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1. INTRODUCTION

A wide class of stochastic processes of interest have paths which are right continuous
with left limits (“cadlag” is the French acronym). A natural way to study their convergence
is by using the Skorohod topology, which by using changes of time allows one to “move” the
Jumps of the approximants to the times of the jumps of the limit process. The description of
the Skorohod topology is natural and intuitive, but when one applies it to weak convergence
of stochastic processes, its appeal breaks down: typically one says that one needs

Jim E{F(X.)} = E{F(X)},

for every bounded, Skorohod continuous function F. But what is a Skorohod continuous
function? What are examples of functions that are continuous in the sup norm that are
not also continuous for the Skorohod topology? In this note we attempt to remedy this
problem by showing that if X,, = (X,(t)):>0 are processes converging weakly to a process
X in the Skorohod topology, then there is a random sequence of time changes A,(t,w)
such that X, o A, converges locally uniformly to X. The key feature here is that we can
take the time change processes A,, jointly measurable in (t,w). We also show that the
time change processes A, can be taken adapted to an appropriate filtration. It is perhaps
surprising that this “obvious” result does not exist in the literature; while the first half is
mostly measure theory and the proof we give for the first statement is short, nevertheless it
uses the very deep “section theorem” of P. A. Meyer and thus it is ultimately a non-trivial
theorem.

Let L denote the class of functions which are increasing and bijective fom R, to R;+.
Let D = D(Ry4, E) denote the space of cadlag functions mapping R, into E, where E is
a given Polish space with a distance 8. A sequence z,, = (zn(t))e>0 in D converges in the
Skorohod topology to z € D if and only if there exist A, € L converging uniformly to the
identity such that z, o A, converge locally uniformly to z. This Skorohod convergence
can be described using a distance. For example a compatible distance d is given by, for
z,y € D:

d(z,y) = inf dy(z,y), where
di(z,y) = st>1€|/\(t) —t|+ ZpeN 2-? min{1, s1<1p 8(z o A(2), y(t))}.
t> t<p

By “convergence in D”, we will always mean convergence in the Skorohod topology.

We now turn to stochastic processes. Let X,, X be E-valued stochastic processes,
and suppose that one of the following assumptions holds:

(1.2) Xn convergesto X a.s. in D;

(1.3) X, converges to X weakly in D.
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Note that for weak convergence ((1.3)), the processes X, and X can be defined on different
probability spaces: (Qn, Fn, Pr) and (2,5, P), respectively.

It is now natural to ask if there exist stochastic processes A, which are changes of
time such that dj,(X,, X)) converges to 0 in an appropriate sense.

For example assume that (1.2) holds. Then for each w such that X n(w) converges to
X (w), there exists Ap(w) € L such that dp,(w)(Xn(w), X (w)) converges to 0; but it is not
a priori clear that one can choose measurable versions of the A, that would therefore be
true stochastic processes. And it is even less clear that one can choose measurable A, that
have good non-anticipating properties. If for example the processes X, and X are adapted
to an underlying filtration F = (Ft)e>0, one cannot hope to have the A,, also adapted to F;
but since the A, converge to A(t) = ¢, one can perhaps choose the A, such that they are
adapted to filtrations F* = (Fyq., )t>0, where v, is a sequence decreasing to 0. In section
three we construct such A,,.

For background information on weak convergence one can consult any of Billingsley
[1], Ethier-Kurtz [3], Jacod-Shiryaev [4], or Pollard [5].

2. TIME CHANGES AS STOCHASTIC PROCESSES

In this section we show that if stochastic processes X, = (Xn(t))i>0 converge to X
in the Skorohod topology, then there exist time change stochastic processes A, such that
Xn 0 Ap converges to X locally uniformly. (We use the notation established in section
one).

(2.1) THEOREM. Suppose stochastic processes X, converge a.s. in the Skorohod
topology in D to X. Then there exists a sequence (An)n>1 of (measurable) processes with
paths in L such that lim dy (X,,X)=0 a.s.

n—oo

Proof: Let
Un={(w,\)€eQxL: dr(Xn(w), X(w)) < d(Xp(w), X (w)) + 27"}

One easily checks that U, € 3 ® £, where £ is the Borel o-field of L (under the uniform
topology). Moreover the projection m(Up) = {w : 3\ € L with (w, A) € Uy,} is equal to all
of Q. By the measurable section theorem (see, e.g., [2, p.18, Theorem T37]), there exists
a random variable A, with values in (L, £) such that P(w : (w, An(w)) € Uy) = 1. Since
d(z,y) = )lxreﬂz., dx(z,y), we have dp, (X, X) < d(Xn,X) + 27" a.s., whence the result. |

(2.2) Remark: Because we have used the section theorem, we cannot omit the “almost
surely” in the conclusion of Theorem (2.1), even if X, (w) converges in the Skorohod
topology to X(w) for all w € Q.



