 11
k (_7) r(a]) o 7 ( J ,3_7) J(ﬁj) _7(13]) ( )
Note that a solution exists only if a; > 2/c;.

Option 2: Specify two marginal quantiles of ;. Note that

2; | 2

P(6; <o) = E{P(z > —:15))}

67

|7 [t xass )] mi(8:)a:(8)) (12)
0 eI
where x%(2aj;-) is the c.d.f. of the x? distribution with 2a; degrees of freedom. If ¢;(a;) and

g;(ag) are the aj-quantile and the aj-quantile of the marginal distribution of 8;, respectively,

then a; and b; can be obtained by solving the equations

/°°
¢y

X" (2a;; 7 ( )]ﬁ )25 (B)dA;(B5) = 1 — ey, k=1,2.

Option 8: Specify two predictive quantiles. Note that the predictive reliability for the jth

component failure time is

P(Tjzs) = /Coo /000 P(T; 2 5105, 83)m15(6;16;)m23(8;)d6;dA;(8;5)

[, et ZZZ DL 0709 exp{ e 5)005)

/c_ Wﬂj(ﬂj)d/\j(ﬂj),



If gf(cn) and gf(o2) are the a;-quantile and the a;-quantile of the predictive distribution of the

jth component, respectively, then a; and b; can be obtained by solving the equations

e 1
|, T P

a7 ng(ﬁj)d)\j(ﬂj) =1l—o, k=1,2. (13)

The prior assessment for known §, considered by Sun and Berger (1991a), is the special case

of choosing a degenerate point mass for 3; then both a; and b; depend on the chosen g.

Example 1.3 Consider a case where the age of a product has a Bi-Weibull distribution. Suppose
that, from engineering knowledge and/or knowledge of previous similar products, the best guess
for the mean of 6; is p11 = 1,000 (hours) and the standard deviation for the guess is 1,580 (hours)
so that u1o = 1,000? 4 1,580% = 3,496,400. Prior information indicates that 8y is between 0.1
and 0.9, with 0.5 considered the “most likely” value (mode); this is modeled by assuming that
($1—-0.1)/(0.9-0.1) has the Beta(15, 15) distribution. It follows from equation (11) that a; = 28.0
and b; = 684.0 (using a Fortran subroutine from IMSL for the integration). Similarly, suppose
that the best guess for the mean of 65 is o1 = 2,000 (hours) and the standard deviation for the
guess is 2,830 (hours) so that uys = 2,000 +2,830% = 12,008,900. It is known that 8, > 1, and
the “most likely” value (mode) is specified to be 2; this is modeled by assuming that G, — 1 is

Gamma(15, 14). It then follows that a; = 10.0 and b, = 18,600, 000.

1.5 Preview

Expanding the product and summation in (5) results in an expression with m™ terms. For
example, if m = 3 and n = 20, there are 3%° = 3,486,784,399 terms. Computation via brute
force expansion is thus typically not feasible. The purpose of this paper is to show how Bayesian
analysis can, nevertheless, be done. Two techniques, an exact iterative computational scheme and
Gibbs sampling, are developed and compared.

In Section 2, an iterative computational scheme will be developed for closed form Bayesian
analysis in the case of known . For an example of such a situation, see Townsend (1989).
Analysis for the Bi-Weibull case will be presented first. A general formula is then introduced
for the Poly-Weibull case, allowing closed form computation of the relative posterior probability

density function, the posterior moments and the predictive reliability. This formula is recursive,



with each step of the recursion corresponding to incorporation of an additional data point, and

hence is completely compatible with sequential or multistage experimentation. The total number

n+m—1
m-—1

of computations needed is roughly 2n( ) + 3mn?, which is typically much smaller than the

brute force m™ computations. (When m = 3 and n = 20,277,(";72;1) + 3mn? = 11,760.)

Unknown ﬁ is also addressed in Section 2 with two “standard” techniques. The first is consid-
eration of the marginal likelihood function of ,ﬁ and the “Type II” maximum likelihood estimate.
The second is extension of the recursive formula to deal with unknown G, but with some involve-
ment of numerical integration.

In Section 3, the Gibbs sampling approach to Bayesian computation for the Poly-Weibull
case with unknown f is developed. With introduction of auxiliary variables and utilization of
log—concave rejection sampling, the analysis is quite efficient computationally.

Finally, the exact computation and Gibbs sampling are compared in Section 4. Also, some

generalizations of the problem are discussed.

2 Closed-Form Bayesian Analysis

2.1 Introduction

We initially assume that ﬁ is given. The case where ,5 is unknown will be studied in Section 2.6.

The following notation will be used throughout this section. For j = 1,---,m, define
Tp; = S(Bi)+bj; (14)
B; :
Hi(z;8;) = mexp{—-ng/mﬁf}, z >0, (15)

where 5(f;) is given by (6).

2.2 Posterior for the Bi-Weibull Case

Because of its importance and comparative simplicity, we first present results for the Bi-Weibull

distribution. Define

W(1;0) = W(1;0;61,8:) =t and W(1;1) = W(1;1;8, 8,) = 121,



For n > 2 and 0 < ¢ < n, define

W(n —1;0)tb if j =0,
W (n;i) = W (n;i; 81, B2) = W(n—1;i— )b + W(n—1;0)tl2, if1<i<n, (16)
W(n—l;n—l)tﬁl, if i = n.

Note that W (#;0) = [T, %1% and W (n;n) = [[[%, t:]**. Because of the recursive nature of (16),

computation of posterior quantities can be done efficiently, requiring only O(n?) computations.

