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Abstract

The problem of selecting the population with the largest probability of success from
among k(> 2) independent Bernoulli populations is investigated. The population to be
selected must be as good as or better than a control. It is assumed that past observa-
tions are available when the current selection is made. Therefore, the empirical Bayes
approach is employed. Combining useful information from the past data, an empirical
Bayes two-stage selection procedure is developed. It is proved that the proposed em-
pirical Bayes two-stage selection procedure is asymptotically optimal, having a rate of
convergence of order O(exp(—cn)), for some positive constant ¢, where n is the number
of past observations at hand. A simulation study is also carried out to investigate the
performance of the proposed empirical Bayes selection procedure for small to moderate
values of n.
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1 Introduction

Consider k independent populations 7y, ..., 7%, where for each ¢, population ; is charac-
terized by the value of a parameter of interest, say 6;. Let 0;) < ... < ) denote the ordered
values of the parameters 0y, ..., 0. It is assumed that the exact pairing between the ordered
and the unordered parameters is unknown. A population 7; with 8; = 04 is called the best
population. The problem of selecting the best population was studied in papers pioneered
by Bechhofer (1954) using the indifference zone approach and by Gupta (1956) employing
the subset selection approach. A discussion of these approaches and various modifications
that have taken place since then, can be found in Gupta and Panchapakesan (1979,1985).

In many practical applications, one may not only be interested in the selection of the
best population, but also desire that the quality of the selected population be good enough.
For example, consider k different competing drugs developed for a certain ailment. Let 6;
be the success probability of curing the disease by using the drug =;. We are interested
in the selection of the drug associated with the highest success probability and desire the
corresponding success probability to be at least equal to some required standard or control
value. If there is no drug which achieves the required standard, one may not wish to select
any. In the literature, Bechhofer and Turnbull (1978), Dunnett (1984) and Wilcox (1984)
have considered such a selection goal and investigated selection procedures for selecting the
best normal population compared with a control, respectively.

In this paper, we are concerned with the problem of selecting the best Bernoulli popu-
lation provided it is as good as a specified standard. The Bernoulli model occurs in many
fields, such as medicine, engineering, and sociology. A number of statistical procedures based
on fixed sampling or sequential sampling rules have been studied in the literature for finding
the best Bernoulli population. Sobel and Huyett (1957) have studied a fixed sample pro-
cedure through the indifference zone approach. Gupta and Sobel (1960) have studied this
selection problem using the subset selection approach. Tamhane (1980) studied the prob-
lem of selecting the better Bernoulli treatment using a matched samples design. Sanchez
(1987) investigated a modified least-failures sampling procedure for Bernoulli subset selec-
tion. Gupta and Huang (1976) and Jeyaratnam and Panchapakesan (1990) investigated
certain selection procedures based on entropy functions. Bechhofer and Kulkarni (1982) and
Kulkarni and Jennison (1986) studied sequential selection procedures. Yang (1989) treated
this selection problem through a Bayesian approach. Gupta and Liang (1988, 1989) have de-
veloped empirical Bayes procedures for selecting the population associated with the highest
success probability.

This paper deals with two-stage selection procedures for selecting the best Bernoulli pop-
ulation compared with a specified standard using the parametric empirical Bayes approach.
The formulation of the selection problem is described in Section 2. A Bayes two-stage se-
lection procedure is derived in Section 3. We then construct an empirical Bayes two-stage
selection procedure in Section 4. The asymptotic optimality of the proposed empirical Bayes
two-stage selection procedure is investigated in Section 5. Bayes and empirical Bayes two-
stage selection procedures for a special case are studied in Section 6. It is proved that the
proposed empirical Bayes two-stage selection procedures have a rate of convergence of order



O(exp(—cn)) for some positive constant ¢, where n is the number of past observations at
hand. A simulation study is also carried out to investigate the performance of the proposed
empirical Bayes two-stage selection procedures for small to moderate values of n. The results
of this study are described at the end of the paper.

2 Formulation of the Selection Problem

Consider k independent Bernoulli populations, say 7i,...,7T, with unknown success
probabilities 0y,...,0, respectively. Let 0 < ... < 0 denote the ordered values of
the parameters 0y,...,0;. It is assumed that there is no prior information about the true

pairing between the ordered and the unordered parameters. Any population associated with
the largest 0 is defined as the best population. For a given standard 0o(0 < 6 < 1),
population 7; is said to be good if 8; > 6o, and bad otherwise. Our selection goal is to select
a population which should be the best among the k competitors and good compared with
the standard 6,. If there is no such population, we select none.

A two-stage selection procedure is described as follows. First, we have M independent
trials taken from each of the k& Bernoulli populations. For each z = 1,...,k, let X; denote
the number of successes among the M trials taken from the population w;. Based on the
observations X = (Xj,...,X}), one decides whether the selection should be made immedi-
ately or not. If one decides to make the selection immediately, then based on the data one
may select a population from among the k populations or one may select none in which case
the k populations are excluded as bad populations. If one decides not to make the selection
immediately, then one (potential) population is chosen, say population =;, and further m
trials are taken from this population. We let Y; denote the number of successes among the m
independent trials from population x;. Then, based on the data X and Y;, one may decide
to either select population ; as the best population and consider m; to be good, or select

none and exclude all the k& populations as bad populations.

Let @ = {§ = (01,...,01)]0 < 0; < 1,4 = 1,...,k} be the parameter space. Let

k

¢ = (ag,a1,...,ax) be an action, where a; = 0,1;z = 0,1,...,k and _an,- = 1. When
a; = 1 for some ¢ = 1,...,k, it means that population =; is selected as the best population
and considered to be good. When ap = 1, it means that all £ populations are excluded
as bad populations. Also, let ¢ denote a function associated with the termination action.
When ¢ = 1, it means that the selection is made immediately after X is observed. When

t = 0, it means that further m trials from some of the k populations are needed in order
to make the selection. When ¢ = 0, let A = (Ay,...,A) be the identity action, where

k
A;=0,1,i=1,...,k, and §1 A; = 1. When A; = 1, it means that the further m trials

are taken from the population 7;. For the parameter § and action (g,t,4), the loss function

L(4,(g,t,4)) is defined to be:

k
L(9,(a,t,4)) = max(f,0) — tZ a;0; + Mkc,

=0



k
+(1 - t) {— ZA.-[a;(),- + (1 — a,')eo] + mcz} , (2.1)
i=1

where ¢; > 0 is the cost for each trial taken at the first stage, and c; > 0 is the cost for each
trial taken at the second stage.

