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ABSTRACT

We study anticipative transformations of § to 2 of the form

tA

pualow) =+ [ orlpur())dr

SA.

where ¢ is anticipating, and w is a Wiener process. Under special assumptions on o, we
re-interpret results of Buckdahn using the semimartingale integral (via an expansion of
the filtration) instead of the Skorohod integral, and we show the same formulas hold more

generally.
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1. INTRODUCTION

Recently there has been interest in extending our understanding of Girsanov transfor-
mation type theorems to anticipating situations. This began with Ramer [13] and Kusuoka
[9], and has been continued with Nualart-Zakai [11], Follmer-Protter [4], Ustunel-Zakai
[14], and Buckdahn [1-3], among others. Here we examine some of Buckdahn’s results,
and we show they have an interpretation using the classical Ité stochastic integral (inter-
preted as a semimartingale integral via an expansion of the filtration), rather than with
the Skorohod integral that Buckdahn - and most other researchers - has been using. The
use of the semimartingale integral allows us to extend Buckdahn’s results in some special
cases and further gives an idea of just how far such extensions can go before “trouble”

OocCcurs.

We are interested in studying “anticipative Girsanov transformations” of the form

A

s t(-w) =w. + / o s r(w))dr.
sA-
Thus ¢ is the solution of an ordinary differential equation for each w. For each fixed
(s,t) with 0 < s <t <1, we have ¢s,e maps §) to  and therefore if (2,7, P) is Wiener
space, we can ask whether or not P o gos_’} is absolutely continuous with respect to the

Wiener measure P, and if so, then what is a formula for the Radon-Nikodym derivative

(or “likelihood ratio”)
dP o cp;"}

?
dP

Such a question is classical when o is deterministic or even non-anticipating of a reasonable
form. Buckdahn [1], [2] has considered the case where o is anticipating of a special form
and he obtained explicit formulas for the derivative using the Skorohod integral. We re-
interpret one of Buckdahn’s results using the semimartingale integral, and we then are

able to extend it, always using the semimartingale integral.

In Section Two we give a preliminary result on the expansion of filtrations which is a
slight extension of a result of It [6]. For details on the semimartingale integral the reader

can consult, for example, Protter [12]; for more on the expansion of filtrations the reader
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can consult either Jeulin [7] or the Springer Lecture Notes volume edited by Jeulin and
Yor [8].

In Section Three we give an equivalent formula to a fundamental fesult of Buckdahn
[1]. Buckdahn’s formula, which uses the Skorohod integral, is given in Theorem (3.3),
and our formula - which uses the semimartingale integral- is given in Theorem (3.11). In
Section Four we relax Buckdahn’s hypotheses, and we are able to show that the same

semimartingale formula holds more generally (Theorem (4.15)).

In Section Five we relax the important boundedness assumptions. The measure Pocps—,%
is still absolutely continuous with respect to P, but the two measures no longer need be
equivalent. Nevertheless we are still able to give a formula for the Radon-Nikodym density

(Theorem (5.19)), which remains as unchanged as possible.

The authors wish to thank Purdue University for its hospitality during Professor
Leon’s visit, as well as CONACyT and CINVESTAV of Mexico for its financial support

-

for this visit.

2. Preliminaries

Throughout we let W = (W;)o<:<1 be Brownian motion (the Wiener process) on the
path space of continuous functions 2, equipped with the Borel o-field 3°, and Wiener
measure P. The completion of 3° under P is &; we let F) = o{W,;0 < s < t}, and
F, = 3 VN, where N are the P-null sets of F. Let 2’ denote the filtration (Fy)o<s<.

We will need an elementary result from the theory of “expansion of filtrations.” Let
(ai1,...,0q) be an n-tuple of distinct points in (0,1], let ag = 0, and let us define a new

filtration § = (G¢)o<i<1 by

Se=1)FuVo{Way,...,Wa,}.
u>t

Then clearly F; C G, 0 <t < 1, that is, G is an “expansion” of F. Moreover G is a sight
continuous filtration, and G, contains all the null sets of . The following theorem is a

simple extension of a now classical result due to Itd [6], and we omit the proof.
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THEOREM 2.1. The Wiener process W is a G semimartingale, and the process

a; At W
(2.2) B, =W, — Z/ 2 “'d

i—1 AL ]

is a G-Brownian motion.

~

We assume the reader is familiar with both the theory of stochastic integration for
semimartingales (as given for example in Protter [12]), as well as the theory of the Skorohod

integral and elementary Malliavin calculus as given for example in Nualart-Pardoux [10].