For p1(< a161), p2(< azf2) and ¢(> 0), define

n W(n; z)ﬂ1ﬂ2_’f‘(a1+z—‘“—)I‘(a2+n—i—”—2)
Z (T, +1Pr)itar— u1/ﬁ1(Tﬁ + 162 )n—itaz— —n2/B2

Expressions for several posterior quantities of interest are given in Table 1. These follow from the

J(:u‘h/'l’?at) = J(:u'hp‘Z’t ﬂ1>ﬂ2)

general expressions given in Section 2.3.

Table 1: Formulas for Posterior Quantities for a Bi-Weibull Distribution, Given 3; and S,

T (i
rr(;:,;iirtl;l (6116 o data) I!-I;(E)()lo, %1)) Z W(n;j)ﬂi;il;gz— j+a2) [_0%_]1'
7 (6211, B data) e ﬂ(j")) > W3 ;?E(] L [;ﬁé%] o
mean E(6:]61, Bo; data) %
E(62|B1, B2; data) j_gg:—(l):-g%
variance Var (01|61, B2; data) jg:g: g; - {j&é:g:gir
T W e
covariance Cov(6y, 02|61, B2; data) jg(l): (1): gi - J(l(,;)(’(i)(i(g)’)i’ 0
ey | A)= B8 5 dase 7000




Example 2.1 Consider a case where the age of a product has a Bi-Weibull distribution with

B1 = 0.5 and B3 = 2.0. For example, see Townsend (1989). Assume that the hyperparameters
for the prior distributions are a; = 15.0,a9 = 1.90,b; = 430 and b3 = 10,575,000. The following
sample of size 20 (n = r = 20) is simulated from the Bi-Weibull distribution with §; = 750 and
6, = 3000:

8.96, 2189.49, 384.42, 1792.82, 2891.43, 844.82, 243.04, 982.33, 1660.83, 88.32,

1037.78, 406.86, 130.21, 449.15, 129.80, 355.16, 111.81, 392.48, 304.68, 75.98.
The marginal prior densities (with solid curves) and marginal posterior densities (with dotted
curves) of 6y and 03 can be seen from Figure 2. The posterior moments are given in Table 2. The

predictive reliability is shown by the solid curve in Figure 3.

Table 2: Prior and Posterior Moments of (6;, 82) for a Bi-Weibull Distribution, given (81, 32)

Prior Distribution Posterior Distribution
E(gllﬁl,ﬁz) 1015.94 E(01|ﬂl,ﬂ2;data) 1002.60
E(aglﬁl ) ﬁg) 3000.02 E(02|[31, ,32; data) 2466.85

V/Var(6,|61,02) | 625.27 V/Var(6;|B1, B2; data) 439.74

\/ Var(0,]061, B2) | 1658.28 \/Var(62|B1, B2; data) 887.46
COV(01, 02',81 , ﬁg) 0 COV(01, 02|,31, ,32; data,) —75823.10

COI‘I‘(01,92I,81,,32) 0 Corr(01,02|ﬁ1,ﬂ2;data) -0.1943

2.3 Posterior for the Poly-weibull Case
2.3.1 A Recursive Formula and Notation

The key to avoiding a combinatorial explosion in the posterior analysis is the recursive formula
presented in this section. Let A denote the set of all nonnegative integers. For m,n € AN, m >

2,n > 1, denote all the partitions (71, -, im) of n by

m
A = {(i1,+im) 14 €N, Y ij=n}. (17)
i=1
Suppose that the failure times #1,---,t, are observed. The recursive formula is defined by the

following two steps.



Step 1. For (31,---,%m) € Ap 1, define

tfla if(i17i27"'77:m)=(1703"',0)a
W(l;il,---,im;ﬁ)z cee e
5, if (i1, imety ) = (0,--+,0,1).

Step 2. For (41,--+,%m) € Ap ik (2 <k < n), define

W(k;ila' "aim;ﬁ) = Z W(k_l;il,'"1ij—17ij—17ij+17' "aim;ﬁ)tkj-
i;2>1

It is easy to see that (19) is well defined. The case m = 2 is equivalent to (16).

(18)

(19)

Note that, in sequential experimentation, each new incoming failure #; calls for updating the

previous W's by Step 2. There are only ("""Z 1)

terms in this updating of the W’s by an incoming

t;. Thus one does not have to cycle again through the induction, making evaluation of the posterior

in a sequential context especially inexpensive.

For a real vector i = (g1, -+, pm) (¢j < Bj(a; +¢;)) and t > 0, let

I | m 5T (e +i-5)
J(/"'a t) = J(:Uﬂtvﬂ) = " miz):EA W(n,zl, oy b ,3) H (Tﬁ +tﬁ; )ZJ+‘1_1 pilBs°

2.3.2 The Poly-Weibull Posterior Distribution and Moments

Theorem 2.1 The posterior density of 5: given ﬁ and the data, is

W) = —E T Wi zm,ﬂ)HHk(ek,m{ }

(0 '6) (t1yim)EAMn k=1

and the marginal posterior density of §; (1 < j < m), given G and the data, is

7;(0;|8; data) = ;05 5;) Z W(n;iy, -, im; 6) ('BJ )’JH ﬂk F(ak”l"zk).

aptik
(ilx"';im)EAm,n ] k#j5 Tﬁk

J(0;0;8)
PROOF. The posterior density of (8;, --,0n) is proportional to

Br m m
(x5 K ten{- 5 32

i=1 k=1

By induction, it can be shown that (23) is equal to

S Wiy im; f) HHk(()k,ﬂk){ﬁ }

(il,"'yim)eAm,n k=1 k

(21)

(22)

(23)

(24)



Since
/0 O Hx(Be; B1)05 " A0k = T(a +in ~ o) [ TR, (25)

the normalization constant for the joint posterior density of § is J (0;0). This proves the first
part. The second part follows immediately. 0

The marginal posterior density of (6;,6;) can be written similarly. For example, the marginal
posterior density of (6,0:) is

Hy(01; 51)Ha(82; B2)
J(0;0; )

7(601,0,)0; data) =

B ]il [&]221"—1 ﬂ;jr(ajﬁj).