(2.3) THEOREM. Let X, be stochastic processes such that X, converges weakly in
D to X. Then there exists an auxiliary space (Q',F, P'), and processes X vy X' defined on
this space such that L(X}) = £(X,), £(X') = £(X), and also processes Al, with paths in
L such that nli_{rgo drr (X, X') =0 as. (dP').

Proof: L(X') = £(X) means that the two processes X' and X have the same distri-
bution. Applying the Skorohod representation theorem, we can find a space (2,3, P') on
which there exist X;,, X' with £(X],) = £(X,) and £(X') = £(X), and also X,, converges
a.s. to X' (dP'). Thus we need only to apply Theorem (2.1).

(2.4) THEOREM. Let (Xn)np>1, X be stochastic processes such that X, converges
weakly in D to X. Then for each n one can construct an extension ", 30, P of
(Qn,Fn, Pn) on which there exist a process Y, = (Yo(t))e>o with L(Y,) = L(X), and
a process A}, with paths in L, such that dr1(Xn,Yn) converges in distribution to zero.

Proof: One can easily construct an extension (2", 3", P") of (Rn,Fn, P,) and two
processes (Y, A])) with paths respectively in D and L, such that, with the notation of
Theorem (2.3),

[‘-(Xna Y, AZ) = ‘C(Xr,n XI, A'n)

In particular £(Y;) = £(X), and L(dpy(X,,Y,)) = L(dpr (X, X")). However by Theorem
(2.3), dar (X, X") converges a.s. to 0, and we have the result. J§

3. TIME CHANGES AS ADAPTED STOCHASTIC PROCESSES

In Section 2 we showed that if X,, converges to X in the Skorohod topology, then there
exist random time changes A,, that are stochastic processes such that X,, o A, converges
to X in the appropriate sense. We did not discuss however whether or not the processes
A, could be chosen to be adapted to an appropriate underlying filtration of o-algebras. If
for example the processes Xy, X are defined on the same space, and letting (for t > 0),
Fa(t) = 0(Xn(s),X(s);s < t) denote the natural filtration, one cannot hope to have
An(t) € Fn(t), each t > 0, in general. (After all, the processes A, are “changes of time”!).
However since Ap(t) converges uniformly to A(t) = ¢, we will show that it is possible to
choose the A, such that they are adapted to Gn(t) = Fat + 7a), t > 0, where v, is a
sequence of constants decreasing to 0 as n tends to oo.

(3.1) THEOREM. Suppose stochastic processes Xp converge a.s. to X in D, and let
Fn(t) = 0(Xn(s),X(s),s < t). Then there exist a sequence of constants vn decreasing

to zero, and processes A, with paths in L such that A, is adapted to G,, where G,(t) =
Fa(t + vn), and moreover lim dy (Xn,X)=0 as.
n—oo

Proof: Choose and fix an integer p, and a > 0, 8 > 0. Let

N(a) ={w:86(X(t),X(t—)) = a, for at least one ¢ > 0}.
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Let T* (respectively T:), for i > 1, be the successive jump times of X (resp. X,) where
the size of the jump exceeds a. Let T° = T8 = 0. Let

I(n) = I(n,a,B,p) = inf{i : T* > p or |T* — T}| > B}
S =(T'AT; - B)*
Si=T'VTi 4+ 8.

