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Abstract

Markov chain sampling schemes generate dependent observations {©;,0 < ¢ < n} from a full
joint posterior distribution m(f|data). Frequently, only certain marginals of this full posterior
density are of interest; thus an interesting problem is how to estimate the marginal posterior
densities based on the dependent observations {©;,0 < ¢ < n} from n(8|data). We propose a
new importance weighted marginal density estimation (IWMDE) method. An IWMDE is ob-
tained by averaging many dependent observations of the ratio of the full joint posterior densities
multiplied by a weighting conditional density w. The asymptotic properties for the IWMDE and
the guidelines for choosing a weighting conditional density w are also considered. A bivariate
normal model and a constrained linear multiple regression model are used to illustrate how to

derive the IWMDEs for the marginal posterior densities.
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1 Introduction

In Bayesian inference, for a k-dimensional parameter § = (61,0, - - -, 0%), a joint posterior density

7(8}data) with the support S(8) is typically known in the form
r(8ldata) = e(2)L(8, 2)7(0),

where the data is z, L(8,z) is the likelihood function, 7 (@) is a prior, and ¢(z) is an unknown
normalization constant..

Without knowing the normalization constant ¢(z), a dependent sample
{8: = (01,4, -+, 0k,),0 < i < m}

from w(@|data) can be generated by a Markov chain sampler, e.g., the Gibbs sampler (Geman
and Geman 1984; Gelfand and Smith 1990), the Hit-and-Run (H&R) sampler (Belisle et al 1990;
Schmeiser and Chen 1991; Chen and Schmeiser 1992), the Gibbs Hit-and-Run (GH&R) sampler
(Chen and Deely 1992), or the general Metropolis sampler (Hastings 1970; Tierney 1991; Miiller
1991). Under some regularity conditions, by the Ergodic Theorem (e.g., see Gelfand and Smith
1990),

lim L z": h(@;) % E@ldata) )

n—oo
n =1

where E7(@ldata)(p) = [, s(g) @) (€l data)df.

One purpose of Bayesian posterior inference is the calculation and display of marginal densi-
ties. Because of the unknown normalization constant c¢(z) and the complexity of the joint posterior
density function, closed forms for univariate/joint marginal posterior densities are often not avail-
able, or are expensively evaluated numerically. However, we can estimate the marginal posterior
densities by using {©; = (01,4, -, O%,;),0 < ¢ < n} generated by a Markov chain sampler from the
full joint posterior density w(8|data).

The kernel density estimation method (e.g., see Silverman 1986) is often used to estimate the

marginal densities based on the dependent Markov chain sample {Q;,0 < 7 < n}. For example, the



lst

kernel density estimator for the 1°* marginal posterior density ;(0f|data) is of the form

#1(0% |data) £ nllz, YK (—01 ;(-)1,;) ,
n

=1

where the kernel K is a bounded density on R!, h,, is the bandwidth, and 6} is a fixed point. For
the i..d. observations, if as n — 00, h, — 0 and nhy, — oo, then lim #1(0|data) = 71 (0% |data).
However, it is not clear, especially for the dependent Markov chain sample {©4,,0 < ¢ < n}, how
to choose good candidates of the kernel K and bandwidth h, so that 71(0;]data) converges to the
true density m1(0}|data) suitably fast. Even for obtaining the asymptotic convergence results, many
strong conditions are required for the dependent observations.

Gelfand, Smith and Lee (1992) proposed an approach to estimate the jth

marginal posterior
density m;(0}|data) based on the Gibbs sampling observations. Suppose that closed form for the
conditional density 7(87|6,! # j, data) is available. Then Gelfand, Smith and Lee (1992) suggested

a conditional marginal density estimator (CMDE) of the form

- L~ o
#j(6;|data) = — > w(6%19; ;) data), (1.1)
=1
for a given 87, where Q; (_;) = (O1,iy+++,0;-14,0;414, -+, O ;). Under some regularity conditions,
the Ergodic Theorem yields
n

. ~ %k . 1 ok
Jim #j(07|data) = Jim - Zr(oj |9 (

i=1

-j)» data) 2 7;(07|data).
As mentioned in Gelfand, Smith and Lee (1992), the CMDE is better than the kernel density
estimator under a wide range of loss functions. However, the disadvantage of the above density
estimation method is that the closed form for the conditional marginal density has to be known.
Usually it is hard to know the closed forms for many marginal Bayesian posterior densities, espe-
cially in Bayesian inference with a constrained parameter space. Furthermore, if we are interested
in joint marginal posterior densities, it is even harder. .