X Z W(n;zla’lm,ﬁ) e PR
[0{31 ggz i Tﬁ;+ J

(ilw"'»im)EAm,n
Theorem 2.2 The posterior moments, given G and the data, are

J(01y; 0; 8)

E(6;|6;data) = 7(0:0.0) (26)
- J(200:1:0; 8)  [J(D(z;0; 5)712
Var(6,|6;data) = (,](éj)()ﬁ)lﬁ)_[ ,(](g)OB:?)] ) (27)
Cov(6;, 6;|F; data) = J(0(i,5; 0; B) _ J(0);0:8)7(059; 0; B) (28)
m ~J@0;5) (0062

where G(j) = {(z1, -, 2m) 1 z; = 1,2, = 0,k # 5} and 6(i,j) ={(z1, ,2Tm) =z =1,z =

0,k#1,7}.

The simple proof of Theorem 2.2 is omitted.

n+m-—1

m77). In Section

The number of terms in the expression for J(0; 0) is #(Am »), which equals (
4.1, we will see that the recursive formula effectively reduces the total number of computations

for a Poly-Weibull distribution from an exponential rate in the sample size n to a polynomial rate.

2.4 Approximation for Posterior Quantiles of 6;,---,0,,

There are no nice formulas for posterior quantiles of 6y,---,6,,. One could, of course, use nu-
merical integration to determine quantiles of 7r(0j|ﬁ, data), if desired. However, the following
approximation seems to work quite well. Let m; and V; be the posterior mean and the posterior

variance of §;. Approximate the posterior distribution by the distribution of form (7) which has

10



moments m; and V;. Thus the approximation is

~a:

— ﬂb — Qg B
7(6;|6, data) ~ #&;) 0; (1+855;) exp{—a—éj}, (29)
J

where (@;, ;) satisfy
T(d; — 2/B;)T(a;)/T%(a; — 1/B;) = 1+ Vj/m,
bj = [miT(a;)/T(a; - 1/ﬂj)]ﬁj

Note that an approximate value of @; can be determined by iteratively solving

G; = 0.5+ [1n(1+ )+ﬁj n(1- jﬂj_l)]/ln[l—m], (30)
starting from the initial value
a? = 2Lj(g + —). (31)

1— (14 —%)705%
2

Actually, d? is typically accurate enough.

th

Finally, the approximate a"" posterior quantile of 6; is given by the oth quantile of (29),

which can be shown to be

2b; A1)y S (32)

)= [ ima) =TG- Us) e
where XJ(l — a) is the (1 — a)th quantile of the x? distribution with j degrees of freedom.
Example 2.1 (continued). From Table 2, (my,V;) = (1002.60,439.74?) and (mq,V2) =
(2466.85,887.46%). Computation yields (a9,59) = (26.2383,783.1516) and (&9,59) = (2.9316,
13,360,913). After 10 iterations of (30), we get (d1,51) = (25.2535, 751.9596) and (g, bs) =
(2.9893, 13,709,647); these are accurate through the given digits. Figure 4 indicates the quality
of the quantile approximations. The true quantiles and their approximations (32) are represented

by the solid and dashed lines, respectively. There are no noticeable differences between the true

quantiles and their approximations.

2.5 Predictive Reliability

Often, the predicted time to failure of the product is of considerable interest. Let T be a future

observation of the product, which is assumed to be independent of current data. Then the

11



predictive reliability, with E given, is defined by
R(t; B) = P(T > t|f; data) = /+ R(t)x(8]G, data)dd, t > 0,
R

where R(t) is given by (3) and R} = {(y1,--,¥a) : y; > 0}. (Under squared error loss, R(t; ) is
the Bayes estimate of R(t), given f§.)

Theorem 2.3 ﬁ(t,ﬁ) = J((f;t;ﬁ)/J(ﬁ;O;ﬁ).

PROOYF. Note that

z +1 B
- Wi(nyiy, -, im; 0 T exp{—(Tp; +tﬁj)/0 J}
R(t)r(@]ﬂ,data) = Z ( 1". ) H 1+8; (aj+i5)
(i1,+im)€EDm,n J(Ov Oa ,8) 7=1 0

The result immediately follows from (25). 0

2.6 Bayesian Analysis When § is Unknown

We may face a case where the prior 75(f) is either known or unknown. These two situations are

discussed separately in the following two subsections.

2.6.1 The “Type II” Maximum Likelihood Method

When 72(f) is unknown, the method of determining 71 (6]f) in Section 1.4 cannot be used as
stated. Another possibility, however, is to treat ,[_f as a known value, which is equivalent to letting
the prior for § be a degenerate point mass. Based on available information about 8, as discussed
in section 1.4, one can then obtain a; = a;(8;) and b; = b;(5;). Finally, consider the marginal
likelihood function for §. , Which is given by

. m J(ﬁa L
fr= [, LGBl - I_I”P((ﬁfj(ﬁj)) 7(@0; ). (33)

The easiest way to estimate J would be to use maximum likelihood theory. If §* satisfies

L*(F*) = max L*(B),

then §* is the “Type II” maximum likelihood estimate of §. For m = 2, a contour graph of

L*(B1, B2) is also revealing.

