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ABSTRACT

This article calls attention to a pitfall in the use of ordinary fixed-effects linear models.
Many textbooks and computing package manuals describe several types of F statistic, in-
cluding the type sometimes called the “sequential” or “variables-added-in-order” or “Type
I’ F statistic. In the common situation where the regressor variables are random rather
than fixed by design, the sequential F' statistic is meaningless and should never be used.
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1. Introduction

A question frequently asked by users of statistical computing packages is
“How do I know which type of sum of squares to use in analyzing a linear
model?” This article points out a conceptual error that can arise concerning
this question. Some textbooks propagate the error by explicit mistaken as-
sertions; some others do so by vague, incomplete, or missing discussions of
the topic.

The erroneous belief is that the choice between two types of F' test (some-
times called “partial” and “sequential”) is a matter of taste — the choice to
be made according to which of two hypotheses the user really wants to test,
or according to which of two variance estimates the user prefers. This view
is seriously misleading. If the partial and sequential F' statistics differ, it is
very often because the values of the regressor variables are random rather
than fixed by design. It will be argued that in this case the sequential F test

should never be used.

2. The Issue

Consider the standard linear model
Yi=pfo+ X+ + 6, Xpi+ € (1)

¢ =1,-+-,n, where the Bs are constants (fixed-effects model). In analyzing
the model (1), there are two ways to define a sum of squares (SS) correspond-

ing to each regressor: (1) the “partial” SSs, with the SS corresponding to each
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regressor generated by adding that regressor to a model already containing
the other p — 1 regressors, and (2) the “sequential” SS, with regressors en-
tered in the order X;, Xs,...,X,. In standard notation (Neter, Wasserman
and Kutner 1990, p. 277) the partial SSs are SSR(X1|X>, X3, X4, ..., Xp),
SSR(X,| X1, X3, X4,...,X,), SSR(X3|X1, X2, X4,...,X,), and so on, and
the sequential SSs are SSR(X;), SSR(X:|X1), SSR(X5| X3, X1), and so on.
More generally, partial and sequential SSs can be defined for batches of re-
gressors, corresponding to factor main effects and interactions in an analysis
of variance (ANOVA) model.

Some computer packages (see, for instance, SAS Institute Inc 1990, p-
p. 934-936, p. 1368, and SPSS 1990, pp. 64-65, p. 377) produce both partial
and sequential SSs and also corresponding F' statistics. These F' statistics,
which use as denominator the residual MS from the model (1), will be called
here partial and sequential F' statistics, respectively. Some textbooks discuss
both types of SS and F statistic (see, for instance, Draper and Smith 1981,
pp. 208-209; Kirk 1982, pp. 412-413; Kleinbaum, Kupper, and Muller 1988,
pp- 134-137, Maxwell and Delaney 1990, pp. 286-290, Milliken and Johnson
1984, pp. 146-151; Searle 1987, p. 112, p. 121; note that not all of these au-
thors use the terms “partial” and “sequential” in the same sense as defined
here).

The point at issue is whether the sequential F' statistics and their corre-
sponding P values have any meaning. We will argue that they do not, in the
important case where the X;; are regarded as random variables, rather than
fixed by design. (If the Xj; are fixed by an orthogonal design, then the two

types of SSs are identical, so that the issue does not arise. The case where
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the X;; are fixed by a nonorthogonal design is considered briefly in Section
5.)
For simplicity, we discuss in detail only the case p = 2. The model (1) is

then
Yi = fo+ biXui + B Xoi + & (2)
Table 1 shows, in standard notation (Neter, Wasserman and Kutner 1990, p.
277) the two sequential decompositions of SS(total) = S3(V; — Y)2.
Kok okokok koA okok

Table 1 goes about here

ook Rk R Rk R KRk

For the regressor X;, the partial SS is SSR(X;|X3) and the sequential SS
is SSR(X1). The corresponding partial and sequential F' statistics are:

MSR(Xi1X2)
o = Np ¢
_ MSR(X))
Feq = —fE ®

where each mean square (MS) is obtained as MS = SS/df, and in each case
consider the test obtained by referring the statistic to an F; ,—3 distribution.
The test based on Fyay is the standard normal-theory test of the hypoth-
esis Hy : /1 = 0 within the model (2). Our concern here is with the test
based on Fgeq, which will be called the sequential F test.
The following examples illustrate the context of the conceptual error that

can arise with respect to the sequential F' test.



