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Abstract

Consider an n x n X n cube divided into n® unit cubes. Sample unit cubes with
replacement (according to the uniform distribution on the n® unit cubes) until a cube is
obtained whose perpendicular projection onto some side of the big cube is the same as
that of some previously chosen cube. Let T be the number of unit cubes that you have
to sample until this happens. This paper derives an asymptotic (n — o00) formula for

P{T >k +1|T > k}. A corollary is that P{n™'T > }"=5 exp (—3t2) for ¢ > 0.



1. Introduction.

Suppose an n x n X n cube is divided up into n® unit cubes (or “boxes”) in the obvious
way. Randomly sample unit cubes with replacement (according to the uniform distribution on
the n® cubes) until you get a unit cube whose perpendicular projection onto some side of the big
cube is the same as that of some previously chosen cube. If T is the number of unit cubes you

have to sample until this happens, what is the distribution of T ?

Here is why this is a ~triple birthday problem. ” If one looks only at projections onto the n?
squares of a fixed face of the big cube, the time V' until a match occurs (i. e. , until some square is
obtained twice) is precisely the match time for a birthday problem with n? equally likely possible

birthdays. By the standard birtliday problem argument

k=1 o
PN>k = J[Z ;"’ , (1.1)

£=1

n

and using the approximation log(l — z) =~ -z, one gets

k-1 Y
1 k(k -1 %
log PAN > k) m —— S~ ¢ = _W‘) S

when n is large. Now let V7, N, and N3 be the match times for the three distinct projections of

unit cubes onto faces of the big cube. Then
T = m_in(Nl,Ng,Ng) y

so that T is the time of the first watch in any of three identical but dependent birthday problems.
Even though Ny, Ns, and N3 are dependent, intuition suggests that they may be approximately

independent for large n. Thus, one expects

P{T > I} = P{Ny > k,Ny >k, N3 >k}

3K (1.2)
Vis B8 exo [ —
P{N; > k} exp ( 2n2> .
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This note will derive approximations (with explicit error bounds) for P{T > k+ 1 | T > k} which
in turn imply (1. 2) for large n. Our final estimate for P{T' > k+ 1| T > k} is

1—n3 [(Bn —2)k — 2(5) % + (’;) dy, + 36 (g) Tf;’(;i); Pg;f ;}2} . (13)

where
4 = 6(n—1)
"7 nt 49218 —6n2 - 14n + 14

If the conditional probabilities P{T" > k+ 1| T > k} are estimated first for ¥ = 1, then
k = 2,then k = 3, etc., then the ratio [whose reciprocal appears in (1.3)]

P{T > k}
P{T > k -2}

can be approximated by the product of previous estimates.

= PT>k-1|T>k-2}P{T>k|T>k-1}

Here is the application to Latin square generation. Start with an n X n square divided up
into n? unit squares. Randomly sample unit squares without replacement. FEach time a square
is selected, randomly choose a number from {1,2,-- -,n} (with replacement) and put it into the
chosen unit square. Then check to see whether the Latin square property has been violated, i. e. ,
whether the number in the last-square equals a number in another square of the same row or
column. Let T be the time until failure of the Latin square property. Then with Ny and T as

above,
P{T > k}
P{Nl > k‘} )

The argument for (1.4) is as follows. The cube face for the Ny projection corresponds to the n X n

P{T>k} = P{T>k|N; >k} = (1.4)

square in the Latin square story. The other cube dimension corresponds to the number written
into a unit square. Conditioning on N1 > k corresponds to the requirement that squares are
sampled without replacement in the Latin square story. With these correspondences between the
problems, T' > k means that the Latin square property has not yet been violated.