In this paper, we propose an importance weighted marginal density estimation (IWMDE)
method, which does not require knowing closed forms for conditional marginal posterior densi-

ties. The values of the IWMDE are obtained by averaging many observations of the ratio of the



full posterior densities multiplied by a weighting conditional density w, based on a Markov chain
sample {Q;,0 < ¢ < n} from =(8|data).

The outline of this paper is as follows. In Section 2, we present the IWMDE method and
discuss the asymptotic properties for the IWMDE. We point out that a CMDE is a special case
of the IWMDE, and prove that the CMDE is the best IWMDE in the sense of minimizing the
asymptotic variances. In Section 3, we provide the empirical guidelines for the selection of a
weighting conditional density w. In Section 4.1, we use a bivariate normal distribution to illustrate
the importance weighted marginal density estimation method in a case where the true answer is
known and to illustrate that the support of w can be smaller than that of the conditional marginal
posterior density. In Section 4.2, we apply this new method to derive the marginal posterior
densities of coefficients for a constrained linear multiple regression model. This example illustrates
that the IWMDE works well regardless of dimensionality while existing methods do not. Section 5

is a short discussion.

2 Importance Weighted Marginal Density Estimation

In this section, we give the technical details of IWMDE, including the asymptotic convergence
properties. Without loss of generality, here we consider estimating the joint marginal posterior
density for only the first j (< k) components of ©.

We first introduce several notations. Let S(@) denote the support of the full joint posterior
density 7(8|data). Denote

-Q(j) =(04,-++,0;) and Q(—.’i) = (0j41,--+,O)
to be the respective first j and last £ — 7 components of a random vector @. Let
By = (Br,+++,0;) € BV and By = (Bpn, -+, 0) € B

denote values of @ ;) and ©_j), respectively. The support of the conditional joint marginal posterior
density of O(;) given ©(_;) = §(_;) is denoted by

de
5 (8-3) E {(01,---,87): (1, +,6;,0541,-+-,60) € S@)}, (2.1)

4



and the subspace of S(8) given the first j components 85 = (65, ---,07) is denoted by
* de_f
5-i(8%) Z { G341, 1 08) : R AT 5(0)}. (2:2)
Therefore the joint marginal density of @;) is
" def
7;(8}; |data) / (85,0, |data)ds_;). (2.3)
5-i(€g)

Now we want to estimate m;(8(;)|data) at a fixed point 6{;) by using a dependent Markov chain
sample {©;,0 < i < n} from 7(@|data). The INMDE of 7;(67;)|data) is

. def (67}, O(—j),ildata)
#5(8;)|data) = E w(Q()il€¢-5),0) (17:(&-! data) (24)
1—1
where O ;) ; and ©_j;) ; are the corresponding first j and last k—j components of the ith observation

©;; w, which plays the role of a weight function, is a conditional density defined on S§; (Q(_ j)) for
a given point §(_; € RF—J. Here we reuse the Markov chain sample {@;,0 < ¢ < n}, which was
generated from 7(@}data) and had nothing to do with the conditional density w, to evaluate an
IWMDE ﬁj(ﬂfj)ldata); and the dependent sample {Q;,0 < 7 < n} may also be used for other
purposes in Bayesian inference, e.g., estimating the posterior means and variances.

In Appendix A we prove that under some regularity conditions
Jim #;(8(;|data) aé’ﬂ(ﬂ&-ﬂdata).