Note that conditional on the parameter 0;, X; ~ B(M,¥6;),Y; ~ B(m,0;) and X; and Y;
are conditionally independent. We let f;(z]0;) and g;(y|0;) denote the conditional probability
functions of X; and Y;, respectively. That is,

M

z)ef(l —0)M " 2=0,1,...,M;

ftalo = (

and

gi(yl0i) = (T;)of(l —-0.)" Y,y=0,1,...,m.

It is assumed that for each i =1,...,k, 0; is a realization of a random variable ©; which
has a beta prior distribution with probability density function h;(#), where

I'(ai)
T(aip)l(ei(1 = pi))

where 0 < p; < 1,05 > 0, both p; and a; are unknown. The random variables ©;,...,0;
are assumed to be mutually independent.

Let X be the sample space generated by X and let ) be the sample space generated by
Y =(Yi,...,Y:). A two-stage selection procedure, in general, consists of the following rules:

hi(6) = goiri—1(1 — 9)*(-#)-1 0 < h < 1

(a) Stopping rule 7: For each £ € X, 7(g) is the probability of terminating the sampling
after observing z and making a selection immediately based on z.

(b) Identity rule § = (61,-...,6): For each g € X, 6;(g) is the probability of taking the
additional m trials from the population 7; when the decision of going to the second-

k
stage is made. Note that § should satisfy that '§1 bi(z) =1forall g € X.

(c) First-stage selection rule ¢y = (dio,d11,-..,d1): For each g € X, dii(z),t = 1,...,k,
is the probability of selecting the population m; as the best and good, and dio(g) is
the probability of excluding all the k¥ populations as bad and selecting none. Also,

£ dufz) = 1forall g € X.

(d) Second-stage selection rule dy = (d20,da1,-..,dak): For each g € X,y € Y, when the
decision of going to the second-stage sampling from the population =; is made, dyi(z,y)
is the probability of selecting the population =; as the best and good, i = 1,...,k.
It should be noted that dy;(z,y) depends on y only through y; since there are no

k
observations from other populations 7;,j # 1. Also, do(z,y) = 2 8i(z)[1 — dai(z, ¥))
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is the probability of selecting none based on g and the second-stage observation y;
for some ¢ = 1,...,k. For notational convenience, in the sequel, we may use either

dai(z,y) or da(z, ys)-

Under the preceding statistical model, the Bayes risk of the two-stage selection procedure
(1,8, d1,d2) is denoted by R(7,8,d1,d2). Then a straightforward computation yields the
following;:

R(T, é,dl, d2)

= (C- E T(-’E) Zdlz Sot(xtlau,uﬂ):l f( ) (2'2)

IeX =0
k m
+ Yo [1-7(2)] {m62 — 6o+ 6i(z) [E d2i(z, y:)[6o — ¢i(-"3i,yi|ai,#i)]fi(yilxi,ai,ﬂi)} } f(z)
Ted i=1 vi=0
k
2 dui(2)[0o — wi(wile, pi)] — mee
1=0
= > 7(z) \ f(z)
bex - X bi(z) LE_: dai(%, yi)[0o — ¢i($iayi|ai7ﬂi)]ﬁ(yi|$iaaiaﬂi)l
k
+ ¥ {m62 — 0o+ 6i(z) [Z d2i(z, yi)[0o — "/’i(l'iayz’laial‘i)]fi(yilmiaaia/‘i)] } f(z)
TeX i=1 yi=0
+ C, (2.3)
where p;(z;|a;, i) = E[0:i|X; = zi] = 51"}—:‘%'- is the posterior mean of ©; given X; = z;
for each i = 1,...,k, and po(xo|ao, o) = Oo; Vi(zi, yilou, i) = E[O:|X; = z,;,Y: = yi] =

W& is the posterlor mean of ©; given (X;,Y;) = (z;,y;) for each ¢ = 1,...,kC =
fn max(a[k], 00)dH (8) + Mkc, and H() is the joint distribution of @ = (©4, .. @k) f(q;) =
I(ci)l (@i + o) (M — 2 + 0i(1 — ps))
() fi(z;|0)h; 0d0—< )
=, seloo = () R — e o0

is the marginal probability function of X;; and f;(yi|zi, i, i) is the marginal conditional
probability function of Y; given X; = z;. Again a direct computation yields

m\ T'(@: + yi + aipa)T(M + m — z; — yi + (1 — ;) )T(M + ;)

i D(z; + i) T(M — z; + (1 — ) )T( M + m + ;)

filyilzi, iy pi) =

= {(:) yﬁ (zi+J +aim)mﬁ_ (M —z; + (1 —ﬂi)+j)}

=0 i=0

m-—1
(M +j+a;)”
J=0
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£
where [ =1if £ = —

=0

3 Derivation of a Bayes Two-Stage Selection Proce-
dure

In order to develop an empirical Bayes two-stage selection procedure, as a first step, we
derive a Bayes two-stage selection procedure for the selection problem under consideration.