To distinguish between the semimartingale (or It5) integral and the Skorohod integral,
we denote the semimartingale integral of a predictable process u, for a filtration relative

to which W is a semimartingale, by:
t
/ ugdW,, 0<t<1;
0 -

and for a process u € L?([0,1] x ), and ¢ € (0, 1] such that 1{o,qu is Skorohod integrable,
we denote the Skorohod integral of uljp,q by

t
/ u,OW,.
0

3. A result of Buckdahn interpreted through semimartingales

For this section we let W, = (W,,,...,W,,), and we define the simple process

(31) Os = Z 1(aj,b,'](s)fj(W0)
j=1 ~

where f; € G}, where € denotes the space of three times continuously differentiable
functions mapping R™ to R which are bounded and such that their first three partial

derivatives are bounded. Here also 0 < a; < bj <1, all . Let us now consider the

following equation on 2, where the dot, “.”, denotes the “time” parameter:
tA-
(3:2) puw) =w.+ [ orlipu())dr
SA-
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for0<s<t<landwc€n.

By an inverse 9 to ¢ we mean a function ¥, 4(-,w) such that

‘Ps,t(l/’t,s(w)) = 1,/’t,s(s%,t(w)) =w

for all w € 2. The following theorem is due to Buckdahn [1]. (Buckdahn assumes that the

functions f; are in Cp°, but an analysis of his proof shows that fj € €3 suffices.)

THEOREM 3.3. Equation (3.2) has a unique strong solution. It is bijective. Its inverse

is the unique strong solution of the equation

tA-
¢'t,s('a w) =Ww. - / 0r(¢t,r(w))dr’
SA:.
for 0 < s <t <1 andw € N. Moreover the law of @s,t and Wiener measure are mutually
absolutely continuous and -
dP o (Ps t

ot = et [ orttenoWed [(outsor - [ [ (Dron)n)Dutor n, audr)

where D is the Malliavin derivative operator.

. . . . . dPop}
In this section we give an alternative representation of d;’" where we use the

semimartingale integral in place of the Skorohod integral. We need five technical lemmas,

which will be followed by our main result, Theorem (3.11).

LEMMA 3.4. Fixt, 0 <t < 1. The process Lio,q(-)o.((2,-)) is integrable with respect
to the G-semimartingale W.

Proof: Fix t. Buckdahn [1, Section 3] has shown there is a function A(t, s, T) mapping
[0,1]2 x R™ to R™ which is continuous in s, is € in z, and its partials in z are bounded on

[0,1]? x R™, and finally

(3.5) 0. ($1, @) = Y e m) VFi(A(E -, Wa)).



This implies the result. |

Note that the function A in the proof of Lemma (3.4) is the unique solution of the
equation

m o At
(36) At(ta S :L') =z - Z / l(a_,' ,b_,'](r)fj(A(ta r,m))dr,
j=1 a; AtAs

for t,s € [0,1],1 <4 < n, and ¢ € R, where z' is the i** component of z.

In the next lemma we use the now somewhat standard notation DV? to denote the
domain of the closed extension of the unbounded but closeable linear operator D (the

“Malliavin derivative”); see, for example, Nualart-Pardoux [10].

LEMMA 3.7. Let A(t, s, z) be the unique solution of equation (3.6). For1 < j < m and
0 <t <1 the function f;(A(t,-,z)) is absolutely continuous on [0,t]. Let &(¢,-,z) denote
its Radon-Nikodym derivative. Then the process 1jg 4(-)®(t, -, W) € L*([0, 1],D12).

Proof: The Lemma follows by combining Proposition 4.8(i) of Nualart-Pardoux [10]
with the fact that f1,..., fr, € C}(R™), and equation (3.6). I

LEMMA 3.8. Let 1 <j<m,andlet 0 <t<1,0<s <t befixed. Let A(t,s,z) be

the unique solution of equation (3.6). Then
A W)W = [ W, (A7, W)
+/ fi(A(t,r, Wy ))OW, +/ D.(f;(A(t,r,Wq)))dr.
0 ~ 0 ~

Proof: This is simply an application of the integration by parts formula for the Sko-
rohod integral (see Corollary 6.2 of Nualart-Pardoux [10]). I

LEMMA 3.9. With the hypotheses of Lemma 3.8,
At 8, Wa)We = [ F(ME R W)W, + [ Wi (55(Ae 7, W)
~ ~ 0 ~

Proof: Since W is a G-semimartingale by Theorem (2.1), this is just the semimartin-
gale integration by parts formula, since f;(A(t,-, Wy)) is continuous and of finite varia-

tion. i



LEMMA 3.10. Fixt,0<t < 1. Then
t t t
/ 05 (1.0 ) AW, = / 04(1.0)OW, + / Dy(04(te.s))ds.
0 0 0