The above result says that the IMWDE is asymptotically valid.
The IWMDE is a generalization of the CMDE in Equation (1.1) suggested by Gelfand, Smith
and Lee (1992). This result can be observed by choosing

w = w(l;)|0-5) = 7(&;18-;), data),

which is the conditional marginal posterior density of ;) given ©(_;) = ,_;). Also the IWMDE

#;(6;)|data) does not depend on the normalization constant ¢(z) since in Equation (2.4) the nor-



malization constant is cancelled out in the ratio

1r(0’("]-), Q(__,,-)ﬂ-ldata) |
7(Q;|data)

The only requirement for obtaining the asymptotic convergence of the IWMDE is that w is a
conditional density on $;(8,_;)). Therefore we can have many IWMDEs by choosing different w.
Now we will prove that the CMDE is the best among all IWMDEs.

Denote
7r(0'("j), 9(_j),ildata)
7(Q;|data)

for i = 1,2,---,n. Then #;(8;|data) is the sample mean of {I;4(6;)|data),1 < i < n}. Let

* de
1;,:(67;)|data) =4 w(Qy;),:[0(-j).)

V(Hj,;(ﬂ’(“j)ldata)) denote the usual sample variance of {II;(6(;)|data),1 < ¢ < n} and let

Vw (Wj(Q'("j)|data)) def

785 8(-s)|data)

2 ) ,
/S o [w(ﬂ(j)lﬂ(—j)) ~(dldata) ] w(8ldata)dd — (w;(8};)\data)) ",

(2.5)

which is the variance of IL; ;(8f;)|data) when ©; has the stationary distribution 7(@|data). Therefore
the Ergodic Theorem implies that if V,, (wj(ﬂz‘jﬂdata)) < 00, then

lim V(1L;,4(8f;)|data)) 22V, (x;(8];|data)) .
To simplify notation, let
wo(8()l€(-5) = 7(8(3)|8-;), data).
The following theorem indicates that w¢ is the best conditional density in the sense of minimizing
Ve (Wj(Q’("J-)]data)) .

Theorem 2.1 IfV,, (Wj(__Z‘j)]da,ta)) < 00 and w is an arbitrary conditional density on S;(8_;)),
then

Vi (m5(8f;)\data)) < V., (w3(8};)|data)) . (2.6)

Proof: See Appendix B. [ |
According to Theorem 2.1, when the CMDE is available, it is the best IWMDE. However the



CMDE is often not available due to complexity of the conditional marginal posterior density; or
sometimes it is very expensive to compute the CMDE due to the overflow/underflow in implement-
ing the conditional density function. For those cases, we can use an IWMDE instead of the CMDE
by choosing a simple weighting conditional density w. The empirical guidelines for choosing such

a weighting conditional densities w are given in the next section.

3 Choosing a Weighting Conditional Density w

According to the expression of an IWMDE given in Equation (2.4), the weighting conditional
density w seems to be an importance sampling density. However, w(Q(J-)IQ(_J-)) depends on 0_;);
and by Theorem 2.1, a good w should be chosen to have a shape similar to the conditional marginal
density given Q(_ i) which implies that a good w will vary from one iteration to another. Therefore,
the way how to choose a good W is quite different from that how to to choose a good importance
sampling density. Thus we can not directly use the existing importance sampling densities (e.g.,
see Geweke 1989; Rubinstein 1981) as the candidates of w. On the other hand, empirical results
show that if a w is chosen to have a shape roughly similar to the conditional marginal density,
the IWMDE will converge to the marginal posterior density at a suitable rate. Therefore, it is not
necessary to choose a w that precisely mimics the conditional marginal density.

Since the IWMDE is typically used to estimate the complex marginal posterior density, it is
extremely difficult to have a universal procedure to choose a good w. Therefore, we consider two
cases: unconstrained and constrained parameter spaces. For each case, we use the pre-processing
information to choose a w so that it is good in the overall average sense.

If S(8) is a unconstrained parameter space, we first choose a joint importance sampling density
that has a shape roughly similar to the joint posterior density. Then a weighting conditional density
w for the parameters of interest is chosen as the conditional marginal density of the joint importance
sampling density. Here, any importance sampling density is valid as long as its conditional marginal
densities are available in closed form.