Since we have an exact expression for P{N; > k}, an approximation for P{T > k} can be

plugged into (1.4) to yield an approximation for P{T > k}. If P{T >k} =~ exp <—%>, then

~ k2
P{T >k} =~ exp (——n—2>

If the Latin square story is modified to have the sampling of squares done with replacement,
and if “failure” occurs when a square is chosen a second time as well as when the Latin square

property is violated by the number in a new square, then the time until failure is precisely 7.
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2. A Formula for P{T > k+ 1| T > k} in Terms of “Expected Exclusion Overlap”.

Let
Sﬂ' = {(a17a27a3):ai€{1,2,"',71,}} .

Let X,, X5, - be independent and uniformly distributed on S,,. In terms of the X;’s,
T = inf{k: X} shares at least two coordinates with some X;, j < k} .

From now on, the elements of S, will be referred to as boxes, since I find that this terminology

fits nicely with the geometric problem description of the introduction. Also, let G, = {T > k},

with the mnemonic that Gy means that X1, -, X are a “good” choice of boxes for Latin square
generation.
Suppose now that Gy = {T > k} has occurred. The next box chosen, namely Xy41, is

equally likely to be any of the n® boxes in S,. Let My = Mp(X1,++, Xk) be the number of
choices for box Xy which would cause Gx41 = {T >k + 1} to fail. Then obviously

nd - M
P{Gr41 | X1,-++, Xk} = Tk
and
nd — BE(My | G)

(3 . (2.1)

P{Gt+1 |G} =

n

Thus, the problem of estimating P{T' > k+ 1| T > k} = P{Gk+1 | Gr} reduces to estimating
E(Mi | Gg)

There are 1 + 3(n — 1) = 3n — 2 boxes which share at least two coordinates with X;. For
example, if X; = (1,1,1), then these boxes are (1,1,1) itself and all boxes of the form (j,1,1),
(1,7,1),0r (1,1,7), 7 # 1. Let us describe this by saying that X; ezcludes 3n — 2 boxes as choices

for Xi4+1 which are compatible with event Gy4+1. Thus,
M < (3n—-2)k, (2.2)

since each of Xi,...,X excludes 3n —~2 boxes. However, a box may be excluded by one X;,
by two X,’s, or by three X;’s when G occurs. One could say that “exclusion overlap” occurs

if a box is excluded by two or three X;’s.



Write X; ~ X; if boxes X; and X; have exactly one coordinate in common. (Despite
what the notation may suggest, “ ~ ” is clearly not an equivalence relation, since X; ~ X, and
X2 ~ X3 donotimply X;~X3.) If X;~ X, then there are exactly two boxes excluded by
both X; and X,. For example, if X; =(1,1,1) and X, =(1,2,2), then boxes (1,1,2) and
(1,2,1) are excluded by both X; and X, .

At the risk of some confusion, write X; ~ X; ~ X if each pair of boxes from among the three
share one coordinate, which is a different coordinate for each different pair. Thus, X; ~ X ~ X3
would occur if X3 =(1,1,1), X;=(1,2,2), and X35 =(3,1,2), since X; and X, share the
first coordinate, X; and X3 share the second coordinate, and X, and X3 share the third
coordinate. The reason for paying attention to this quirky event X; ~ X; ~ X, is that it means

that X, Xj;, and X; all exclude the same box, which would be (1,1,2) in the last example.

A simple accounting argument shows

My = 3n-2k-2) HXi~X;}+ > HXi~X;~X). (2.3)
i<j i<j<i
Since the boxes Xj,...,X; are cxchangeable, given Gy,

E(My|Gy) = (3n—2)k —2 (’;) P{X: ~ Xa|Gi}
(2.4)
+ (’;) P{X1 ~ Xz ~ X3|G) .

Plugging (2.4) into (2.1) gives

k

2) P{X1 ~ X,|Gi} + (Ig)lP{Xl ~ Xy~ X3|Gk}] .

(2.5)

P{Gy41|Gs} = 1—n"2 [(3n —2)k—2 (

The next section will obtain crude bounds on the conditional probabilities in (2.5) which are

sufficient to prove the weak convergence
T -
P{; > t} i L t>0 . (2.6)

~ Later sections will derive much better estimates for these probabilities.