Proof: This results from combining Lemmas (3.8) and (3.9) with equation (3.5) in
the proof of Lemma (3.4). §

The preceding lemmas permit us to re-express Buckdahn’s formula in Theorem (3.3)
using the semimartingale integral in place of the Skorohod integral. It is our belief this

gives an intrinsically simpler formula.
THEOREM 3.11. Let ¢, satisfy equation (3.2). Then

dPo go;,%

ot = el [ ort )i, = 3 [ ortwnar = [ Do i)

-

Proof: In Lemma, (3.9) of Buckdahn [1], the following equality for Malliavin derivaties

(3.12)

in this framework is established:

Du(04($e,s)) = (Dyos)(the.s) — / (Dy03)(t0,0) Do(or(ther))dr

for 0 < s <t <1. Combining this with Lemma (3.10) and the formula of Theorem (3.3)
gives the result. I

At this point it may be appropriate to give an intuitive understanding of formula
(3.12) for those people familiar only with the traditional formula. Let us recall a typical
derivation of the classical, non-anticipating formula. In this case, for a sufficiently large

class of random variables F, if we can show that

t
(313) XtF(d}t,s) = F+/ UrXr(¢r,s)dWr,
then because the It6 integral has zero expectation, we have

E{X:F(¢:s)} = E{F},
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opo: . . . . .
so that X; = de;‘,t . Then taking F' to be identically equal to 1 yields the classical

formula

X, = exp(/: or(Ye,r)dW, — %/:(a,(v,bt,,)fdr).

In the anticipating case where W remains a semimartingale, the stochastic integral no
longer need have expectation zero; indeed if H is an anticipating process we have the

following general relationship, where D (H,) = 1i§n D.(H,):

E {/stH,dW,} _ E{/t D:(H,)dr};

which follows trivially from the identity

3 1 t
/ H, W, = / H, dW, — / Dy (H,)dr

and the fact that the Skorohod integral has zero exXpectation. This leads us to a modifica-

tion of equation (3.13), to consider instead:

t t
(314) XtF(’L/)t’s) - F+/ UrXrF(¢r,s)dWr _/ D:{arXrF(¢T,3)}dr'

(Note that in the non-anticipating case Dy {0, X,F(¢;,)} = 0, hence equation (3.14)

reduces to (3.13).) If we take expectations in (3.14), we now have the desired

E{X:F(¢1,,)} = E{F},

dPoy;; . . .
and hence X; = —;;—’-'i. This perhaps helps to explain the presence of the extra term in
formula (3.12) which contains a Malliavin-type derivative. This also outlines an approach
to prove Buckdahn’s Theorem (3.3) using only semimartingale techniques (that is, avoiding

the Skorohod integral).
4. An extension of Buckdahn’s result

In Section Three we gave an equivalent formula to Buckdahn’s formula using the

semimartingale integral in place of the Skorohod integral. In this section we show that the
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same formula remains valid with weaker hypotheses. These hypotheses do not satisfy the
conditions given in Buckdahn [1-3], nor do they satisfy those given in Ustunel-Zakai [14].
The main result is Theorem (4.15).

We again let W, = (Wy,,...,W,, ), and we define the process

(4.1) 0y = Z 15 ($)ff (W),

where f} € L?([0,1]) for some p > 2, and f} € C}(R™) for 1 < j < m. We denote by C a
constant bounding all the first partials of f2, as well as f2 itself.

Let fJ-l, ks 1 £ j < m, denote a vector sequence of elementary functions such that

. 1 1 .
Jm fie=f;, 1<j<m,

with convergence in L?([0, 1]), and moreover we can assume without loss

sipllfl,kllm([o,l]) <C.

For each k let ¢*, ¢* denote the unique strong solutions of

tA

(42) Phae) =t [ oKk ())ar
SA-
tA-
(4.3) whiw) == [ okl )dr
SA-
for 0 < s <t <1andw e N, where of course
oF =Y fh(r)fE(Wa).
i=1 -

Recall that Theorem (3.3) asserts that equations (4.2) and (4.3) do have unique, strong

solutions, since le ¢ are simple functions.
)
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LEMMA 4.4. With o as given in (4.1), the equation

tA-

(4.5) orlw) = w. + / Go(par(w))dr

8A-

0<s<t<1,we€N, has a unique strong solution.