A First-Stage Selection Rule

For each g € X, let I(g) = {i|pi(ziles, ps) = Joax ;(z;la;, 1), = 1,...,k}. Define

i* = 4*(z) = min{i|i € I(z)}. We then define a first-stage selection rule g7 = (dw, .,dB,
as follows:

{If @i (zir|ae, i) > 0o, define dB.(z) = 1 and dﬁ-@) =0 for j # ¢*. (3.1)

If ie(Tiv|atis, pin) < bo, define di(g) =1 and dfi(g) =0for j =1,...,k.
A Second-Stage Selection Rule

We define a second-stage selection rule g2 = (d2), ..., d5,) as follows: Foreachg € X,y €
Y,and i =1,...,k, define

1 if (s, yilew, pi) = Oo;
Bary) = e,y = { L T Hilmosilen pi) 2 0o (32)
0 otherwise;
and .
dan(2,y) = 3_ 67 (2)1 — d3i(z,y)],
=1
where §8 = (68,...,6P) is the identity rule defined below.
An Identity Rule
For eachi=1,...,k, and £ € X, define
Ti(zloi, i) = Y do(z, ¥:)[00 — Wiz, yilow, ) filyilms, e, i) (3.3)

yi=0

Let J(2) = {j = L., kIT,(elag, 5) = min Ti(ela, )} and let j*(z) = j* = min{jlj €
J(z)}. We then define an identity rule éB (6{3 y-,00) as follows:
1 if j = g%
67 (z) = { ’ 3.4
i (@) 0 otherwise. (34)

A Stopping Rule



For each z € X, let

k
Q(zla, 4) Zd (2)[00 — pi(wileu, p)] — mez — Y 67 (2) iz, i), (3.5)

=0 =1

where ¢ = (a1,...,ax) and g = (g1,...,ur). We then define a stopping rule 72 as follows:

B(z) = {1 if Q(zle, p) < 0;

0 otherwise.

(3.6)

Then, we have the following result:

Theorem 3.1. The two-stage selection procedure (75,8, dP,dP) defined through (3.1)-
(3.6) is a Bayes two-stage selection procedure.

Proof: Let (7,4, d1,d2) be any two-stage selection procedure. We only need to prove that
R(T7 é, dl) d?) - R(TB) éB, d']_B, dzB) 2 0. NOW,

R(7,8,d1,d2) — R(7%,65,d2,d5) = I + I + 111, (3.7)
where
I = R(T, (5, dl, d2) - R(T7 67 dlB’d2B)a
IT = R(Tv g, dlBa df) - R(T’ ‘53, dlB, dzB)v (3'8)
IIT = R(r,6%,48,d5) — R(rB,¢5, 4%, dP).
(From (2.2),
k
1= ¥ (@) {Z[dﬁ-(w) — dui(@pi(aile m)} f(z) (39)
IeX =0

+ Y [1—7(z)] {26 [i [d2i(2, y:) — d5i(, y:)][B0 — Wilwi, yilews, i) Fillyil i, a;,ﬂ;)} } f(=).

TeXx ¥i=0

By the definition of df and d,

k
2 i) — dui(@)lpi(wilos, ps) = max(pilwilos, i) = Tico dui(z)pi(zil s )
=0 Z 0.
Also, by the definition of g2, for each i = 1,...,k, we have,

[dai(2, y:) — d5i(%, ¥:)][60 — ¥i(@i, yilow, )] = 0.

Hence, I > 0 since all the other terms in (3.9) are nonnegative.



;From (2.2) again,

k
= Y1 -()] {z(&-(x) — 65(@)|Ti(eos, u,-)} f@) >0, (3.10)

TeX i=1

since,

[6:(2) — 67 (2) Tl )

'P’J*

1

-
Il

k
= 261($)T($|a1,/~‘1) - lrglsnk Ti(z|ev, pi) 2 0. (3.11)
Now, from (2.3)
II= ZX[T(éG) —75(2)]Q(zle, #) f(2) 2 0 (3.12)
e

which holds by the definition of 72 (see (3.6)).
The proof of the above theorem is completed by combining (3.7), (3.9), (3.10) and (3.12).

Remark: Note that by the definitions of d2(z),d2(z,v:), vi(zilai, pi) and ¥i(zi, yiley, i),
-1 < Tizlos, ;) < 0foralléi = 1,...,k and for all £ € A'. Hence, §p — 1 — mc; <
Q(z|e, #) < 1 — mcy. Therefore, Q(zle, g) < 0if me; > 1. In the following, we assume that
¢; is small enough so that me; < 1.

4 The Proposed Empirical Bayes Two-Stage Selec-
tion Procedure

In the empirical Bayes framework, it is generally assumed that there are certain past ob-
servations available when the present selection should be made. At time j = 1,2,..., let
X;; denote the number of successes among the M trials taken at the first-stage sampling
from population m;. Let ©; = (04;,...,0%;) be a random vector where ©;; stands for the
(random) probability of success for each trial taken from popula.tion m; at time 5. We as-

sume that ©;, 7 = 1,2,... are iid with a prior density h(f;) = H hi(0:5), ;5 = (615, . . -, Ok;j)-

Therefore, conditional on @,J = 0;;, Xi;10:;; ~ B(M,9;;), and X,J has a margmal probability
function f;(z). Let X; = (Xuj,...,Xk;) denote the random observations of the first-stage
sampling taken at time j = 1,2,.... We also let X.41 = X = (Xi,..., X)) denote the
random observations of the first-stage sampling taken at the present moment. Then, we
have for each 1 =1,...,k,

S[5] -
E[(%)z] = %ﬂ“‘”‘;(ﬁ:‘f%‘l)zw (4.1)



A direct computation yields o;; = %, where

{Di=,ui—1/e,

2 (4.2)

Ci=vi— 4+ 53— ui.

Note that D; = E[%’-(l - %‘I‘-)] > 0 since 0 < %’- < 1 and X;; is a non-degenerate

random variable. Also C; > 0 since o; > 0. The parameters y; and v; satisfy the following
2

inequalities: r; < v; < p; where r; = & — %['- + 2. From (4.2), o; can be viewed as a function

of u; and y; for y; € (0,1) and v; € (i, u;). If p; is kept fixed, o; is decreasing in »; and lim

) Vi— i
a; =0 and lim a; = oo.

Let Y .
Hin = %El(xij/M),
- (4.3)
Vin = '.,1; E(Xu/M)z
J=1
Also, let
Cinzyin_&‘l'ﬁu'_ﬂ?
Mt b (4.4)
Din = Win — Vin.