Ezample 1. ANOVA context. In an observational study, the variables of
interest are Y = income of employees in a corporation, X; = gender (0 =
female, 1 = male), and X3 = educational level (0 = low, 1 = high). The
statistic Fpar tests the effect of gender on income, adjusted for education,
and would (perhaps) be relevant to the question of gender discrimination
in hiring. But suppose that for some reason the analyst wants to compare
the income of males and females without adjusting for education. Is Fieq
appropriate for this purpose?
FEzample 2. Regression contexrt. In an observational study, the variables of
interest are Y = blood pressure of men, X; = amount of smoking, and X, =
age. The test based on Fj. assesses the significance of adding ‘smoking’ to
a model already containing ‘age.” ” But suppose the analyst wishes to assess
the significance of ‘smoking’ alone as a predictor. Is Fgq appropriate for this
purpose?

Contrary to the assertion or implication of some textbooks and computer
package manuals, the answer to the questions in these examples is an un-
equivocal “No.” In fact, in settings like those illustrated in the examples,

Fieq is not appropriate for any purpose at all.

3. A Counterexample

Before proceeding to a formal analysis, we demonstrate the flaw in Fyeq
by an example that makes it intuitively clear.

Ezample 3. A scientist has measured the weight Y of n; males and n, females.



She wants to test the null hypothesis
Hp : pM™M = ,®) (5)

where u™) and u(F) denote the population mean weights for males and fe-
males, respectively. She proposes to use the ¢ test she learned in STAT 101,

based on the test statistic
yM) _ y(F)

BRCEE: K
where YM) and Y are, respectively, the sample mean weights for males
and females and s* is the pooled standard deviation from the two samples.
Now the scientist has a friend, a statistical consultant, who notices that data
on height is also available and so suggests a fancier analysis based on fitting
the model (2) with Y = weight, X; = gender, and X; = height. The test
based on Fpau would then be a comparison of men’s and women’s weights
after adjusting for their difference in height (analysis of covariance). But our
scientist wants the unadjusted comparison (5), so her friend advises the use
of Fieq-

To see what happens, note that the ¢ test (6) is equivalent to the F' test

based on the reduced model

Yi=6+ 8 Xu+¢ (7)
with test statistic
_ MSR(X;)
Fred - MSE* (8)

where MSR(X;) is the same as in Table 1 but MSE* is the residual mean
square from the reduced model (7). The statistics (6) and (8) are linked by

the relation t2 = Fieq.



Since Fyeq and Freq have the same numerator, and since the full model
(2) fits the data much more closely than the reduced model (7), resulting in
a much smaller denominator for Fgq, our delighted scientist finds that she
obtains a much smaller P value from Fi than she did from (6). Catching
on quickly, she realizes that she can make it even smaller by incorporating
data on other variables related to weight, such as X3 = shoulder breadth,
X4 = waist size, and so on. She is tormented, though, by a sneaking feeling

that she is getting something for nothing.

4. Formal Analysis

To see what is going on, let us specify the regression models more precise-
ly, assuming now that the regressors are random variables. The full model
(2) can be specified by requiring that the triples (¥;, X;, Xo;) be independent
and identically distributed (IID) with

E(Y;[ X1, Xoi) = o+ BiXui + o Xai 9)

Va,r(Y,-|X1i,X2i) = 0'2 (10)

The conditions (9) and (10) imply that (2) holds with E(e;) = 0, Var(e;) = o2,
and ¢; uncorrelated with Xi; and Xj;.