3. Weak Convergence of %
The unconditional probability of X; ~ X, is

3(n —1)? <

P{4Y1 i X?} = n3

% . (3.1)

(Argument: For any possible choice of X7, there are (n — 1)? choices for X; which agree with X

in the first coordinate but not in the second or third coordinates.)

We immediately get the bound

3
P{.Yl ~ XQIGk} < P{Gk}—l ;Z- . . (3.2)
Likewise, s
3 n—1 (n-1)3 6
P{X;j~ Xy~ X3} = n ><3!><< -3 ) =6 5 < ol (3.3)

(Argument: For X; ~ X; ~ X3 with common exclusion box (1,1,1), the forms of X3, X3, and X3
must be (4, 1,1), (1,,1), and (1,1,!) in some order, with i # 1, j # 1, and [ # 1. This has
probability 3!(n — 1/n3)3. Multiply by n® because there are n3 possible “triple exclusion” boxes.)
Thus

P{X, ~ X5 ~ X3|Gi} < P{G}}1 - (3.4)

6

_77/—3 .
Now, let’s get a crude lower bound on P{Gj}, which will give a crude upper bound on.

P{Gx}"!. Plugging (2.2) into (2.1) yields

n® — (3n - 2)k

P(GualGi} > =7 (3.5)
Since In(1—-2) > —(2In2)z > -2z  for 0<z< %,
k-1 6 k1 ' o 2
In P{Gx} = > InP{Gi1|G} > ~ — L2-"5  for k< (3.6)
=1 I=1
and so
k? n3
P{Gy}™' < exp (3 ;z—2> for k< e , (8.7

Plugging (3.7) into (3.2) and (3.4) and then using the resulting bounds in (2.5) yields for
k< 2 tha

P{Gi41|Gx} < 1—-n"° {(3n_2)k -2 (g) % erp <3%;>]

— k 2 2

n3 nt n2

(3.8)

5 .



and

P{Gk41[Gx} 2 1-n"° [(?m sl ( ’;) = e (3:;) ]

3 2 3.9
>1—%—ﬁ—exp(3k—2) (3.9)
n

= nZ b

Now fix £ > 0. If we multiply over £ < ¢n in (3.8) and in (3.9), then easy estimates of the

logarithms give upper and lower bounds on in P{T > tn} which in turn imply the weak convergence

(2.6).

4. Good Estimates of P{T > k + 1{T > k}

The previous section showed that the conditional probability terms in (2.5) are asymptotically
negligible as far as weak convergence of % is concerned. This section will obtain reasonably good
approximations for these conditional probabilities, and Section 5 will do better yet. It will be
seen that the events X ~ Xz and X; ~ Xy ~ X3 are approximately independent of the event
G = {T > k}. Let’s start with several basic lemmas.

Lemma 4.1: Given event Gy, cach of the n® boxes in S, has probability exactly ;kg of being

one of Xq,..., Xg.

Proof. Just use symmetry. 1

Lemma 4.2 For 2 < k< %, P{Gi|Gr—2} > 3},

Proof: For k < ’1‘—; , (2.2) implies

3
n
M, < T
Plugging this into (2.1) yields
3 - n?
P{G41|Gi} > 7 o k<3 -
Since kg’f—; implies k- 1< %2 and k—2_§’f—;,
9 1
P{Gk|Gr~2} = P{Gr-1|Gr-2} P{Gr|Gr-1} > 6> 3

provided k < % . ]
Remark: From now on, we will focus attention on k£ < ’1‘—;, since Lemma, 4.2 applies to such

k's. Note from (2.6) that P{T > -’1% } is very small when n is large.
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First we need some more notation. Define the events

A = {X1i=(,1,1) and X; = (1,2,2)} (4.1)