Note that the moment estimators y;, and v;, are unbiased estimators of y; and v,
respectively. Though C; > 0, it is possible that the estimator C;, may be nonpositive.
Hence, we define

Cin
oo otherwise.

Da if(C.
Qi = { if Cin >0, (4.5)

Since ah_r'réo wi(zi|ai, pi) = p; and ah_r& ¥i(zi, yi|ou, i) = pi, we define empirical Bayes
estimators @i, (z;) and ¥ (x;,y:) for the posterior means p;(z;i|ai, ;) and ¢;(z;, yi|ai, pi),
respectively, as follows:

Titoin tin : R
so,-n<z1->={ N, (46)
Win otherwise;
and situtentin if G, > ()
sttt if O, >
¢in(mi,yi)={ Mtmetin o (4.7)
tin otherwise.

Also, alEIlw filyilzs, ey ) = (;") pi(1 — p;)™"¥%. Therefore, we define an empirical Bayes

estimator for the marginal conditional probability function f;(y:|z;, @i, ;) as follows:

fi(yilziy Ctiny pin) if Cin > 0,

fin(yilxi) = { (Z:)/ﬁ.(l _ mn)m—y.’, otherwise. (4.8)

7

Now, we propose an empirical Bayes two-stage selection procedure (7*", §*", d;*, d5") as
follows:



Empirical Bayes First-Stage Selection Rule d;" = (d{2,...,d}})
For each g € X, let L,(z) = {t = 1,...,k|pn(z;) = max go_,,n(:vj)} Define ¥ = iX(g) =

min{z|¢ € I,(z)}. Then, we define ¢;" (dlo, .,di%) as follows

{If Pisn(Ziz) 2 Oo, define di%k (z) = 1 and di}(z) = 0 for i # ¢}, (49)

If pisn(ziz) < o, define dij(z) =1 and di?(z) =0 for: =1,...k.

Empirical Bayes Second-Stage Selection Rule d5" = (d3f,...,d3})
We define ¢;" as follows: Foreachz € X andy€),i=1,...,k,

Ty N 1 if in i,iza,
d;; (;c,y)=d2,-(a;,yi)={ if in(zi,4:) 2 0o (4.10)

0 otherwise;

and
k

dio(z,y) = 3 6" (2)[1 — 37 (2, )]
=1
where §** = (6",...,6;") is the empirical Bayes identity rule defined below.
Empirical Bayes Identity Rule §** = (61",...,6;")
For each: =1,...,k, and £ € X, define

Tin(éE Z d (15, yt [00 - ’l,[)m(-’l?“ yt)]fm(yllxt) (4'11)

yi=0

Let Ju(z) = {7 = 1,...,k|Ti(z) = lréliiélk Tin(z)} and let jX(z) = sk = min{j|; € J.(2)}.
Then, the empirical Bayes identity rule §** = (62",...,6:") is defined as:

*N 1 if ] == ‘,;:,
5 (z) ={ J=7 (4.12)

0 otherwise.

Empirical Bayes Stopping Rule 7"

For each z € A, let
k k
Qn(z) = Z:d’{?(%‘)[ao — @in(zi)] — mey — E_: 6™ (2)Tin(2)- (4.13)

We may use Q,(z) to estimate Q(z|¢, #) and define an empirical Bayes stopping rule 7**
accordingly. That is, for each g € X, define

™ (g) = { 1 if Qu(z) <0, (4.14)

0 otherwise.

10



5 Asymptotic Optimality of (7*", §**, d;", d5")

Consider an empirical Bayes two-stage selection procedure (7", §*, df, d3). Let R(7",
&, d?, d?) be the associated conditional Bayes risk (conditioning on the past observation
X;,7=1,...,n) and let E,R(r",8",d}, d%) be the overall Bayes risk of the empirical Bayes
two-stage selection procedure (7, §", dt, d3), where the expectation E, is taken with respect
to the probability measure generated by (X;,j = 1,...,n). Since (7B,§B,d2,dP) is the
Bayes two-stage selection procedure, R(7", §",d},d3) — R(B,6B,d2,d2) > 0 for all X,j =
1,...,n, and for all n. Hence, E,R(T",§",d7,d3) — R(7B,85,d2,d8) > 0 for all n. The
nonnegative regret risk E,R(7",§",d",d?) — R(rB,§8,dP,dP) is always used as a measure
of performance of the empirical Bayes two-stage selection procedure (7%, §",d7, d3).

Definition 5.1. A sequence of empirical Bayes two-stage selection procedures {(7", §"

dr, dp)}2, is said to be asymptotically optimal of order {e.} if E,R(r",d",d},d3) —
R(7B,§8,d8,d8) = O(e,), where {e,} is a sequence of positive numbers such that Jim &, =
0.

In the following, we evaluate the asymptotic optimality of the proposed empirical Bayes
two-stage selection procedure (7*", §**, di", d5").

By definitions of the two selection procedures (78, §2,d2, dB) and (7*", §**, di", d3"), we
have:

R(r™, & di", d5") — R(7%,6°,d7,d7) = I + I + 11, (5.1)

where

0 S In —_ R(T*n 5*n d;n’d*n) _ R(T*naé*nadlBadf)
Y- T (@){[di(z) — dip (2)][pie (wir Jetie, priv) — O]

Tex

+dry (2) — d’{f( Nlpis (il piz) — 0]} (2)

+ Z [1—7" ]{Z 6*n '? [Z[d;? z dg( ,yz)][ﬁo - ¢1($1ay1|azaﬂt)]

TeX =1 yi=0

xfi(yilwiaai’/‘i)]}f(@)a (52)

0< II, = R( *n 6*11 dlB,dB) R( -m,é*B,dlB,df)
= 3 [1-m"@)H5 (@) — 6 (@) Ts (zloye, pje) (5-3)

TeX

+[852(z) — 65 ()53 (zlay, i) } f(2);
and

0<III, = R(r",8§%,d7,d3) — R(r®,6%,47,43)
Y [7(z) — 7 (2)]Q(zle, ) f (). (5.4)