We now define a process A, = A,(a, B, p) with paths in L as follows: A, is piecewise
linear, with discontinuities of its derivative at the following times only: the times T: for

1 < i < I(n); times $i7! and St if §i-1 < Siand1<i< I(n); and S,I,(")_l. Therefore
it suffices to give the values of A, at these points, to know An(T;) =T for 1 <i < I(n),
and A,($571) = 857 and A,(Si) = Si i Si-1 < S for 1< i < I(n), and finally to set
An(t) =t if t > §IM-1,

Since T* and T are (Fn(t))1>0 stopping times, we clearly have
(3.2) An(a, B,p;t) is Fn(t + 28) — measurable,

whereas by construction we also have

(3.3) sup|An(a, B, p;t) — t| < sup(|Ty, — T*[;1 < i < I(n)) < B).
>0 i

Last, we note that if

Vn(a, ﬂ’p) = sup {6(X(T1)’XR(T:1))
i21 and T¢-1<p

+ sup _ 6(X(s), Xn(t)) },
8,t:[s—t|<B;Ti~1<s<Ti A(p+1); Ta~ 1 <t< TS

(with the convention §(X(T%), X,(T¢)) = 0 if T% = oo or T;; = oo) we deduce from (3.3)
and the distance (1.1) that

(3.4) QA n(er8,0) (X, Xn) < B+ 27D 1V, (a, ,p) on {TI™ > p}.

Next we define a “f-modulus of continuity” of X on the interval [0,p + 1], without
the jumps of size greater than «, as follows:

c(a, B, p) = sup sup{§(X(t), X(s)): |t —s| < B,s <p+1,T" ! < s < t < T'}.
i>1
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Then c(a, B, p) above is a random variable, and moreover

(3.5) limsup ¢(a, B,p) < a.
B0 ,

Using the assumption of a.s. convergence of X,, — X and classical properties of the
Skorohod topology (cf., eg, any of [1], [3], [4], or [5]), we have outside a null set:

(3.6) T: - Tiforalli>1,

(3.7) lim sup Va(a, B, ) < ela, B, ),

and (3.6) yields, again outside a null set:

(3.8) T > p for all n large enough (depending on w).

Now, for each p let a, € (0,277] with P(N(e;,)) = 0 (such ap’s always exist). By
(3.5) there is B, in (0,27?] with B,41 < B, and

P(c(ay, Bp,p) > 2= 71)) < 2P,
Then (3.7) and (3.8) yield a strictly increasing sequence of integers n, such that
(3.9) P{Va(ap,Bp,p) < 272 and TIM™ > p foralln>n,} >1-2-0-1),

Therefore, if Ap = {d,(ap,8,p)(X,Xn) < 27?3 for all n > n,} we deduce from (3.4)
and (3.9) that P(A4,;) > 1— 2"~ Then the Borel-Cantelli Lemma gives

(3.10) P(A) =1, where A =limsup 4,.

p—oo

Our final step is to set ¢, = sup(p : np, < n) and A,, = An(ay,, By, ,qn) and v, = 28, .
By (3.2) we have that A, is adapted to the filtration G,(t) = Fn(t + n), t = 0. The
sequence g, increases to 400, so 7, decreases to 0. Finally, since n > n4., we have
dp,(X,X,) <27(02=3) on 4, , hence Jlim d, (X, X,) = 0 on the set A of (3.10): that is,

dp,(X,X,) — 0 a.s., and the theorem is proved. I
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(3.11) THEOREM. Suppose stochastic processes X, converge weakly in D to a process
X. Then for each n there exists v, > 0 with nlingo Yn = 0, and an extension (Q,, F! P!
of (Qn,Fn, Pn) with a process Y, on Q) such that L(Y,) = L(X), and there exists a
process A;, with paths in L such that A" is adapted to (Gn(®))t>0 = (Fn(t+7n))e>0, where
Fa(t) = 0{Xn(s),Ya(s);s < t}, and such that lim dpn(X,,Y,) = 0, with convergence in
n—oo
distribution.

Proof: As in the proof of Theorem (2.3), by the Skorohod representation theorem we
can find a space (€', ', P') on which there exist X, X' with £(X") = £(X,), and £(X') =
L(X), and lim X] = X' a.s. (dP'). Therefore by Theorem (3.1) there exists a sequence
of constants v, decreasing to 0, and processes A! adapted to G.(t) = F,(t+7),t>0
such that lim dj. (X}, X') =0 as.

n-—o0

Next, as in the proof of Theorem (2.4) one can construct an extension (€",3", P")
of (5, Fn, Py) such that there exists a process Y, with £(Y,) = L(X), and a process
A with paths in L such that lim drn(Xn,Ys) = 0, with convergence in distribution.
However since L(Xn, Yn, Ay) = £L(X,,, X', A},), we have £(Y,,) = £(X), and A" is adapted
to (3'(t + 7a))ex0, where FU(t) = 0{X(s),Yn(s);s < t}. Since lim drn(Xa,Yy) =0, the

= n—oo

theorem is proved. J
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