B = {Xy=(,1,1) and X, = (2,2,2)} . (4.2)
By the same sort of symmetry which implies Lemma 4.1,

P{X) ~ X3|Gx} = 3n3(n—-1) P{A|G:} (4.3)

since, given {X;.~ X,}NGi, X1 and X, are equally likely to be any of the 3n3(n—1 )? possible

ordered pairs of boxes in S, for which X; ~ X5. Likewise
P{not X| ~ X5|Gx} = n®(n-1)3 ‘P{BIG’k} . (4.4)
Also, it is obvious that, unconditionally,
P(A) = P(B) = n~® . (4.5)

Let G}_, be the event that no two of Xj,..., Xy share two or more coordinates. Thus,
Gi_, is just like Gy, except that it refers to X3, ..., X rather than Xi,..., Xx—2. Also, denote
X3,..., X by X3,..., X}, so that a general X} refers to one of the X;’s other than X; or X,.

Let R;; be the set of eight boxes all of whose coordinates are either 1 or 2. Let Qs be the
set of 12(n — 2) boxes which have exactly two coordinates which are 1 or 2, like (1,7,1) or (3,1,2),

for example.

e 2
Proposition 4.6 For k < I3,

4k 4k
’ P{A|G\} — P{B|G:} | < 2 P(A) = = - (4.6)
Proof. 1 claim that
« ,, 2k
‘ P{G|Gy_y N A} - P{Gk|G}_, N B} ’ < poll (4.7)

Explanation: If no X*’s arein ;2 or @13, then Gj will be true for both A and B. If (2,2,7),
say, is one of the X?’s, then Gy might be true under A but G, will be violated under B. By
Lemma 4.1, the probability that one of the X’s is (2,2,7) is exactly -’%—32 The number of boxes

like (2,2,7) whose choice as an X box would make Gy false under B but possibly true under
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Ais 2(n —2)+2 = 2n— 2 < 2n. The probability, given G}_,, that at least one of these boxes
isan X7 is < £2”—"2n23(ﬁl < %’»} , by Lemma 4.1. Thus, (using the fact that events A and B are
independent of G%_,)

2k
P{GkIG;_2 ﬂ A} - P{G}chz_z ﬂB} < Ei‘ .

Likewise, there are precisely 2(n — 2) possible choices for X} boxes which would make G false

under A but possibly true under B, which gives us the other direction in (4.7).

Multiply through in (4.7) by
P{G;_,nNA} = P{Gi_,NB} = P{Gr}P{A4} ,

and divide through by P{G\} to get

P{Gr_2} 2k
- P{B < ———= - P{A} .
Applying (4.5) and Lemma 4.2 finishes the proof of Proposition 4.6. ]

There are 3n?(n — 1)? possible “Type A” choices for X; and X, for which X; ~ X, [cf.
(4.3)].  All have the same conditional probability, given Gy, namely P{A|Gx}. There are
n3(n — 1) possible “Type B” choices for X; and X, for which X; ~ X, is not true but
Gy = {T > 2} is true [cf. (4.4)]. Given G, all have the same conditional probability, namely
P{B|G\}. Proposition 4.6 says that, given G, with k < '1’—;, the common conditional probability
of “Type A” choices for X; and X, differs by less than i—'?; from the common conditional
probability for “Type B” choices. Since there are a total of n3(n — 1)3 + 3n3(n — 1)? possible
choices for X1 and X; compatible with Gy, their average conditional probability must be the

reciprocal of this number. It follows for & < 11’“—; that

1 4k
‘ PAIGS - s rammoty| < W (4.8)
and
1 4k
l PABIGH) — iy aminoir | < = (4.9)




By (4.8) and (4.3),

303 (n—1)?
‘ P{X] ~ XZIG]C} - na(n _ 1)3 + 3n3(n _ 1)2
(4.10)
. 3 4k 12k
= , P{Xl N)&zle}—n—H < 3n3(n—1)2n—8 < n_3 .