Proof: Let 0 < s <t <1 and u € [0,1]. Then for k < £ we have

[o4a0) = S S 3 [ ISR Waloh)) = ) (Walet, )ldr

<Ccy {”f{k — Fiellze o,y + (/ |1f(Wa(#5,)) — ff(Wa(sof,r))lzdr)]/z}
=1 g ~ ~

and since fJ2 are Lipschitz, there exists a constant C such that the preceding is

m Tt n
<G {Z 157k — Fhellze o,y + (/ > Ik (ai) — 905,r(ai)|2dr)1/2}
j=1 8 =1

and therefore there exists a constant C, such that.

sup o} ,(u) — ¢f (u)]?
HE[O,I]

m t
SCAY ke~ Flellboqomy + [ sup Ioho(a0) = ¢, (i) Pdr)
j=1 s 1<i<n
and applying Gronwall’s inequality yields

<Gy ik = Fellisoapexp{Calt — 8)}.
Jj=1

From this we deduce that (¢} ,) is Cauchy in €[0, 1] with the sup norm. Denote ¢s,¢ as the
limit of gof,t. Next, use the inequality:

/ o5 (0 (@) = 0r(pan(w))ldr
<O Ik = Fllrqomy +( / P2 (Walpar) = F2(Walek ) Pdr) 2],
j=1 s ~ -

and the dominated convergence theorem to deduce that ¢, , is a solution of equation (4.5).

The uniqueness of the solution ¢, follows from Gronwall’s inequality and the fact

that ff isin C3(R™). §
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LEMMA 4.6. With o as given in (4.1), the equation

tA

(47) d)t,s('a w) =w. _/ .o'r('l/’t,r)dra

SA-

0<s<t<1,we, has a unique strong solution.

Proof: The proof is analogous to the proof of Lemma (4.4), with ¢* of (4.3) replacing
oF of (4.2). 1

Remark 4.8: It follows as in Lemma (3.4) (since f} € L?([0,1]) for p > 2,1 < j < m)

that the process 1jg 4)(-)o.(31,.) is integrable with respect to the G-semimartingale W.

We also note, as was established in the proofs of Lemmas (4.4) and (4.6) that ¢f

and %, converge uniformly in €[0,1] to ¢, ; and %, ,, respectively.

Before stating and proving our main result (Fheorem (4.15)), we establish four lem-

mas.

LEMMA 4.9. Let o* and ¢ be the solutions of equations (4.2) and (4.5) respectively.
Then for0 < s <t < 1:

Jim 1o, ()o* (0l ) = 10 q(-)o.(s,.)

with convergence in L*([0,1] x Q).

Proof: Using the convergence of ¢* to ¢ in the sup norm, the hypothesis that fJ1 E
converges boundedly in L?([0,1]) to f;, and the dominated convergence theorem, we have

the result. J

LEMMA 4.10. Let 8 be a positive real number. Then

sup E{exp(~5 [ (Hub)ar— 5 [ (Diokwh)ir) < oo
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for 0 < s <t <1, where D is the “Malliavin derivative” operator.

Proof: Fix 0 < s <t <1 and a positive integer k. Since f? and its first partials are
all bounded by hypothesis we have:

8 [trarss [yt
<sy e | 182 Wa )P
+f |f}k(r>2 O (W5 )
<8302 [ fitar 4ne [ 113,

Since sup||f} ;> (jo,1) < C by hypothesis as well, the result follows. J
k )

LEMMA 4.11. Let 8 be a positive real number. Then

t
sup E{exp(8 / ok )dW,)} < oo
k 8
for0<s <t<Ll.

Proof: Fix 0 < s <t <1 and let k be a positive integer. Using Lemma (3.7); that f; x
is in LP([0, 1]) for p > 2; the integration by parts formula for the semimartingale integral;
and the identities (3.5) and (3.6) yield:

[(ortyam.

L]

=24 £ Wa) - [ ([ uama £t e wa)

=Y f},kmdw,)f,?(Wg)

t n_ 0f7 (¢(t r,Wa))
‘/8 (/ Fx(w)dw, >Z 10,0 (P)oE (E,)dr ),
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and the hypotheses that sz and its first partials are bounded, and that le g 1s uniformly
bounded in L? further yield:

t
| [ okwtaw)

8

<oy / FL(r)dW,] +n / | / AW Y 1) FE ) ldr)
j=1 8 s =1

(4.12) < (C+1)2n_z{|/ Fin(r)dWy|+

8

> [ ()WL £ ()l dr}

£=1

<@+ mnd {1 [ e+ ([ ([ fecoamyansy,

s

- Inequality (4.12) inspires us to consider the following (where we use Fubini’s theorem and

-

the Cauchy-Schwarz inequality):