12



Recall that, a; and b;, determined from either of the three options in Section 1.4, depend on
B; in a complicated way. In order to find the “Type II” MLE under Option 1, it is far simpler

(and quite accurate) to use the approximation (31), i.e.,

1 1
a](ﬁj) 2[3][ + 1— 1/(1+ %)O.Sﬁj],

bi(8;) = [miT(a;(8)/0(a; — 1/67)]”

Then the “Type II” MLE can be obtained by maximizing

2= B(B)EB)
16)= 1 45 /00

The resulting “Type II” MLE, ﬁ*, would then typically be treated as the known § for the Bayesian
analysis.

Example 2.1 (continued). As in Table 2, the first two moments of the prior distribution
are 1015 and 1,423,097 for §;, and 3000 and 11,749,893 for 6;, respectively. Plots (including a
contour plot) of ﬂ(ﬁ) versus (; and f; are given in Figure 5. The Type-II maximum likelihood
estimate is §* = (0.51,2.02), which is close to the actual § = (0.50,2.00).

2.6.2 A Fully Bayesian Analysis

When wz(ﬁ) is known, the marginal posterior density of j is

) mogso
r(Aldate) o« {]] F(;j)}J(o;o;ﬂ)m(m- (34)

Define

. . s ﬂjr(a3+zj )7!'2(,3)
G(,u‘a t) = /( 'Z):GA W(n1 114 Zm,ﬂ)H (T’g +tﬁ] 1]+aJ #]/,B] ﬁ) (35)

here, the region of integration is [¢1,00)X - - - X[em, 00) (see Section 1.4). Then the marginal poste-
rior density of § is 7(f|data) = J(0;0; f)wo(8)/G(0;0). The marginal posterior moments of §; can
be computed. For instance, E(6;|data) = G’(O(l),O)/G'(O 0), Var(6,|data) = G(26(1);0)/G(6; 0)-—
(G(B2);0)/G(B: 0)12, Cov(8y, Bldata) = G(Fr,30)/G(G:0) — G(Tny 0)G(Tay; 0)/(G(;0))%. The

predictive reliability (the Bayes estimate of R(t) under squared error loss) is given by R(t) =
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G(0;t)/G(0;0). The marginal posterior density of 8; has the following form:

H;(0;; B; )/BlJ e i"l‘ ar+1ig " .
;(63]data) = imi By 1 TEM e i),
(i1,omsim) €Amm 0; ki B

Evaluation of G(i;t) usually requires numerical integration. Details concerning the complex-
ity of this computation will be given in Section 4.1, when the scheme is compared with Gibbs
sampling.

In order to indicate the sensitivity of the posterior quantities to the choice of the cg-s, let us
lock at an example.

Example 2.2 Suppose that 7r1(§'|,§) is as in Example 1.3, and that the data in Example 2.1
is available. Plots (including a contour plot) of 7 (f]data), the marginal posterior density of 7, are
given in Figure 6. It can be seen that the posterior mode of (81, 8;) is (0.49,1.91). Furthermore,
the joint posterior density is unimodal and almost vanishes near (0,0). Therefore, the posterior

quantities are quite robust to the choice of the ¢; in this example.

3 Bayesian Analysis via Gibbs Sampling

3.1 Introduction and Notation

Gibbs sampling, which is described generically in the appendix, can be considered as an alternative
approach to computation of posterior features, and can even be more efficient than the closed
form formulas for larger m and if great accuracy is not needed. In the case of unknown G, Gibbs
sampling is especially appealing. Note, however, that the conditional density of §; does not have a
nice form for any nondegenerate prior distribution of B, so that Gibbs sampling here is non-trivial.

We will consider the setup in Sections 1.3 and 1.4, and assume that § is unknown. For known
3, one can just set B= B° in the following Gibbs sampling scheme. Assume that §q,---, 3, are
independent and that §; has a log-concave prior density m2;(5;), i-e., log{m2;(5;)} is concave
with respect to ;. Most commonly used densities are log-concave. For example, if §; has a
Gamma(a, p) distribution (o > 1), then m2;(;) is log-concave. For more details about common
log-concave densities, see Table 2 of Gilks and Wild (1990).

In this section, it will be shown that Gibbs sampling can be applied efficiently by introducing

several auxiliary random variables. Assume that t; = min(X;, -+, Xim), where X;1, -+, Xim (1 <
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i < n) are independent random variables for given § and 3, and Xij ~ W(;,8;). For1<i<n
and 1 < j < m, define I;; = I(t; = X;;), where I(-) is the indicator function, and denote
L= (T, dim), T = (B, L), Iy = {l : 1 <k < myk # 3}, X = (X, o, Xim),
X=X, %), Xy ={Xk 1 1<k <mk #d}, 05 = {0 :1 <k <mk # j}, and
Bi—j) ={Br: 1< k < m,k # j}.

There are two possible methods of utilizing Gibbs sampling.

1. Use the indicators T = (Iy,---,1I,) as auziliary random variables. Let z = (f,7*) and
&= (9_', G, 1, I,) (see the Appendix), and sample recursively from the conditional dis-

- S P = =

tributions w(oj *,0_5), B, 1), m(B; |5, 1,6, B, 1), and n(L|E, 7,8, B, ;).