Let’s state this formally:

Proposition 4.11: If k < %, then

3 12k
P{X~X . =E
l { 21Gk} n+2 n3
Now let’s do something similar for P{X; ~ X; ~ X3|Gx}. Define events Cy, Cy, ... to be all
the different possible choices for X; X3 X3 consistent with G3 = {T > 3} for which X; = (1,1,1)

and for which all coordinates of X; and X3 are 1’s, 2’s and 3’s. For example, one might take
¢, = {Xi=(1,11), X, =(2,2,2), X5=(333)}

and

Cz = {..Y]_ = (1,1,1), X2 = (1,2,2), X3 = (1,3,3) }

etc. Any C; of course has unconditional probability P(C;) = n"°. I’'m not sure how many such
C;’s there are. There surely aren’t more than 300, but I don’t much care. What I will show is that
all these possible events C; have about the same conditional probability, given G%. Then we’ll
use the fact that the conditional probability, given G, of any possible choice of X; X3 X5 is
equal to the conditional probability of some C;. It will follow that

no. of X; ~ X, ~ X3 choices for Xy, X3, X3

~ X ~
PiX, 2~ Xs|Gi} total no. of G5 choices for X, X3, X3

Denote X4,..,X; by )?4, ..,)?k, so that a generic )?i refers to one of the X;’s other than
X1,X2 or X3. Let @k_;; be the same as Gg.3 except in terms of )?4, ..,Xk instead of
X1,y Xg—3. Let §123 be the set of all boxes in 5, all of whose coordinates are either 1, 2, or
3. Let @123 be the set of boxes in S, exactly two of whose coordinates are either 1, 2 or 3, like
(7,1, 3) or (2, 2, 4) for example.

So, now let C; and C; be any two distinct C;’s (not necessarily the ones in the example

above).



Proposition 4.12: If €y, and C, are any two events C; as described above and k < ’1‘—;, then

12k 12k

]P{cllak}—P{czle} <ZEpoy = 2 (4.12)

Proof: The argument is the same as for Proposition 4.6. We start by showing

6k
= - (4.13)

l P{Gk|Gr-3 N C1} — P{G|Gr—3 N Ca} ’ <
If Gi is to be true under ¢4 but not true under C,, then there must be at least one )?i in a
particular set of < 6n boxes, all of which are in ﬁ123 U ngg . By Lemma 4.1, the probability of
at least one X ; landing in this set of < 6n boxes is less than

6n)(k -3 6k
n)=5) ok

b

likewise for the other direction in (4.13). Now, multiply through in (4.13) by
P{Gr-sNCy} = P{Gr_snNC:} = P(Gr-3)P(C1) = P(Gp_3)n~°

and divide through by P(Gx). Applying Lemma 4.2 finishes the proof of (4.12). |

By (3.3), there are 3!n3(n—1)® ways of choosing X7, X, and X3 so that X; ~ X3 ~ X3. By
straightforward but slightly tedious counting, the total number of ways of choosing Xj,X,; and
X3 sothat Gz = {T > 3} holds is

nd(n — 1)} (n* 4+ 20° — 6n% — 14n + 14) .

Let
_ 6(n—1)

d, = ~ 4.14
nt 4203 — 602 — 1dn + 14 ( )

Note that d, is about 6n~2 for largen. Combining these numbers with Proposition 4.12 yields
Proposition 4.15: If k < ’1‘—22-, then for any event C;

1 ‘ L 12k
n3(n — 1)%(n* + 2n8 — 6n2 — 14n + 14), nil

'P{Cile} -

and

Proposition 4.16: If k < 711—;, then

72k(n - 1)® 72k
s < 5
n n

‘ P{X1 ~ Xz ~ X3|Gk} — do

10



Propositions 4.10 and 4.16 applied to (2.5) yield

Proposition .17 If k < ’11—:-, then P{Gy41|Gk} is greater than

E\ 3 k K k
1-n=3 [(3n—2)k—2(2> e +(3) dn +12 — +12 ﬁ} (4.16)

and is less than

_ kK 3 k K k*
1—n3[(3n—2)k—2<2) n—+2+<3> dn_12$'—12$] . (4'17)

Remark: The logarithm of the ratio between the upper and lower bounds for P(Gyn) from
Proposition 4.17 will be about

6a*n? +4.8a°n73.