Blewa(8( [ ([ fiatawyary o)
<1456 [ ([ fhuwawayans
L2 B[ pawaw.yan
¥ gj S B puwawpays
(4.13) <14 ﬂ([ E(/srfjl’k(u)qu)2dr)1/2
+ 2 / " [ fatawyzar
s / . {2 By f},k(u)qulf} 0

£
t r
< B( / B / £1(u)dW, )2 dr)?
+ [ Bfes / L ()W Yr,
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where of course we have been interpreting dW, as the semimartingale integral for the
G-semimartingale W. However since f} r are non-random, the G-semimartingale integral
gf f;’ & 1s the same as the g’-semimartingale integral, which is t}:e Wiener integral. Using
standard inequalities (Burkholder-Davis-Gundy) for stochastic integrals and the hypothesis
that f}, are uniformly bounded in L? for p > 2, and combining (4.12) with (4.13) gives

the result. J

LEMMA 4.14. Let 0 < s <t < 1. The sequence of densities

dPo (‘P.’:,t)_l
dP
E>1

is uniformly integrable.
Proof: The lemma follows from Theorem (3.11) and Lemmas (4.10) and (4.11).

THEOREM 4.15. With o as given in (4.1), let ¢, , be the unique strong solution of

tA.

(4.16) priw) =+ [ orlipsuw))ar
SA-
For every 0 < s <t <1 the measures P o (,o;j and P are mutually absolutely continuous

and the density
dPoy;,
dP

is given by equation (3.12). That is,

dPo ;% t 1 [t t
(4.17) —-TSO’ = exp{/8 o (Vt,r)dW, — 5/.9 (0r(e,r))dr —/3 (Dror)(3e,r)dr}.

Proof: Note that Lemma (4.4) assures that equation (4.16) - which is the same as
equation (4.5) - has a unique, strong solution. For the proof we need a result of Gihman-
Skorohod [5], which we found in Buckdahn [2, Proposition 2.9], and we state it here for

the reader’s convenience:
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LEMMA 4.18 (BUCKDAHN). Let T?, given by TPw = w + [ KP(w)ds, be a sequence

of absolutely continuous transformations such that
(i) the sequence of processes KP converges to a process K in L?([0,1] x Q);

(ii) the sequence of densities
__dPo(TP)™?

L?
dP

is uniformly integrable;

Then the transformation T given by
Tw=w+ / K, (w)ds
0

is also absolutely continuous and the density L = dP;g_l is the limit of L? in the weak

topology (L, L™).

Continuing with the proof of Theorem (4.15), let us fix 0 < s <t < 1. Using Lemmas
(4.9), (4.14), and (4.18) above we conclude that P o go;} < P and moreover

dPopyy _ . dPo(pf)™

dP k—o0 dP ’

where convergence is in the weak topology o(L',L>). Thus to finish the proof we need
o(ek )t . Jo . . .

to show only that i-(:;.y—‘) converges in probability to the right side of equation (4.17).

From Theorem (3.11) we have that

dP o kt -1 3 t t
419) 2 — e [ ottt aw, 1 [ttt — [ 0otutan).

Here we use that W is a G-semimartingale, with its decomposition given by

n a; At _
W, = B, + Z/ Mds,
k=1 ai_1 At a; — S8

- where B is a §-Brownian motion (or “Wiener process”). (See Theorem (2.1).) Therefore,

~

in view of Lemma (4.9), in order to show that:

t t
(4.20) Jim exp{ / oF(f,)dW,} = exp{ / or(s,r)dW,}

16



in probability; it suffices to show that

_ @int We, — W,
(4.21) tim B[ 10kt — o I ar =0,
— 00 0 i — T

Lemma (4.9) takes care of the convergence of the Brownian Itd integral term (dB). To
that end, for an ¢, 1 <7 < n, we have

W

ai At Wa- .
B[ 10wk - onl I

< Z:E { /0 T (IS Walber) — FH (W} r))lu

+0 [150) - panZe=Tle )

Z{ [ AR B )~ OV ) 2

L / |f1((r) Hx®l } ‘

—r1)1/2

and (4.21) follows by the dominated convergence theory and the hypotheses that fJ2 is
bounded and that le is uniformly bounded in L? for p > 2, combined with Remark (4.8),
that 1* converges to ¢ uniformly in €[0,1]. This then establishes (4.20) as well.