2. Use X = (X1,---,X,) as auziliary random variables. Let ¢ = (f,t*)and € = (0,4, %, -, X n)

and sample recursively from the conditional distributions = (6;|Z,%*,6(_;, G, X), n(B;|T, 1%,

-

g, ,B(_j),X), and W()? |f, T, 55 X z))

For our problem, the first method is considerably more efficient than the second. In the follow-
ing subsections, the conditional distributions used in the Gibbs sampler will be listed and studied
in the same order that they will be simulated in the algorithm. In particular, the conditional
densities of §; and I; and their generation are given in Section 3.2, and in Section 3.3 it will be
shown that the conditional distribution of 3; is log-cancave. The method of rejection sampling

for a univariate log-concave probability density function, utilized to generate the 3;, is given in

Appendix A2.

3.2 Available Conditional Distributions
3.2.1 The Conditional Density of 6;

Theorem 3.1 The conditional density of §;, given (T, T, 6—"(_3-),3, f), is

Vg a7 L Bi(S(B) + byt 1 _5(Bj) + b
W(ejlt,t 79(__7),137'5 - P(aJ + NJ) 01+ﬁJ(CLJ+N]) eXP[ oﬂj ]7
2 J

where S(f;) is given by (6), and



PROOF. Since 7 (8;|t,*, @_j),ﬁ,f) is proportional to

7"1](0 |ﬁ_7 [ H fj(t |9J7/BJ ]{ ]___[ [l_F(tllejiﬁJ)]}{H H[l_Fl(tkWIaﬂl) }7
iilj=1 Iij=0 k=11=1
where
B;tPi1 ti\Bi
F105,8) = “g—ee{=(5)"}, (38)
°<;7 1;\B;
1- F(ulép) = [ Si(sl0s,81)ds = exp{~ (55)"}, (39)
(36) follows immediately. 0

Note that the conditional distribution of Hfj, given (1, 1%, §(_j), B, 1), is ZG(a;+N;, 5(8;)+b;).
Hence, to simulate an observation from the density (36), first, generate a random variable Y from
the Gamma(a; + N;, 1) distribution; then [(S(8;) + b;)/Y]Y/% has the desired density.

3.2.2 The Conditional Density of I

An argument similar to that in the proof of Theorem 3.1 yields

Theorem 3.2 The conditional density of I; (with respect to counting measure), given (Z,1*,
9_"5, I-E—i))a is
Tr(j;lf; F*,é.,ﬂyj(—i)) = W(Elthé‘aﬁ)
151 R .
ﬂl [5;'] /Q(ti;O,ﬂ), lfIi = (1707"')0)7

. ﬁm = . 7
B[] [att:0,8), i E = (0,--,0,1),
where g(z; 6—’;5) =37, ﬂk(m/ok)ﬁk- D

Simulating an observation from the discrete distribution (40) is easy.

3.3 Conditional Densities of the §’s
Lemma 3.1 The conditional density of 3;, given (%,*, 5, _.(_j),ﬂ, is log-concave.

PROOF. Note that the conditional density of 8;, given (%, 5 ,5( —3) I_), is proportional to

T—n m

moi(B)ms 0318 | TT £ulos )] TI 11— Fice |9pﬂ1)]}{HH1-Fztkl9z,ﬁz)]}

wli;=1 u:l;;=0
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where f;(t:10;,8;) and 1 — F;(¢;]6;, ;) are given by (38) and (39), respectively. Thus

o o S(B;)+b;
lo(r (811,78, 1) o< Toa(ras () + {0 + 1)lo(85) + €568 — S9N, ey
J

where N; and S(f;) are given by (37) and (6), respectively, and C;(6;) = log{(ITiz;;=1 ti)/H;j+Nj].

The second derivative of the second term in (41) is

Ni L yiflog(ts/0)4 + Sy llog(s /6,4 + bi(log(6:))?

2 2 ;
i B 67

This is negative, so that the second derivative of the second term in (41) is log-concave. The

(42)

result follows from the assumption that mp;(3;) is log-concave and the fact that the product of
log-concave functions is log-concave. 0
An algorithm for sampling from the density = (8, 1.8 ﬁ(_j)), based on its log-concavity,

is given in Appendix A2.

4 Discussion

4.1 Comparison

In order to judge the efficiency of Gibbs sampling, we compared the closed form computation and
the Gibbs sampling scheme theoretically and in our numerical examples.

Comparison for known ﬁ

Consider the situation in Example 2.1. The posterior moments of (1, 62), the marginal pos-
terior densities, and the predictive reliability functions are compared in Table 3, Figure 7, and
Figure 3, respectively. For the Gibbs sampler, we choose (M7, M) = (100,1000), that is, we iter-
ate 1000 times, discarding the first 100 samples. Note that 1000 iterations of the Gibbs sampler
seems to be accurate enough, erring by no more than 1%, which is typically quite satisfactory in
those situations.

For comparison of the two methods, it follows from (48) and (49) in the Appendix that, if
m << n, the total number of computations involved in use of the closed form expression and
Gibbs sampling are approximately Z'nT%T)!nm + 3mn? and (3m + 1)nM, respectively. Thus use of

the closed-form expression is recommended if

2
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Table 3: Posterior Moments of (64, 62) for a Bi-Weibull Distribution, Given 8, and 3,

Exact Gibbs sampler (M = 1000)
E(61|81, B2, data) 1002.60 1000.58
(85|81, 2, data) 2466.85 2465.16
VVar(011B, Brdata) | 439.74 436.47
J/Var(0;1Bs, Bz, data) | 887.46 879.54
Cov(0y,02|01, B2, data) | —75823.10 —-75618.49
Cort (6, 02|61, B2,data) | —0.1943 —0.1970

otherwise Gibbs sampling should prove faster. Table 4 gives the suggested method for several

values of m and M.