Guidelines for choosing an importance sampling density can be found in Geweke (1989). For
example, we can choose a multivariate normal N(u,ZX) as a joint importance sampling density.
Then the conditional marginal density of the fitted multinormal distribution N(y,X) is used as a

w. Here, p and ¥ can be chosen as the posterior mode and negative Hessian evaluated at y; or



running the Markov chain for a while to get no observations {@;,0 < ¢ < no}, then 4 and X are

set by

1 &
B = n_oEQ"

=1
no

3@ - (@ - ).

_1
no(’no - 1) i=1 =1

If S(@) is a constrained parameter space, the choice of w is quite complicated. For illustrative
purposes, we start to consider choosing a w for estimating one-dimensional posterior marginal
density, say, for @1 ; and for simplicity, we assume the support §1(¢(_;)) defined in Equation (2.1)
is a finite/infinite interval.

If the support S1(6(_,)) is a finite interval with two endpoints a; and b, which are functions
of 83, --,6;, then we use a simple power-function distribution to mimic the conditional posterior
marginal distribution by the fitting moments. The form for the density of the power-function
distribution is

_ a(fy —ay)*? _ a(by — 6,)*?

rw=———>=——, fora; <6, <b;. 3.1
o ° CETAL 1< 6 <b (3.1)

The corresponding means of the above power-function distributions are

a 1
a+1(bl—a1)0fﬂw—al+a+1

Py = a1 + (b1 - al). (32)

The parameter a and the form of a power-function density can be determined by

(1) obtaining the estimated posterior means é;, b, and 4, for a3, by and 6, using the first few

Markov chain iterations or entire simulated Markov chain if possible;

(2) using w = 1%‘1_—_?1); if 6; > (81 + 51)/2 and a = (91 - dl)/(iJl - 91); otherwise, using the

second form for w and a = (b, — 6;)/(6; — &,).

If the support S1(f(_y)) is a half-open interval, say, with the form (a;,00), then an exponential

distribution is used to fit the conditional distribution. Then w is chosen as

w = Ae~Mbi~a1),



where A = 1/ (91 — dy) and 6, and &, are obtained by fitting moments.

The power-function and exponential distributions are used as the candidates of w since the least
information, i.e., posterior means, is used; and such a w is also very easy and cheap to compute.
If more information, for example, the posterior covariances matrix, is available, then the weighting
conditional density w can be chosen to be a beta or gamma density. But, more computing time is
required for such w.

The above procedure can be extended from one dimension to higher dimension. For example,

suppose the joint marginal posterior density for (6,,0:) is of interest. Since
w(01702 I 037 M ] ok) = ’lD(02 I 037 e ,0k)ﬂ)(01 I 027 R} ak), (3-3)

then the joint weighting conditional density w could be selected as the product of two one-
dimensional weighting conditional densities by applying the empirical procedure for the one-dimensional
case. The choice of such w is not unique since there are 2! ways to express the joint conditional
density as the product of one-dimensional conditional densities. However, a w is required to be
roughly similar to the conditional posterior distribution. Therefore, we can use one of these w’s; or

we can average 2! w’s as the joint weighting conditional density since it is difficult to know which

w is better.

In the next section, we will use two examples to illustrate how to derive IWMDEs.



4 Illustration of the IWMDE Method

In this section, we illustrate the IWMDE method with a bivariate normal model (an uncon-
strained parameter space) and with a constrained linear multiple regression model (a constrained
parameter space). The bivariate normal example shows that the support of w can be smaller than
the support of the conditional distribution and that the IWMDE works well even for small sample
sizes when w is chosen as U(—2,2). The constrained linear multiple regression example demon-
strates that the IWMDEs are easily derived. In contrast, existing methods, e.g., the CMDE, suffer
from numerical problems and are difficult to apply in multidimensions. The second example also

shows the computational efficiency of the IWMDE.