We have now established the convergence of the first term in the argument of the

exponential on the right side of equation (4.19). For the second term, observe that

| / (T (BE,))? = (00(er)) |

t t
<( / lof (V) + or(te,r)2dr) /3 / lok($F ) — 00(1he, )| 2dr) 2,

and again since 1/)2, converges uniformly to v, in C[0,1], an argument similar to the

previous one yields

(422) Jim exp{—5 [ (W)} = expl=3 [ (o))

17



with convergence in probability. Analogously, we can show

Jim exo | (D.ok)(t,)ir} = exp [ (Drov)(i,r)a)

with convergence in probability. (Note that the presence of the Malliavin derivative oper-

ator does not pose a problem, since we can use the identity

SOFWE ) + (Dbt )
= _(E BrO) FWa(ph )Y +ZZ k() (W (% ))1p0,aa(-)

7=1 1i=1

from which, together with (4.22), the result follows without having to use continuity prop-
erties of D.) This completes the proof. J

We end this section by recording a technical result that we will need in Section Five.

LEMMA 4.23. Let o be as given in (4.1), and let ¢ be as in (4.5) and ¢ be as in (4.7).
Let 0 < s <t<1. Then

©s,t(V1,s(w)) = P1,6(ps,t(w)) = w, allw € Q.

Proof: We note that Buckdahn [1, Lemma 3.4] has already proved this lemma for
“simple” ¢ and : that is, for our ¢* and ¥*. Using that the functions sz are in C}(R"™),
1 £ j < m, we can show, analogously to the proof of Lemma (4.4), that there exists a
constant K such that

sup Isost(u w) = @5 o(u, W) S K sup Iw(U) w'(u)

u©€f0,1 u€l0

for all k and w, w' € Q. Moreover:

(4.24) sup [ih7,(u,w) — %7, (1,0 )| S K sup |w(u) - w'(u)]
] u€[0,1]

ue(0,1

18



for all ¥ and w, w' € . We now use the fact (see Buckdahn {1, Lemma 3.4]) mentioned
above that Lemma (4.23) holds for ¢* and %* to conclude:

S%plllsos,t(u, Pr,6(w)) — w(u)|

u€

= sup |@s,i(u,¥s(w)) — ‘P.I:,t(u> "pf,s(w))l
ue[o,l]

< sup I‘Pa,t(u,%bt,s(w)) - ‘Pf,t(u’d’t,a(w))l
u€[0,1]

+ K sup I¢t’3(u,w) - ’l,bf;_,(u,w)l,
uG[O,l]

for all k. The uniform convergence of p* and ¢* to ¢ and ¢ respectively (see Remark
(4.8)) yields the result. §
5. The unbounded case

In this section we again let W, = (W,,,...,W,, ), and we define the process

-

(5.1) o= ()} (Wa)

where f} € L?([0, 1]) for some p > 2, and f? € G3(R™). Note that the difference in o here,
as opposed to ¢ as defined in (4.1), is that fJ2 are no longer assumed to be bounded, and

their partials are no longer assumed to be bounded.

We also assume that the equation

tA-

(5.2) Pai(-w) = w. +/ or(ps,r(w))dr,

SA-

0<s<t<1,w e, has a unique, strong solution. (Note that in Sections Three and
Four we were able to prove the statement analogous to (5.2); here we must assume it, for

it is not true in general; in Section Six we give a counterexample.)

Let g € C;°(R™) such that ||g||L~ < 1, and
1 if |z| <1
9(z) =
0 if |z > 2
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and we define for each k£ € N:

m

(5.3) o5 = £ (8)f1x(Wa),

i=1
where f2,(z) = g(%)f?(z). Then o* satisfies (4.1) and we can apply the results of Section

Four. In particular the equation

T k¢ k
Ur(wsw)dr’

(5.4) ) =w+ [

SA-

0<s<t<1,weQ has a unique strong soltion.

LEMMA 5.5. Let k € N, ¢ as in (5.2), ¢* as in (5.4), s € [0,1], and define Qf =
{ sup |Wa(ps,r)| < k). Then for all £> k
s<r<1  ~

S |u() — %, o(u)] = 0 on 0.
8<tL1

w€[0,1]
Proof: Fix s € [0,1] and w € Qf. Let t € [s,1], v € [0,1], and £ > k. Then

s, t(u,w) — ()oﬁ,t(u7w)|

m tAu
<2
=1

= Z / . ) 5 OIS eWalo,r(@)) = F1e(Walih o)) ldr.

THO AUACR )RS e (Wal(f,(w)))ldr

sAu

Since fﬁ ¢ € C3(R™) we have that there exists a constant K, such that

oadls0) = el € 3 Ke [ 150 Wolnr(©) — Wl )
=1 7
An application of Gronwall’s inequality now gives the result. J
Remarks 5.6:
(i) Let s € [0,1]. The continuity of the function r — |W,(p, )|, s < 7 < 1, implies that
Q= kflei; moreover {23 C Q3 if k < £

(ii) In the proof of Lemma (5.5) we used the hypothesis that equation (5.2) has a unique,
strong solution. Indeed we cannot prove that {¢¥ ,(w)}x>1 is Cauchy in €[0, 1] without

this assumption.
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LEMMA 5.7. Let 0 < s <t < 1. Then the mapping w — ¢, ((-,w), from  into £, is

measurable.