Table 4 : The Recommend Method of Computation

m M Recommended Method
Closed-form Expression | Gibbs Sampling

2 | 1000 ifn <875 if n > 875

3 | 1000 ifn <95 ifn>96

4 | 2000 if n <43 if n > 43

5 | 2000 ifn <25 ifn>25

Comparison for Unknown B in FEzample 2.2

We follow the assumptions in Example 2.2. Exact computation by the fully Bayesian anal-
ysis described in Section 2.6.2 and Bayesian analysis via the Gibbs sampler are compared. As
mentioned before, exact computation for unknown § involves numerical integration. A two-
dimensional quadrature subroutine from IMSL is used here. Note that evaluation at any single
point of the integrand of (35) requires running through the closed form iteration, which takes about
4 minutes on a SUN 3/60 workstation. For the Gibbs sampler, we chose (M7, M) = (100, 2000),
i.e., we iterated 2000 times and discarded the first 100 samples. It takes about one minute to
complete 2000 iterations.

The posterior moments of (;,6,), as computed by the two methods, are given in Table 5.

The corresponding marginal prior and posterior densities are compared in Figure 9. The marginal
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prior density of #; involves only one-dimensional integration, but its marginal posterior density
involves two-dimensional integration. We computed the densities at only 60 points and connected
the values. Note that 2000 iterations of the Gibbs sampler for unknown (8;,2) seems to be

accurate enough, erring by no more than 2.5%, which is quite satisfactory in these situations.

Table 5: Prior and Posterior Moments of (6;,6;) for a Bi-Weibull Distribution

Posterior Moments

Prior Moments Numerical Gibbs sampling
integration | (M, M) = (1900, 100)

E(6;) 1002.91 E(0;|data) 939.31 928.23
E(6,) 2004.30 E(6;|data) 2432.15 2396.78
VVar(y) | 1580.61 | /Var(fi[data) | 678.463 662.45
VVar(;) | 2826.12 || (/Var(6;[data) | 1120.51 1092.73

COV(el, 92) 0 COV(01, 02](13.13&) —14938.46 —14338.04
Corr(6,,02) 0 Corr(64,0,]data) | —0.1965 —-0.1980

It is necessary to evaluate 250 points or more to reform the two-dimensional integration by
numerical integration with enough accuracy. Thus the number of computations needed in this
approach is roughly 250((—5%)!7@’” + 3mn?). For Gibbs sampling, it is required to obtain only mM
additional f}s so that the number of computations remains approximately (3m + 1)nM. It can
indeed be shown that Gibbs sampling, for unknown ﬁ, is much fast than the numerical integration
approach unless the sample size n is small enough (< 7).

It should be mentioned that Gibbs sampling needs substantially more than 2000 iterations

when £ is unknown and has a rather vague prior, and the number of observations is small.

4.2 Generalization

The technique of this paper can be used to analyze the case where the component failure times

are from the following exponential family:

[#'(1)/Q(0)|exp{~H(1)/Q(6)},
where H(-) is an increasing function satisfying H(0%) = 0 and tlim H(t) = o0, and Q(-) is a

strictly increasing function. Note that the Weibull and Pareto pdf’s are special cases. More
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details concerning this family can be found in Sun and Berger (1991a, b).

Appendix

A1l. The Gibbs Sampling Scheme.

Let p(ﬂx) be a general posterior density with § = (&1,---,8a) € R4q. We are interested in
ff(f_)p(ﬂx)df_' Suppose that the full conditional distributions, p;(&|z,&;, j # ), are available
for sampling. Geman and Geman (1984) introduced an algorithm to compute [ f(&)p(€|z)dE,
referred to as the Gibbs sampler. Their algorithm is a Markovian updating scheme and proceeds
as follows.

Starting from a set of any initial values (fgo), go)’ RN fc(lo)), generate f{l) from py (&, féo), ceey
{t(io)), then 551) from p2(§2|z,§£1), 1(30),---, 550)), .- and so on up to 5(&1) from pg(&q|z, él),

(1) (1)

e 5&1)1). Then repeat the process, using (&7, &5 ,---,531)) as the initial values. Continue

iterating, ending with (§§ after M such iterations. Under mild conditions,
M—_l—]\-ﬂ ZinMﬁl f({gj),ﬁgj), cee f&j)) (M=0) [ F(E)p(€|x)dE; here, M, is the discarded “burn-in”
sample size. Furthermore, the marginal density of £, can be estimated by the finite mixture
density 1\71——}7\71' ZinMﬁl pk(§k|x,§§j), s # k); this is called "Rao-Blackwellization” in Gelfand and
Smith (1990). For further discussions of the Gibbs sampler, see Diebold and Robert (1990),

Gelfand and Smith (1990), Geyer (1991), Miiller (1991), and Tierney (1991a, b).