4.1 A Bivariate Normal Model

In this example, we apply the IWMDE method to get the marginal density of a bivariate normal
distribution N(u,X), where u = (0,0), and

5 - 1 0.1 x v2 . (4.1)
0.1xv2 2
Let © = (01,02) ~ N(u,X). We used the Gibbs sampler to generate {©;,0 < ¢ < n} from
the above bivariate normal distribution N (g, X). Since the distribution of the ith Gibbs iteration
converges to the stationary distribution at a geometric rate, the IWNMDE of the marginal density
converges to the true marginal density almost surely.

In Figure 1, the IWMDEs of the marginal density of ©; obtained based on n = 50, » = 100,
and n = 500 Gibbs iterations are displayed. The conditional density w was chosen as the density of
a uniform distribution U(—2,2). The absolute differences between the estimated and true marginal
densities are less than 0.035 for n = 50, 0.024 for » = 100, and 0.009 for n = 500. So, the IWMDE
does work well even for such small sample sizes. Note that the support of the conditional density
of ©, is R! while the support of w is (—2,2). Therefore the support of w may differ from that of
the true conditional density.
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Figure 1: The IWM estimated and true marginal density curves for @;. The solid curve is the
true marginal density (n = oo0); the dot, dashed, and long dashed curves are the IWMDEs with
n = 500, 100 and 50 Gibbs iterations, respectively.

4.2 A Constrained Linear Multiple Regression Model
4.2.1 Model and Posterior
A constrained linear multiple regression model considered in Chen and Deely (1992) is
10
Y= E O;z; + ¢,

J=1

with the constraints

056, <0<+ <L bho,s

and € ~ N(0,0?).

Denote § = (6, -,010,6011) and 61; = 0. By choosing a noninformative prior and using the

11



New Zealand Apple data, Chen and Deely (1992) derived the following full joint posterior density.

1 1 207 10 2
7(f]data) = C(&)m exp{—o— > | % — 2 0izii | (Is (42)
11 11 ;o i=1

where S(0) is the support of 7(8|data) defined by
5(0)={8:0<6, <02 <---< 610,011 >0},

Is) = 1if § € 5(8) and 0 otherwise, and ¢(z) is an unknown normalization constant. Thus the

marginal posterior density of O; is

=1

c(:l:) 1 207 2
7;(0(;)|data) = /s_,- @) (G2)10%5 *P \ 26, 2 ( gom ) } 0(—3)» (4.3)

where 0(_;) = (61,---,0-1,0;41,---,611) and

S—J(o ))_{—(—]) (017 . _7 -1 ]70]+1, : 7011)65(9.)}-

4.2.2 The Marginal Posterior Densities for O;

Since S_j(e‘(“j)) is a constrained parameter space, the marginal posterior density of ©; is not
available in closed form. Therefore the IWMDE method can be applied to obtain the estimator of
7rj(0z‘j)idata). For illustrative purposes, we consider to estimate wj(ﬂfj)ldata) only for j =1,2.

In this constrained parameter space case, the conditional posterior distribution for ©; given the

others is a truncated normal distribution with

207 10
i=1 (y.' = Li=1,14j 01531,:’) d vari 2_ O
ST 7 and variance = g7 = 2207 7 (4.4)
=14 i=17T i

mean = p; =
Therefore, the normalization constant for this truncated normal density contains the term

-1
o (it =t | _g(bimi=p
o; o; ’

where y; and o; are defined in Equation 4.4, §_; = 0, and ®(-) is the N(0.1) camulative distribution

12



function.

When both (8;41—p;)/o; and (0;_1 — pj)/0; are not very large, the CMDE requires to evaluate
two ®(-) functions. While both (041 — p;j)/0;) and (6;—1 — p;)/0o;) are very large with the same
sign, then the CMDE can overflow or underflow when computing the conditional density of the
truncated normal distribution numerically. But, the IWMDE is more numerically stable since we
can choose a simple weighting cond.itioné.l density w by the empirical procedure given in Section 3.
Since the IWMDE requires to know only the properties of the conditional distribution, the IWMDE
can be viewed as a “black box” marginal posterior density estimator.