Proof: Clearly 2} is measurable, since W, (., ) is continuous in r. However we have

oo
seen @, 1(u) = of (u) on Qf, and @ = |J Q). Thus ¢ is measurable because ok is. 1
k=1

THEOREM 5.8. Let o be as in (5.1) and let ¢ be as in (5.2), and let 0 < s < ¢ < 1.

Then P o (p,,;)~*! is absolutely continuous with respect to P.

Proof: Let P(A) = 0, where A is a measurable subset of . For each w € Q there
exists ko = ko(w) such that ¢, +(-,w) = ¥ (-,w), for k > ko (see the proof of Lemma
(5.7)). Therefore

kli_{l(;lo La(ek (W) = La(ps s (w)),

all w € Q. Taking expectations, by the monotone convergence theorem

Jm P((¢},)7"(4)) = P(e71(4)).

However P((goﬁ,t)_l(A)) = 0 for all k, since Po(c,of,t)‘1 < P by Theorem (4.15). Therefore
P(p;1(A)) = 0 and the proof is complete.

dPoy];

We now wish to establish a formula revealing the Radon-Nikodym density of i

which we know exists by Theorem (5.8). We need eight small preliminary results.

For the remainder of Section Five we let ¢* denote the unique, strong solution of the

equation

tA

(59) whiw) == [ okt )ar

SA

Note that by Lemma (4.6) equation (5.9) does have a unique, strong solution.

LEMMA 5.10. Let 0<s<t<1. Thenw € ©s,:(?) if and only if there exists ky € N
such that ¢f (w) = ¥f J(w) for all k, £ > ky.

Proof: Let w € ¢,,:(2). Then there exists w’ € £ such that w = ¢, ;(w'), and so by
- Lemma (5.5) there exists ko such that w = @, 4(w') = @5 J(w') for £ > k. Lemma (4.23)
then yields ¢f ,(w) = w’ for £ > k.
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For the sufficiency let w, w' € Q and let k¢ be such that w' = gbtk, s(w) for every k > kq.
By Lemma (4.23) ¢¥ ,(w') = w for k > k¢, and by Lemma (5.5) we have ©¥ (') tends to
@s,¢(w') in €([0,1]). This completes the proof. j

LEMMA 5.11. Let 0< s <t <1. Then

@ U ﬁewaswfﬁ‘}m,t(m

=1 k=

(i) 0.:(Q) €T

Proof: (i) follows from Lemma (5.10), and (ii) follows from (i) above and the fact

that 1* and ¥**! are continuous as functions of w by inequality (4.24).

LEMMA 5.12. Let k € N and s € [0,1]. Then the function w — sup [Walek (w)),
3<t<1 ~

from ) into R, is continuous.

Proof: (Here we consider Q as path space topologized by uniform convergence.) Fix
s € [0,1] and k € N. Let w,w' € Q. Since f},k, 1} < j < m, are Lipschitz, we have the

existence of a constant C such that

Wal(p5,4(w)) = Walipl, ()]

<n{ sup |w(u) - w'(u)] + / B (0 () — oF(ok ("))ldr)
u€[0,1] s

< C{ sup () =@l + Y [ 1 OIWaleh ) - Waleh, )}

=17

for every t € [s, 1]; the result now follows by Gronwall’s inequality. |

COROLLARY 5.13. Let s € [0,1]. The function w — sup |Wa(ps «(w))| from § into
s<t<1l ~

R is measurable.

Proof: This is an immediate consequence of Lemmas (5.5) and (5.12). §

For w € ¢,:(£2), by Lemma (5.10) we know that zptk’s(w) converges as k tends to co.

Hence we define:

(5.14) Yis(w) = lim gk, (), for w € puu(Q).
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LEMMA 5.15. Let 0 < s <t < 1. The function w — 1,, ,(a)(w)¥1,s(w) is measurable.

Proof: Since 1¢,,t(9)¢{°’ s are measurable by Section Four and Lemma (5.11), the func-

tion is a limit of measurable functions and hence measurable. |

COROLLARY 5.16. Let 0 < s <t < 1. The function

W= 1%,:(9)("") zu21|wa(‘?8,r(¢t,s(w)))|,

from  into R, is measurable
Proof: Combine Corollary (5.13) and Lemma, (5.15). §

LEMMA 5.17. Let 0 < s <t < 1. Then

dPo(pe )™t T\
P{T = 0|(,03,t(Q) =1.