A2. Sampling from the Conditional Density of f;

-

We will present an algorithm for sampling from the density =(8;|-) = =(8;¢,*, 1, g, ﬁ(_j)). The
algorithm does not require obtaining the supremum of 7(3;|-). This is an explicit version of the
accept-reject algorithm for sampling from a log-concave density (see Devroye (1986)). Since the
prior density of §3; is log-concave, the support of 3; should be an interval and is denoted by
(¢;,dj), where 0 < ¢; < dj < co. Denote the right hand side of (41) by h(8;). Then 7(f;|-) equals

exp(h(B;)), up to a normalization constant.

o Step 1: Choose s; and s3 so that h'(s;) > 0 > h'(s3). Note that, if the originally selected

s1 has h'(s1) < 0, one can simply replace s; by (¢; 4+ $1)/2. From Lemma 3.1, an s; with
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h'(s1) > 0 can be found in a finite number of such steps. Similarly, s3 satisfying h(s3) <0

can be found.

o Step 2: Compute the following quantities:

s2 = [h(s3) = h(s1) — s3h'(s3) + s1A'(81)]/[(s1) — B'(s3)];

up = [h(sk41) = h(sk) = sk41P'(sk41) + skh/(sk))/[R'(sk) — R/ (sk41)], k= 1,2
1

h(sk)=skh’(sk) £ gurh'(sk) _ gue—1h'(sk)y L —
hl(Sk)e {e € }7 172a3:

Vi =

where up = ¢; and uz = d;.
o Step 3: Generate a value U from the Uniform (0, 1) distribution and, independently,
generate a value X from the following piecewise exponential probability density function:

3
p(s) = m Z exp{h(sk)—skh'(sk)—}-sh'(sk)}f[u,c_],uk)(s). (44)
k=1

o Step 4: Define an envelope function and a squeezing function by

3

ho(s) = D {h(sk) + B/ (sk)(s = 58) Hiuy s ) (5); (45)

k=1
and

h(32)_h(sl)s + s3h(s1)—s1h{s2)

, if 83 <5< sy,

80—581 S2—s81
— ¢ h(s3)-h h(s2)-s2h .
hi(s) = | Helzels 4 mhlalzalla) s, < s <o, (46)
—00, otherwise,

respectively. Compute hr(X*) and hy(X*). If U < exp(hr(X™) — hy(X™)), then let
Bj = X~. Otherwise, compute A(X*) and, if U < exp(h(X*) — hy(X*)), then let §; = X*.

If this fails, return to Step 3.

— - =

The B; generated in Step 4 has the desired conditional density, 7r(,3j|ﬂt*,f,0,ﬂ(_j)). An
example of an envelope function and a squeezing function can be seen from Figure 6.

Remarks.

1. It follows from Lemma 3.1 and the fact that A'(s;) > 0 > A/(s3) that c;=ug < 81 <up <

S2 < up < 83 < uz =d; and Vi, Vo, V3 > 0.
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2. In Step 3, X* can be generated by the following two stage scheme. Generate a discrete

random variable Z based on the density
P(Z=k)=Vi/(Vi+Va+V3), k=1,2,3;

if Z = k, generate the value of X* from the density pi(s), where

h'(sk)

pk(s) = eurh’'(sk) — euk—1h(sk) e (Sk)I(“k—l ,‘Uk)(‘s)'

It is easy to see that, if U* is a U(0,1) random variable, then {log[U*e®h'(sx) 4 (1 —

U*) eus=1# ()]} /B () has the density pi(-).

A3. The Number of Computations for Known 3

We first find the total number of computations involved in use of the closed form expression.
The number of terms in the expression for J(0;0) is #(Am.), which equals (*t™71). Recall
that, for each failure ¢; in the iteration, one must compute tﬂl --,tgm. From the definition of
W(k;i1,- -+, 4m; B), it follows that one must compute Yie1 (3) j:1)j products and 3772, (7) ?:i)

(§ — 1) sums. From basic combinatorial formulas, these are, respectively,
m m—1
. — k- o
S\ /-l o\ J J m—1
o fm\ (k-1 m+k—1
S \J 7—1 m—~1

Therefore, the number of computations in the updating of W(k; - --)'s is 2m (™¥*7%) — ("1 1y

and the total number computations for finding all W(k;---)'s (1 <k < n)is

n k— _

Z[Qm(er 2)_(m+k 1)+m]

= m—1 m—1

m+k—-2 R m4 k-1
= 2m Z ( ) z_: ( m— 1 + mn
Zm(m+n—l)— (m+n)+mn. (47)
m m

Suppose, now, that we are interested in all the first two posterior marginal moments of g; (1<

fl

J £ m), so that we also need to compute I'(a; + k — ,u/ﬁj),ﬂ;?, and Tg]j+k_u/ﬁj,j =1,---,mk=
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-1

) multipli-

1,--+,n,u = 0,1,2. That needs 4mn + 3mn? computations. An additional 3m(";'7'1’7_1
cations and ("™ ") sums are required for J(0;0). Similarly for the other J’s. Therefore the total

number of computations needed to determine these moments is

2m(m+7:'1) — (m:;n) + 5mn + 3mn2 + (2m 1 1)(3m+ 1)(n+m—1)

m—1

= [on- -7% — 14 (2m+ 1)(3m+ 1)] ("t + 3ma? + 5ma. (48)

For example, if m =3 and n =20, the right hand side of (48) equals 11,799 << 320 = 3,486, 784,401,
the latter being the number of terms in a brute force expansion of the expression in (23). The
recursive formula effectively reduces the total number of computations for a Poly-Weibull distri-
bution from an exponential rate to a polynomial rate. The time for computing a gamma function
and a power function are usually 6 times and 3 times that for computing a sum or product or
simulating a uniform (0,1) random variable, respectively. But, since the total number of compu-
tations for computing sums or products is much larger than that for the Gamma function, we
ignore this difference.

For Gibbs sampling, we need to simulate M (n+ m) uniform (0,1) random variables. There are
then 3mMn and 4mM computations to obtain the N]’-s and 92-3, respectively. In addition, 6mM
computations are needed for averages of the 87 s or of the (6%)'s. The total number of computations

for Gibbs sampling is thus

(n+11lm+ 3mn)M. (49)

References

(1] Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis, 2nd ed. Springer-
Verlag, New York.