Chen and Deely (1992) derived the posterior means §; = 0.0131, §; = 0.0249, and 85 = 0.1776 by
using a hybrid Gibbs and Hit-and-Run sampler (GH&R). The support of the conditional posterior
density of ©; given ©(_1) = 8(_;) is

$1(8(-1)) = {61:0 < 6; < 62}

For this case, a; = 0, §; = 0.0249, and §; = 0.0131. Since 6, is roughly half of 6, then w can be
chosen as the power-function distribution with & = 1, which is a uniform distribution U(0, 8;). For
02,

S23(61,03,--+,611) = {62:0< 6; < 6, < 63}.

Then & = 0.0131, b; = 0.1776, and 6, = 0.0249. Since 6, < (a; + b1)/2, then a = (by — 6;)/(6; —
d1) = 12.94068 ~ 13. Thus

13(85 — 02)12

w(02161,63, - - -, 610) = W,

for 6; < 6; < 5. (4.5)

In Figure 2, we used 50 GH&R iterations to “warm up” the Markov chain, then used 50,000
GH&R iterations to get the IWMDES of the marginal posterior densities for ©; and @, with the
uniform U(0,6;) density and the power-function density given in Equation (4.5) as two weighting
conditional densities w’s. We evaluated the IWMDEs at 101 and 201 griddy points for ©; and O,

respectively. These two w’s yielded reasonable convergence rates.

13



marginal pe

50

Kl

i

10
I

e a.

Figure 2: The IWM estimated marginal posterior density curves for ©, and @;. The solid curve is
for ©; and the dotted curve is for O,.

4.2.3 The Joint Marginal Posterior Density for 0, and O,

The support of the conditional marginal posterior density for (©,,0;) given (Oz,---,04;) =
(93, Tty 011) is
S2(03, -+, 011) = {(61,02) : 0 < 6; < 62 < 05}

Even for this two-dimensional normal case, computation of the normalization constant of the con-
ditional marginal posterior density is expensive, and therefore the CMDE is difficult to obtain. In
higher dimensions or for nonnormal conditionals, computation is yet worse. However, the IWMDE
is still easy to derive.

By using Equation (3.3), a joint weighting conditional density w can be chosen as the product

of two one-dimensional weighting conditional densities w(6y | 02,---,611) and w(02 | 63,---,6011).

14



From Section 4.2.2, we can choose w(6, | 02,---,6011) = 1/6,. Since 6, = 0.0249 is less than half of
f3 = 0.1776, then we can use the power-function distribution (63 —6)*~1/6¢ as w(6y | 65, - -,611).
By the moment fit, o = (f3/63)—1 = .1776/.0249—1 ~ 6. Thus, w(6; | s, - - -,611) = 6(83—05)°/65.

Therefore

6(03 — 62)°
T 6l

w(01,02 I 03, -,011) = , for0<6; <0, <803. (4.6)

Figure 3: The IWMDE of the joint marginal posterior density for ®; and O,.

In Figure 3, we used 50 GH&R iterations to “warm up” the Markov chain, then used 10,000
GH&R iterations to get the IWMDE of the joint marginal posterior densities for @, and @, with the
weighting conditional (iensity w given in Equation (4.6). We evaluated the IWMDE at 2500 griddy
points for ©; and @3. A similar figure was obtained, but is not shown here, using the w chosen by

the product of two one-dimensional densities w(fz | 61,0s,---,011) and w(6y | 03,---,6011).

15



5 Discussion

When the normalization constant for the full conditional distribution of the parameters of
interest can not been evaluated, the CMDE may not be directly applied. Instead of the direct
CMDE, the grid method is often applied to estimate the marginal density of these parameters.
The procedure is that an appropriate grid of values is selected at which to estimate the density.
For each iteration ¢ of the Monte Carlo Markov chain, the unnormalizing conditional density of the
parameters of interest given the variates from iteration ¢ for the other parameters is calculated for
each point on the grid. The normalization constant for iteration ¢ is estimated as the sum over the
grid of the conditional density times the mesh of the grid.