TeX
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Let I°(z) = {¢ =1,...,k|i € I(z)}, the complement of I(z) relative to the set {1,...,k}.
Note that iy, € I(g) iff @iy (zig oy, pig) = pir (zix s, pis ) I [0 (2) = A1 (2)][in (e cvin, priv)—
8] = —[df. (z) — di% (2)][wis (zis s, piz) — Bo]. Also, iy, & I(z) implies that there exists a
7 ¢ I(z) such that ©in(z;) = @in(z;) for all ¢ € I(z). Let

%, = ze'%{so,'(wilai,m) — pi(@jlay, p)li € I(z),5 € I°(z)}
Yig) = {0<yi < mli(wi, yilos, ) # o}
and b, = gg/%lré%nk Jf,fl(ll:ﬂ){leo — (s, yilou, pi)|}-

Note that &, > 0 and b; > 0 since the sample space under consideration is finite.
Since 0 < 7*(z) < 1, |pi(wilas, i) —00o] < 1,0 < §"(z) < 1 and [3hi(i, yilew, pi)—00] < 1
for all z,y; and 7, and 0 < f;(yi|zi, i, i) < 1 we have

EI, < 3 3 3 Pu{ein(z) 2 oin(2:)}f(2)

TEX icI(Z) jEI(T)

k
+> 2 [ > Puldii(z,y) # dzb;('?ayi)}fi(yilxi,ai,#i):l f(z) (5.5)

TeX i=1 |yiedi(ZT)

< k> [Z PoAloin(z:) — pi(zi|ai, pi)| = b1} f(2)

zex Li=1

k
+ >N [ > Pu{lthin(zi vi) — vi(@i, i), )| > b2}ﬁ(yi|xiyai,ﬂi):| f(z),

TeX i=1 [y, €Xi(T)

where P, is the probability measure generated by (X;,7 =1,...,n). Let
2%, = min{T(zlas, 1) — Ti(elas, )l € J(2), € J*(2)}

where J°(z) is the complement of the set J(z) relative to {1,...,k}. Then, b3 > 0. By
noting that —1 < Ti(z|ay, pi) < 0 for all ¢, we have

E L, < 3 3 3 Pu{Tin(z) < Tul(2)}f(2)

TEX iEI(T) j€I (D)
k
< kY Y Pu{lTin(z) — Ti(gloi, )] > b} f(2). (5.6)

TeX =1
Finally, let &1 = {z € X|Q(zle, g) # 0} and let by = min{|Q(z|a, u)[}. Then by > 0.
rei;
By noting that |@(z|a, ¢)| < 2, we have
EIIL, < 2 37 P{m™(z) # 7°(2)} f(2)

ek

< 2 ) Pu{lQu(z) — Qzle, w)] 2 b4} f(2). (5.7)

Te
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Therefore, from (5.1)-(5.7),
E.R(T™", 8", ", &") — R(r”, 67,47, d7)
k
< kY| Pu{lei(e:) — pilwilai, wi)| = b1} f(2)

TeX =1

k m
+ 2> [Z Po{ltbin(xiy ys) — i, yilow, pi)| = ba} fi(wilys, ey i) | f(2)

TekX i=1 |y;=0

k
+ k20 D Pu{|Tin(z) — Tilglos, p)l = b} f(2) (5.8)

.Z;GX =1

+ 2 Y Pud{lQu(z) — Qzle, )| > ba} f(z).

Tet

Hence, in order to investigate the asymptotic optimality of the empirical Bayes two-stage
selection procedure (7*",§**, d;", d3"), it suffices to study the asymptotic behavior of

Po{lpin(z:) — pi(zilou, pa)| 2 b1}, Po{|¥in(i, ) — ¥i(2i, il o, pi)| > ba},
Po{|Tin(z) — Tilzles, pi)| = ba} and Pr{|Qn(z) — Q(zle, #)| = b4} for £ € A,

respectively. Now,

{lpin(z:) — pi(wilo, )] = b1}

C {lpin(zi) — pi(zilos, )| 2 b1, Cin > 0} U {Cin < 0}, (5.9)
Since pi(z;|ai, pi) = E'J—_‘:;"i'- is a continuous function of (e, i;), when C;, > 0, there exists a
positive constant g;(z:, o4, i), which depends on z;, ; and g;, such that

{lpin(z:) — wi(zil i, pi)| 2 by, Cin > 0} (5.10)
C {lain — ail 2 qia(zi, 0y ), Cin > 0} U {{ptin — pti| > qir(zs, iy i), Ci > 0}

Hence,

Po{lpin(z:) — pi(zilou, pi)| 2 b1} < Poflain — il 2 gin(i, i, i), Cin > 0}
+Pod{|pin — pi| 2 qir(:, i, ), Cin, > 0}
+Pn{Cin S 0}

Similarly, for each z; and y;, there exists a positive constant g;z(z;, y:, ai, ;) such that

Pod{[tin(zs, yi) — vi(@i, yilo, wi)| = ba}
< Po{|cin — ai] > qia(wi, yi, iy i), Cin, > 0} (5.11)
+ P {|ptin — pi|l 2 gi2(zi, i, iy phi), Cin > 0} + Po{Cin, < 0}.

13



Next, we consider the term P, {|T;.(z) —Ti(z|c, i)} > bs}. We first show that Ti(z|ou, p)
is a continuous function of («;, g;). From (3.3), T;(z|u, p;) is a summation of finite terms,
namely, d3}(z, y:)[0o — ¥i(2i, ilew, pi)| filwilzi, 0, i), yi = 0,...,m. Therefore, it suffices to
investigate the continuity property of each term. For this purpose, we introduce the following
lemma.

Lemma 5.1. Let p(t) be a continuous function of the variable t. Define

1 ifpt) <0
t) = ’
W) {0 otherwise.

Let P(t) = W(t)p(¢). Then P(t) is a continuous function of ¢.

The proof is straightforward by using the definition of continuity. The detail is omitted
here.

It is clear that [0y — vi(z:, yilou, )] fi(yilzi, i, p:) is a continuous function of (o, ). By
Lemma 5.1 and the definition of d3(z,y;), it can be seen that Tj(z|oy, s;) is a continuous
function of (a;, ;).