[2] Cox, D.R. (1959). The Analysis of Exponentially Distributed Lifetimes with Two Types of
Failures. J. R. Statist. Soc. B 21, 411-421.

[3] Chuck, L., Goodrich, S.M., Hecht, N.L., and Dale E.M. (1990). High Temperature Tensile
Strength and Tensile Stress Rupture Behavior of Norton/TRW NT-154 Silcon Nitride. Ceram.
Eng. Sei. Proc. 11, 1007-1027.

[4] Devroye, L., (1986). Non-uniform Random Variate Generation. Springer-Verlag, New York.

[5] Diebolt, J. and Robert C. (1990). Bayesian Estimation of Finite Mixture Distributions, Part
II: Sampling Implementation. Technical Report, Universite Paris VI, L.S.T.A..

23



[6] Gelfand, A.E. and Smith, A.F.M. (1990). Sampling Based Approaches to Calculating
Marginal Densities. Journal of the American Statistical Association 85, 398-409.

(7] German, S. and German, A. (1984). Stochastic Relaxation, Gibbs Distributions and the
Bayesian Restoration of Images. IEEFE Transactions on Pattern Analysis and Machine Intel-
ltgence 6, 721-740.

[8] Geyer, C.J. (1991). Markov Chain Monte Carlo Maximum Likelihood, (Submitted).

[9] Gilks, W.R. and Wild, P. (1990). Adaptive Rejection Sampling for Gibbs Sampling, TR UR
90-01, Medical Research Council Biostat Unit, UK Cambridge, CB2 2BW, UK.

[10] Goetghebeur, E. and Ryan, L. (1990). A Modified Log Rank Test for Competing Risks with
Missing Failure Type. Biometrika 77, 207-211.

[11] Greenhouse, J.B. and Wolfe, R.A. (1984). A Competing Risks Deviation of a Mixture Model
for the Analysis of Survival Data. Comm. Stat., Part A, Theory and Method 13, 3133-3154.

[12] Elandt-Johnson, R.C. and Johnson, N.L. (1980). Survival Models and Data Analysis. John
Wiley Sons, New York.

(13] Martz, H.F. and Waller, R.A. (1982). Bayesian Reliability Analysis. John Wiley Sons, New
York.

[14] Mendenhall, W. and Hadel, R.J. (1958). Estimation of Parameters of Mixed Exponentially
Distributed Failure Time Distributions from Censored Life Test Data. Biometrika 45, 504-
520.

[15] Miiller P. (1991) A Generic Approach to Posterior Integration and Gibbs Sampling. Technical
Report 91-09, Department of Statistics, Purdue University.

(16] Sun, D. and Berger, J.O. (1991a). Bayesian Sequential Reliability for Weibull and Related
Distributions, Technical Report 91-40¢, Department of Statistics, Purdue University.

[17] Sun, D. and Berger, J.0. (1991b). Recent Developments in Bayesian Sequential Reliability
Demonstration Testing, Technical Report 201, Department of Statistics, The University of
Michigan.

[18] Tierney, L. (1991a). Exploring Posterior Distributions using Markov Chains, To appear in
Proceedings of 1991 Interface.

[19] Tierney, L. (1991b). Markov Chains for Exploring Posterior Distributions. Technical Report
560, School of Statistics, University of Minnesota.

[20] Townsend, A.R. (1989). The Bi-Weibull Reliability Distribution. Technical Report. Indi-
anapolis.

24



O.oc0c0ca4a03 -

O .oc0o0cOo=69 -

©o_-ocococoxrzaa -

=z.60
-o8s
©.0c0cooccog -
8 .3
BmTAL o.a9 §§$§§$$‘$S
S
o.zad-°"
BPEITAIL
O .77
O - &3
O . a9
O . =25 1
O . =211 v T
1 .04 1 -43 .82 =2 . =211 =2 .60
BETAZ
I, O .0o00000=20 Tt Q0 . 0000081 Tt 0 . 00001 4
et O . 0000202 O .0000=26=2 - OC.O0000=2=23
O .0000=28B83

Figure 5: The "Type II” Likelihood Function of (8, 32)
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0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0

0.0006

0.0004

0.0002

0.0

Marginal Posterior Density of 6;, Given 3; and S,

— exact
1/ | ----- Gibbs sampler

0 1000 2000 3000 4000 5000
6,

Marginal Posterior Density of 6;, Given 8; and 3,

exact
Gibbs sampler

0 2000 4000 6000 8000
02

B =0.5, By =20, a; = 15.0, ag = 1.90, b; = 430, b, = 10,575,000

Figure 7: Marginal Posterior Densities of 6; and 63, Given 8; and S,



envelope function

h(s)

squeezing function

Figure 8: An Example of the Envelope and Squeezing Functions



Marginal Density of 6,

0-0012 i Y A A | N I Prior
0.0010 4 —— Posterior: Numerical integration
B A O O e Posterior: Gibbs sampler
0.0008 A
0.0006 A
0.0004 -
0.0002 A
004 &~ 0 e
0 1000 2000 3000 4000 5000
6
Marginal Density of 0,
------------- Prior
0.0006 - ——  Posterior: Numerical integration
----- Posterior: Gibbs sampler
0.0004 -
0.0002 A
0.0 {4 i —~ TTe—
0 2000 4000 6000 8000
02

a1 = 28.0, ay = 10.0, by = 684, by = 18,600,000

Figure 9: Marginal Prior and Posterior Densities of #, and 0,