Similarly, the reduced model (7) can be specified by requiring that the

pairs (Y;, X1;) be IID with
E(Y:|Xw) = B+ BiXu (11)
Var(Y;| X)) = o* (12)



The conditions (11) and (12) imply that (7) holds with E(ef) = 0, Var(e}) =
o*?, and € uncorrelated with Xy;. To begin with, let us assume that (9),
(10), (11) and (12) are simultaneously valid. We also assume that S, # 0,
since otherwise the full and reduced models are equivalent and the partial
and sequential F' statistics are virtually equivalent.

To investigate the statistics Fiyeq and Fred, let us consider the expecta-
tions of their numerator and denominators. Straightforward calculation (see

Appendix) yields

E[MSR(X;)] = (n—1)o28:? + o* (13)
EMSE*Y] = o* (14)
E[MSE] = o2 (15)

where ¢ = Var(Xy;).
In all three examples given above, the implicit erroneous claim is that the

hypothesis tested by Fieq is

where (5 is defined by the reduced model (11). It is clear from (13) and
(14) that the numerator and denominator of Fieq have the same expectation
under (16); indeed, Fieq is the standard normal-theory test statistic for (16).
Turning now to Fi.q, it follows from (13) and (15) that under (16) the ratio
of expectations of its numerator and denominator is ¢*?/¢2, which in turn
can be written (see Appendix for proof) as

EMSR(Xy)] 1

= 17
BIMSE] 1= fbmx, (17)




where py x,.x, is the partial correlation of Y; with Xy;, eliminating X;;. The
relation (17) shows that the statistic Fieq, viewed as a test of (16), will tend
to be inflated, leading to inappropriately small P values. The distortion can
be very large, if the partial correlation is large.

For another perspective on the flaw in Fy.q as a test of (16), note that the

least squares estimates B{‘, f1, and ,8A2 satisfy the relation

BT = P+ 4P (18)
where 4 is the sample regression coefficient of X; upon Xj, that is, 4 =
(X1 — X1)(Xai — Xo)/ T(X1i — X1)?, with X; = n~1Y; X;;. The statistic
Fieq is faulty as a test of (16) because it takes into account the sampling
error in f; and 32 but ignores the sampling error in 4, which arises from the
randomness of the Xj;.

The relation (18) is particularly clear in the context of Example 3, where

it becomes
YD —7® = B+ By (XM — X7y, (19)

where X2(M) and XZ(F) are the sample mean heights of males and females,
" respectively. In assessing the sampling error in (Y(M) — Y()), the faulty
analysis ignores sampling error in )_(2(M) and X2(F). Thus, the misguided
scientist of Example 3, in using Fgq, is trying to reduce uncertainty about
weight by pretending there is no uncertainty about height.

The above argument shows that if we assume (9), (10), (11) and (12)
then Fy.q is not valid as a test of (16); rather, Freq is the correct test for this
hypothesis. This leaves open the question of whether, perhaps under weaker

assumptions, Fieq might be a valid test of some other hypothesis. In fact,
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however, even if we assume only (9) and (10) , then (15) still holds and it
is not hard to show (see Appendix 2) that if B2 # 0 and degenerate cases
are excluded, then E[MSR(X;)] > o2, so that Fiq cannot possibly have a
central F distribution under any hypothesis.

5. Discussion

Although the preceding exposition has concentrated on the case p = 2,
the sequential F' statistics are equally meaningless (when the X; are random)
in the general model (1). Moreover, the critique applies equally to F' tests
involving batches of regressors, such as those encountered in factorial ANOVA
when the factors have more than two levels.

Note that the difficulties with the sequential F statistics are not due to
the presence of interaction (our examples use additive models), nor are they
due to measurement error in the Xj;;. Rather, they are due solely to the
randomness of the Xj;.

If the X; are fixed rather than random, then the sequential F' statistics
can be meaningful for certain special purposes, such as testing orthogonalized
components in a polynomial regression (Freund, Littell and Spector 1986,
pp. 28-30). Moreover, the sequential SSs (rather than the F' statistics) can be
useful in a variety of ways, for instance, in constructing a split-plot ANOVA.