Then, applying an argument similar to what we used in the preceding, we can assert:
There exists a positive constant ¢;3(z;, a;, i) such that

Po{|Tin(2) — Tiz] i, pi)| > b3}
< Po{lain — ai| > qis(wi, aiy i), Cir > 0} (5.12)
+Pn{|ﬂin - /l'zl 2 ‘ZiS(:Bi,ai)P'i),Cin > 0} + Pn{cin < O}

Applying an argument analogous to the preceding one, we can obtain:

Po{l@n(z) — Q(zle, )| = b4}
k
< P{|Qn(2) - Q(zle, )] > b4, Cin > 0 for all i = 1,... k} + > P{Ci <0} (5.13)

i=1
k
< E[Pﬂ{lain - ai' > Q4(5!;', Q, L‘)a Cin > 0} + Pn{l:uin - :ui' > Q4(-?,3, Q, H)a Cin > O}]
=1
k
=1

where g4(z, @, ¢) is a positive constant depending on z, ¢ and .
¢From (5.10)(5.13), it suffices to investigate the asymptotic behaviors of P, {|ai, — a;| >
&, Cin > 0}, Po{|pin — pi| > €, Cin > 0} and P, {Ci, < 0} for each ¢ = 1,...,k, where ¢ > 0.
The following lemma is from Gupta and Liang (1989).

Lemma 5.2. For ¢ > 0,

(@) Pu{lpin — pi| > €} = O(exp(—2ne?)).
(b) Pn{ICm - Czl > 5} = O(exp(—n62/8)).

14



(C) Pn{IDin - Dtl > 8} = O(eXP(_nsz/z))'
(d) Pu{Cin < 0} = O(exp(=nC2/8)).

Lemma 5.3. For ¢ > 0,

202

Pn{'am atl > g,Cin > 0} O(exp(— (1 4( -+ 6)2)))

Proof: P, {|ain — a;] > €,Cin, > 0}
= Pn{a,-n —q; < —6,0,',1 > 0} + Pn{a,-n - > E,C;n > 0}.

where P {ain — o < —¢,Cin >0} = 0if a; — e < 0. As o; — € > 0, by the definition of aj,,
Lemma 5.2, and an application of Bonferroni inequality, we obtain:

Pn{a,-n —a; < —¢,Cip > 0}

< Po{(Din — D;) — (Cin — Ci)(cs — €) < —eC5}

< Pu{Din — D; < —C;/2} + P.{Cin — C; > €C;; /2(a. —¢)}
= O(exp(— n5202/8)) + O(exp(—n52C2/32(a —¢)?)

—O(exp(—%-—;mln(l o — o) )))

Similarly, we have

Pn{ain ~a; > ¢€,Cip > 0}

S-Pn{( tn'—D) (an—C)(a,+€)>€C,‘}

< Pu{Din = Dy > cGif2} + P{Cin ~ Cs < ~<Cif2ei +))
2

nelC:
- O(exp(_ 8

- min(1,

o)

This completes the proof of Lemma 5.3.
Now, let

&1 = min OglgM{qa(x“ iy pi)}, €2 = in (rr'lln {gia(zi, yi, i, i) },

|
es = o, min{aa(es, o4, 1)} e = mjn{aa(, @, )}, 60 = 5 i o)
and let ¢* = réun {e;}. Since the sample space X x J is finite, we see that €; > 0 for

J=1,...,5 and therefore e* > 0.
In the following theorem we prove the asymptotic optimality of the empirical Bayes
two-stage selection procedure (7*%, §*", di™, d3").

15



Theorem 5.1. Let {(7**,§*",di", d5")}2, be the sequence of empirical Bayes two-stage
selection procedures constructed in Section 4. Then,

E,R(r,§™,di",d;") — R(r?,8%,d7,d7) = O(exp(—c"n))

R
where ¢” = min(%-, 112<k 8 1<z<k(_me(1’ 9"2))) > 0.

Proof: By definitions of ¢* and ¢*, from Lemmas 5.2 and 5.3, we have:

Po{lpin(zi) — @il@ilai, pi)] = b1} = O(exp(—¢™n)),
Po{|hin(2i, yi) — ¥z, yilewi, pi)| 2 b2} = O(exp(—c*n)),
Po{|Tin(z) — Ti(2|cu, pi)| = bs} = O(exp(—c*n)),

and P{lQn(z) — Q(zle, )| 2 b4} = O(exp(—c™n))

for all £ and y;. Note that the bound is independent of £ and y;. Replacing these results
into (5.8), we obtain:

E'nR(T*na é*n7 d;n) d;n) - R(TB7 §B7 dlB’ dZB)

< O(exp(—c'n))k* D f(z)

Tex

+0(exp(—c™n)) >~ > [f: fi(yilmi,ahﬂi):l f(z)

IeX i=1 |yi=0

+O0(exp(—c"n))k’ xZXf (z) + 20(exp(—c"n)) xX;f(z:)
= O(exp(—c*n)). ; -

Hence the proof of the theorem is completed.

6 A Special Case Where (o, 1) =, -+, = (o, pz)

In this section, it is assumed that (aq,p1) =,---,= (o, px) = (a, 1), and the values of
the common parameters (a, p) are unknown. Under this assumption, the Bayes two-stage
selection procedure can be simplified. Also, X;;,7 = 1,2,...,2 = 1,...,k, are 1id. Hence,

we can construct a more efficient empirical Bayes two-stage selection procedure. First, we
derive a Bayes two-stage selection procedure (72,48, 4P, d2) .
A First-Stage Selection Rule ¢5 = (dm, Jfk)
For each z € X, let I(z) = {i =1,. k|x, = maxig <k z;}. Define 1 = :(z) = min{i|: €
I(z)}. We then define a first-stage selectlon rule ¢¥ = (d%, ..., d%,) as follows:

{ If p2(z;|ar, ) > o, define Jﬁ(rg) =1 and dﬁ(z) =0 for j # 1. (6.1)

If @5(z:|e, p) < o, define dB(z) =1 and d5, (z)=0forj=1,...,k.
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A Second-Stage Selection Rule ¢8 = (dB,,...,d5)
Foreachz € X andy € Y,and 2 =1,...,k, define

1 if ')bi(xi, yilaa ﬂ') 2 90,

0 otherwise; (6.2)

dz(z,y) = db(z, %) = {

and

da(z,u) = Y 88 (2)[1 — dii(z,v)]

i=1
where §8 = (6B, ...,8B) is the identity rule defined as:

An Identity Rule §% = (6B,...,6B)
For each z € X, define

g, f 1 ifi=1,
6 (2) = { 0 otherwise. (6.3)

where 7 is the index defined before.