Proof: Let F be a bounded random variable. Then

dP (o] (Sos,t)—l
E{Fl{w,,.(n)c}T}

= E{F(SOSJ)]' {Saa,t (Q)c}(<p3)t)}
= 0.

Since F' was arbitrary, the result follows. J

LEMMA 5.18. Let ke N, and 0 <s <t < 1. Let

Roek = 00N { sup (Walpar (6] < 1)

Lotk = @0 ) N { sup [Wa(ps,r(¥1,))] <k}
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Then Ag 1k =Tt k-

Proof: Fix k and 0 < s <t < 1. Let w € Ag k. Then 1/)”(&)) € Qj, where Q} is
defined in Lemma (5.5). Therefore by Lemma (5.5),
903,1("/)::,3(“))) = ()Oﬁ,t("rbf,s(w))

for £ > k. Lemma (4.23) now yields

rs(w) = ¢f ,(w) for £> k,
whence ¥ 4(w) = ¢tk,3(w), and hence w € Ty ¢ &.

Next suppose w € 'y ¢ k. Then ¢4 (w) € Q} and therefore

s, t(P1,s(w)) = S"g,t(@bt,s(w)) for £ > k;

since there is an £ large enough such that v;,,(w) = ¥f ,(w), then ¢¥ (¢ +(w)) = w, and

hence again by Lemma (4.23) we conclude w € Ag ¢ k. I

THEOREM 5.19. Let 0 < s <t<1andw €. Let o be as in (5.1), and let ¢ be as
in (5.2). Then

dPo(pf )!
dPo(pse)™ { P on Atk
b 0 ifw ¢ par(Q)

where As,ek = 2, d() N{ sup [Wal(ps,r(10,0))] < b}

Proof: Let F be a bounded random variable and ¥ € N. Then Lemmas (5.5) and
(5.18), together with Corollary (5.16), imply:

-1
E {FlA.,,,k %}

=F {F((Pa,t)l{ sup |Wa(‘Pa.r)|Sk}}

2a<r<1 ~

ES F(ok Mg, @} @501( sup (Wa(en, Sk ,))|<k}(<Ps t)}

s<r<1 ~

Il
o)

e<r<1 ~

dPO(gost) 1}

E dP

lwlAatk

dPo(‘Pf,t)_l
{Fl{‘Pa t(n)}l{ sup |Wa (s, r("/’: ,))|<k} dP
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and then Lemma (5.17) completes the proof. §
Remark 5.20: If for 0 < s <t < 1 we have that P(p, +(2)) = 1, then Lemmas (4.23),

(5.5), and (5.10) imply that

w= <Pa,t(7/)t,s(w)) = ¥1,s(s,t(w))

almost surely, and the measures P, P o (p;j and P o 1, ! are all mutually absolutely

continuous (i.e., equivalent).

6. A Counterexample

In this section we present an example which shows that, with the assumptions of

Section Five, equation (5.2) need not have a strong solution.

Let f € L?([0,1]) for p > 2, and define

oy = f(r)exp(cT:Vl).

For simplicity let us take s = 0 in equation (5.2). We then have

(6.1) puls) =+ [ frjespepn(t,w)n,

0 <t<1and we N Simplify further by taking f = c= 1.

Suppose that equation (6.1) has a strong solution; then

t

(6.2) pul1,w) = + [ explpr(t,))dr,
0

0 <t <1, has a strong solution. Hence

d exp{-pi(1,)} _

dt -1

for almost all ¢ € [0, 1], and hence from (6.2) we have

exp{—‘Pt(law)} =—t+ exp(—wl),
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for all ¢ € [0, 1], which is impossible if w € {w; > 0}. Therefore equation (6.1) cannot have

a strong solution in this case.

Note that if f(s) > 0 for s € [0,1], and if ¢ < 0, then we are in the framework
of Section Five, and equation (6.1) does have a unique strong solution. In this case the

equation

vi(l,w) = wy +/0 f(r)exp(cpr(1,w))dr,

0 <t <1, has the (unique) solution:
-1 t
pull,w) = = tnfc [ f(r)dr +exp(—cun)},
0
for 0 <t < 1. Therefore:

pi(u,w) = wy — w1 + @eau(l,w),

which is a closed form formula for the solution of equation (6.1). Note that in this case

04() C {w; > —%En{—c /Ot f(r)dr}}

and therefore P(p,(§?)) < 1, which is interesting in view of Remark (5.20).
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