Textbooks that cover linear models usually include some discussion of
nonorthogonal design matrices under such names as “collinearity” and “un-

balanced ANOVA.” In practice a common source of nonorthogonality is the
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presence of random regressors. Nevertheless, it is not common for textbooks
to give a careful discussion of the interpretation of linear models when the
regressors are random (even though the problems and examples often involve
random regressors).

In discussing factorial ANOVA, some textbooks display prominently the
“hypotheses” tested by sequential F' statistics and caution the student that
with nonorthogonal data these “hypotheses” will depend on the cell frequen-
cies. While these statements are not, strictly speaking, incorrect, they may
be misleading because nonorthogonality is often the result of random Xj;, in
which case the cell frequencies are random and (as shown in Section 4) the
sequential F' test does not test any hypothesis at all.

It would seem advisable to alert students and users of statistics to the
pitfall in the use of sequential F' tests. In addition, it would be desirable to
disseminate more widely the following facts: (1) in observational, as opposed
to experimental, research it is often appropriate to regard the regressors as
random; (2) much, but not all, of the theory developed for fixed regressors
carries over to the case of random regressors; (3) when regressors are ran-
dom, the parameters being estimated by a full model and a reduced model
have different meanings, and the decision as to which parameter is to be pre-
ferred should depend on the question the research is intended to answer; (4)
when regressors are random, nonorthogonality is the usual case, rather than
the exceptional one; (5) the situation of random regressors is conceptually

distinct from the problem of measurement error in the regressors.
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Appendix. Proofs

To ease the notation, let V; = MSR(X;), V, = MSE*, V3 = MSE, and, for
J =1, 2, let X; denote the vector (X1, Xj2,--,X;s). Assuming (9), (10),
(11), and (12), standard linear model theory (Neter, Wasserman and Kutner
1990, pp. 94-95, 240) yields

Vi = (n—1)sips? (20)
EWiXi] = (n—1)sif;" + 0 (21)
EV,|X;] = o* (22)

EV5Xy,X,] = o? (23)

where s} = (n — 1)1 ¥;( X — X1)%

To prove (13), (14), and (15), one simply takes expectations in (21), (22),
and (23).

To prove (17), let (Y, Xy, X;) be distributed as (Y, X34, Xo;) and let €
denote the residual ¥ =Y — 8% — 87X, from the best linear prediction of
Y based on X;. The partial correlation pyx,.x, is defined (Johnson and
Wichern 1982, p. 342) as the simple correlation between ¢* and §, where § is
the residual of X, from its best linear predictor based on X;. Consequently
we can write

2 o}
L= pyx,x, = Var(e)) (24)
where 0% is the residual variance in €* after linear prediction of €* from 6.
Now (9), (10), (11) and (12) imply that Var(e*) = 0*2 and 0% = o2, and (17)
then follows from (24).

14



Turning to the claim made in the final paragraph of Section 4, we now
assume only (9) and (10). Since 87 = (n—1)"1s72¥; Yi(Xy — X1), it follows
that

Var[B[Xs, Xs] = 0 /(n — 1)s] (25)

From the relation (18) and standard linear model theory it follows that
B[B11X1,X] = B1 + 452 (26)
From (20), (25) and (26) we have
EVi|Xy1,X3] = 0® + (n — 1)s1(B1 +HPa)? (27)
Taking expectations in (27) yields
EVi] = 0” + (n — 1)o7 E[(B1 + 752)"] (28)

Recalling that 4 is the sample regression coefficient of X, upon Xy, it is
clear that Var(¥) > 0 except in the degenerate cases that either X; or X is
a constant or that X5 is a linear function of X;. Consequently, if 85 > 0 it

follows from (28) that E(V4) > o2, as was to be shown.
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Table 1. Sequential Sums of Squares

Sum of Squares

Source df  X; entered first X, entered first

X1 1 SSR(Xi) SSR(X3)
X2 1 SSR(X:|X1) SSR(X1]X2)
Residual n—3 SSE SSE
Total n—1 SS(total) SS(total)
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