A Stopping Rule 78
For each £ € X, let

Q(zle, 1) = —mez + d5(z)[00 — @323, )] — Z 2z, v)[00 — ¥y(z3, ylo, p)] i (ylz, @, ).

y=0
(6.4)
We then define a stopping rule 72 as follows:

+B(2) ={ 1 if Q(zle, 1) <0, (6.5)

0 otherwise.

We claim the following result.

Theorem 6.1 Suppose that (a1, 1) = ... = (ak, pk) = (a, ). Then, the two-stage selec-
tion procedure (#5,8,dP, dP) defined through (6.1) — (6.5) is a Bayes two-stage selection
procedure.

Theorem 6.1 is a consequence of the following lemma. Since the proofs for the lemma
and the theorem involves only straightforward computation, the detail is omitted.

Lemma 6.1

(a) The marginally conditional probability function f;(y:|z;, a, ¢) has monotone likelihood
ratio in z; and y;. That is, for y; < v;, fi(v:lz:, @, )/ fi(yi|z:, @, p) is increasing in z;
and for z; < z;, fi(yilz;, a, )/ fi(yi/ =i, @, p) is increasing in y;.

(b) Let Ti(zgle, 1) = Lo 4Bz, i) (00 — il yile, )] filwilzi, o, p) for z € X,i=1,... k.

Then T;(z|e, ) is nonincreasing in ;.

17



The Proposed Empirical Bayes Two-Stage Selection Procedure (%n,ﬁn,gy,cjg)

Under the assumption that (ay,p1) = ... = (o, p) = (), Xij, 7 =1,2,...,i =
1,...,k are 12d and
E[Xi;/M] = u,
7 op+1)p(M-1)
a=2 where D=p—v, andC:u—-A%+%—ﬂ2.
Let
1 L X,'_,,'
bn = —F YR
1 & Xisya
n T Tk ;;4:;( M)
2
Un By 2
Cn = n "~ 3, v )
v M + M #TL
Dn = WYn — VU
Define Da it
. _ ) & 0. >0,
Un = { oo otherwise; (6.6)
Zitbnpn 3 O > ()
A. ) — M+éay, n ?
Pin(z3) { Ln otherwise; (6.7)
R gityitlnun  3f O S 0,
Venlwir4:) = { ”1:1+m+an otherwise; (6.8)
e i(w ) it
A _ Vi a:,-,&n,,un i n > O,
fm(yzlxz) - { 7;1)“%(1 _ 'u,n)m—y otherwise. (69)

We propose an empirical Bayes two-stage selection procedure (77, §n, cj’{, J’Z‘) as follows:

Empirical Bayes First-Stage Selection Rule dy = (d%,...,d%) )
For each z € X, let 1 = i(z) be the index defined precedingly. Then, we define d} as
follows:

If ¢;.(2;) 2 6o, define JT,(@) =1 and J’I‘J(:g) =0forj#: (6.10)
If ¢: (z;) < 8o, define d7y(z) =1 and dy(z) =0fori=1,...,k :

Empirical Bayes Second-Stage Selection Rule g7 = (d%,...,d%)

18



We define cjg as follows: For each z and y, ¢ =1,...,k,

dyi(z,y) = { LA Yin(wi,43) 2 Go, (6.11)

0 otherwise;

and
k

Jgo({lj,y Z 1" [1 - (~7y)]

i=1
where §B = (8B,...,6P) is the Bayes identity rule given in (6.3).

Empirical Bayes Identity Rule
We use B as the 1dent1ty rule. That is §* = §B. Therefore, §" is independent of the past

observations X;;,7 =1,...,n,i=1,...,k.

Empirical Bayes Stopping Rule 7"
For each z € X, let

Qul(z) = —mes + diy(2)[60 — @3, (23)] - E (2, y)[00 — by, (73, v) frn (yl3)-

Then, define

0 otherwise.

#(g) = { 1 if Qa(z) <0, (6.12)

Asymptotic Optimality of (#*, 4", d7, d?)
For the empirical Bayes two-stage selection procedure (77, 5" d’l‘,d"), we can establish
the following asymptotic optimality.

Theorem 6.2 Let {(#",4",d7,d*)}%2, be the sequence of the empirical Bayes two-stage
selection procedures constructed through (6.10) — (6.12). Then, under the assumption that

(alaﬂl) R (aknuk) = (a,,u), we have
E.R(#",§",dt,d3) — R(#5,5,d7,d7) = O(exp(—c™n))

for some positive constant c**.
The proof for Theorem 6.2 is analogous to that of Theorem 5.1. We omit the detail here.

7 Small Sample Performance: Simulation Study

A simulation study was carried out to investigate the performance of the proposed empir-
ical Bayes two-stage selection procedures for small to moderate values of n. We considered
k = 3 Bernoulli populations 7,7, and 73. Recall that the random success probability ©; of
population 7; has a beta prior distribution with the probability density function

I'(ci)
I(aipi)T(ei(1 — )
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0<0<1,where 0 < y; < 1,04 > 0.

For given past observations (X; = (Xyj,...,Xk;),J = 1,2,...,n), R(7",8",d},d?) is
the associated conditional Bayes risk of the proposed empirical Bayes two-stage selection
procedure (7", §", d%, d3). Then, we use R(",§",d7,d3) — R(vB,§B,dP,dP) as an estimator
of the difference between E, R(t",§",d%?, d3) and R(75B, 88,42, d2) where the expectation E,
is taken with respect to the probability measure generated by (X;,7 =1,...,n).