The grid method has several disadvantages. Firstly, it is not easy to choose an appropriate grid,
and it is especially difficult to do so in higher dimension cases. Secondly, it is expensive since the
normalization constant for each iteration has to be estimated. For example, for the constrained
linear multiple regression problem, when the support of the truncated normal density is far away
from the mean, it is not easy to accurately evaluate the normal density and the normalization
constant. Thirdly, the asymptotic consistency for the grid method is not clear.

Compared to the grid method, IWMDE is easier to implement and has theoretical asymptotical
results. Especially, the IWMDE works well for estimating higher-dimensional marginal posterior
densities while most existing methods can not.

A final issue is how to determine whether the choice of w is good. In general, it is very difficult
to know when a good choice of w has been made. One method is to monitor the area under the
estimated density. If it is close to one, then the choice of w can be viewed as a good one. Another
method is to estimate the numerical standard deviations at the grid points. The better choice of w

will result in the smaller sum of the standard deviations over the grid times the mesh of the grid.
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Appendix A: Asymptotic Convergence of the IWMDE

Theorem If a Markov chain sample {©;,0 < i < n} from m(@|data) is generated by a Markov
chain sampler which includes the Gibbs sampler, the H&R sampler, the GHER sampler, and the
Metropolis sampler, and w is a conditional density on S;(8,_;)), then for every fized point 85 € RY,

L (8,0, ldata)
Mm #;(8f;)ldata) = lim =D w(8)l@)d) 7@ Idata)

i=1
a.s.

2 7;(6{;|data).

Proof: According to Ergodic Theorem, e.g., Proposition 4.3 in Schmeiser and Chen [1991],

” W(Qz‘.),g(_ -),,-|da,ta)
Jim #;(6(;)|data) = lim n Ew(_(,) 19¢-4)4) ;(@_Adjata)

=1

as. m(6;) 8()ldata)
- /S(Q) w(Q(.’I) |Q(-J)) W(Qlda,ta,) 7l-(ﬂda’ta)di' (Al)
Thus by simplifying the right hand side of Equation (A.1) and Fubini’s Theorem,
The RHS of Equation (A.1) =

(87, 0(_|data {/
/S_j(g('j)) (&) b-s)\data) | [,

. w(ﬂ(j)lﬁ(—j))dﬂ(j)} df(—j)-
i(8(-5)

Since w is a conditional density on §;(6(_;)), Theorem directly follows from Equation (2.3). [ |
Appendix B: Proof of Theorem 2.1
Proof: 'V, (Wj(Qz‘j)|data)) = 00, Inequality (2.6) automatically holds. Now we assume

Ve (Wj(Q’("j)Idata)) <

Since the MCDE is a special case of the IWMDE, by Equation (2.5), it suffices to prove that

wo(87)18(—5))7(8;), 8- j)|data)]? |
/5(0) [ 7 (@ldata) m(Qldata)df;)df, ;)
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(@68 )m(;),&-data) ]*
/. o [ i) (8] data)dd, ;b _;)- (B.1)
Denote 7(8,_;)|data) to be the marginal posterior density of ©_;). Then
__ w(Bldata)
we(8;)18¢-5)) = w(0,_;)|data)’
Thus
The LHS of Inequality (B.1)
m(8;)» 8-s)|data) [ /
= w(8]data)dl | db_;
/S-J'(%)) m2(8(—j)ldata)  [Js;(g_;) (@ldata)dley | Bi=s
2(87.y,0(_n|dat
= / T (_(.7) X J)I a a)dﬂ(_j). (B.2)
_i(8;) 7r(Q(_j)|da,ta)
By the Cauchy-Schwarz inequality,
- 2
1 = / w(0-|0_-)d0-]
s, Z()H-3))%L3)
i (—(J)I—(—J)) ]
= \/7(8|data)
_/s,-(g(_”) VT 20|d taj
[ w?(0;)19(-)
< / (6] data)dt ] l D26 H=4)) 49 ]
5508, =) Si (6 n(8|data) =)
2(0i)18-») l
= w(0(-;|data / -——-—J——i—de B.3
(—( J)l )[Sj(ﬁ(_j)) 7r(_|data) ( )
Thus Theorem 2.1 follows from Equations (B.2) and (B.3). [
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