The simulation scheme used in this paper is described as follows:

(1) For each n and for each i = 1,2,3 generate independent random values X;;, Xjs, ..., Xin

as follows:
forj =1,2,...,n

(a) generate ©; from density h;(0).
(b) generate X;; from Binomial (M, 6;).

(2) Based on the past observation (X;,7 = 1,...,n) and the present observations X =
(X1...,Xx) and ¥ = (Y4,...,Y%), construct the empirical Bayes two-stage selection
procedure (7™, 48", d¥, d3) and compute the conditional difference

D(n) = R(r",&",d},d5) — R(7°,8°,d7,d7).

(3) Steps (1) and (2) were repeated 400 times. The average of the conditional difference
based on the 400 repetitions, which is denoted by D(n), is used as an estimator of
the difference E,R(m",§",d>,d2) — R(8,88,d8,d2). Also, SE(D(n)), the estimated

standard error, is computed.

Note that D(n) corresponding to (7*,§*",di",d3") and ('f‘”,é”,j{‘,gi;‘) are denoted by
D*(n) and D(n), respectively. Tables 1 and 2 list some simulation results on the performance
of the proposed empirical Bayes two-stage procedure (7**,8*", di", d3"), for the case where
0o =0.7,¢ =0.05, M =m = 5,0y = a; = az = 3. Also, Tables 3 lists the simulation results
of (7,8, d7, d2), for 0o = 0.7,¢; = 0.05, M = m = 5,01 = oy = a3 = 3, py = pig = pz = 0.6.

The simulation results indicate that D(n) tends to zero quite fast as the value of n
increases. ;From Table 1 and Table 2, we learn that D*(n) has roughly the same rate of
convergence in both tables, for n < 140 but D*(n) converges faster in Table 2 than in Table
1, for n > 160. By direct computation, the marginal means of X; and Y; are Myu; and my;,
respectively. The distances of the g;’s in Table 1 (u1 = 0.67, 2 = 0.69, u3 = 0.71) are 0.02.
and those of the g;’s in Table 2 (u1 = 0.4, g2 = 0.6, u3 = 0.8) are 0.2. Therefore, the result
is reasonable, because it is easier to identify the best population when the distances between
the means of the populations are Ala,rger. )

;From Table 3, we learn that D(n) decreases to zero very rapidly, in fact, D(n) = 0 when
n > 140. Since, in the special case, all the past observations from populations 7,7 and 73
are used together to estimate the parameters (a, ), we get a more efficient empirical Bayes
two-stage selection procedure (#7, 4", 47, d7).
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n D*(n)
20 3526.0389 x 10~°
40 1000.4051 x 103
60 297.4756 x 10~°
80 118.5197 x 10~3

100 108.1376 x 1073
120 103.5187 x 10~°
140 98.0947 x 10~°
160 91.3719 x 10~°
180 88.5946 x 10~°
200 87.1701 x 10~°
250 80.1192 x 10~°
300 73.2212 x 10™°
350 65.3211 x 10~°
400 61.3566 x 10~°
450 58.3146 x 107°
500 56.1668 x 10°

n D*(n)
20 3572.4389 x 1079
40 1464.2346 x 1073
60 881.7971 x 10~5
80 536.3852 x 10~°

100 271.9296 x 10~°
120 181.6412 x 10~°
140 96.8247 x 107°
160 69.8568 x 10~°
180 56.6766 x 10~°
200 51.2190 x 10~°
250 32.7545 x 10°
300 18.5442 x 10~°
350 17.5653 x 10~°
400 11.8336 x 10~
450 9.2903 x 10~°
300 7.4519 x 10™°
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Performance of (7**, §**, d;™, d3") for g1 = 0.67, 2 = 0.69 and p3 = 0.71

SE(D*(n))
375.0017 x 10~°
191.7060 x 10—

86.3280 x 10~°

5.5431 x 1075

5.1142 x 10~°

5.1124 x 107°

4.8563 x 10~°

4.7352 x 10~°

4.5664 x 10~°

4.5202 x 10~°

4.2767 x 10~°

4.1745 x 10~°

3.8014 x 1075

3.6322 x 10~°

3.4673 x 1075

3.6309 x 10~°

Performance of (7*%,§*", d;",d3") for p; = 0.4, = 0.6 and ps = 0.8

SE(D*(n))
397.5006 x 10~°
244.4725 x 10~°
188.2158 x 1073
136.3745 x 103

89.2091 x 10~°
58.5219 x 103
20.3857 x 1073

7.7019 x 1075

7.0904 x 1075

6.3550 x 10~°

4.8583 x 10~°

3.3724 x 10~°

3.3141 x 10~

2.4134 x 1075

2.1138 x 1075

1.6726 x 10~°



Table 3. Performance of (#7, 8", d?, d?) for py = ps = ps = 0.6

n

D*(n)

20 299.2199 x 10~°

40

60

80
100
120
140
160
180
200
250
300
350
400
450
500

118.6488 x 1075

62.1228 x 10~°
43.0392 x 10~
15.5307 x 10~°
7.6334 x 107°
0.0000 x 10~°
0.0000 x 10—°
0.0000 x 10~°
0.0000 x 10~
0.0000 x 10—
0.0000 x 10~
0.0000 x 10~
0.0000 x 10~
0.0000 x 10~
0.0000 x 10—
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SE(D*(n))
64.3043 x 10~°
20.1839 x 10~°
14.9756 x 10~°
12.5011 x 10~®

7.6079 x 103

5.3908 x 10~°
0.0000 x 10-°
0.0000 x 10~
0.0000 x 10~°
0.0000 x 10~
0.0000 x 10~
0.0000 x 10~°
0.0000 x 10~
0.0000 x 10~°
0.0000 x 10~
0.0000 x 10~°
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Figure 1: D** vs n for Table 1
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Figure 2: D*™ vs n for Table 2
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