Thus, the ratio of the bounds for P(Gy) is close to 1 even well out into the upper tail when = is

large.

Another Remark: The weak convergence in (2.6) is of course not enough to establish

(o]
E (Z) N / e~ 3t gt = 1/1 as n — 00 . (4.18)
n 0 6

T o0
E (Z> — / et dt = 4 as n — 00 . (4.19)
0

n

or

The convergence results (4.18) and (4.19) do follow easily, however, from Proposition 4.17, together

with formulas (1.1) and (1.4) in the case of (4.19).

5. Better Estimates of P{T > k + 1|T > k}.

The inequality (4.7) in the previous section was rather crude. We obtained one direction by
summing over all possible choices for X} boxes which would violate G} in the presence of B
but not necessarily in the presence of A, and the other direction by summing over all possible
choices for X boxes which would violate G} in the presence of A but not necessarily in the
presence of A. We couldn’t do much better at the time because all we had to bound probabilities
was Lemma 4.1. In particular, we had no good handle on the probability, given G%_,, that at
least two X[’s or at least three A’s would land in Rj2 U @12, or on how they would look if they
did. However, now our results in Section 4 give us information on such things, so we can revise

(4.7) in light of these results to bootstrap our way to a better estimate. By paying attention to
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the number of X’s in R;2 and @12 and to where they land, we will get a lot of cancellation in
i y g

our estimates of the difference

P{Gi|G}_, N A} = P{G|G:_, N B} . (5.1)

The same ideas apply to the improvement of (4.13), although we won’t carry this out.

Decompose P{Gk|Gx_, N A} as

P{Gk|G;_;N A} = P{Gy and no X} in Rz or Q13|G}_, N A}
+ P{Gy and at least one X in Ry,| Gj_, N A}
+ P{G} and exactly one X in @12, no X} in Ry |Gr_o N A}

4+ P{Gy and at least two X*’s in @12, no X} in Ry {Gr_, N A} .
: (5.2)
P{G|G%_; N B} has the same decomposition, with B in place of A. The first term of the “A”

expansion (5.2) and the first term in the “B” expansion both equal
P{no X{ in Rjp or Qq2|G{_,} ,

so these terms cancel in (5.1). The third terms in the A and B expansions are also equal. This

follows from the fact that A and B are independent of the X}’s and from

P{Gi|ANG}_y Nexactly one X5 in @12, no X in Ry2}

= P{G|B N G%_y Nexactly one Xj in Q12, no X* in Ry2}
1

2

The explanation for this last equality is that the single X} in Qs is conditionally equally likely
to be any of the ()12 boxes. Gy will be true under A (respectively B) for half of these @,
boxes. So anyway, the third terms cancel in (5.1). |

Now let’s consider the second terms. The second term in the B expansion is 0, since any
box in Ry, violates Gy under B. There are exactly two boxes in Ry, namely (2,2,1) and

(2,1,2), which are not excluded by A. Thus, the second A term in (5.2) is bounded above by

2(k - 2)

P{at least one X7 is (2,2,1) or (2,2,2)|G5_,} < .
T

(5.3)

12



This second A term in (5.2) is bounded below by

2(k — 2) P{X3 = (2,2,1), no other X’s in Ryz U Qs |Gh_s}
= 2(k—-2) P{X7 = (2,2,1) | Gk}
- 2(k-2)P{X3 =(1,1,1), > one other X in Ry U Q12 |G}_,}

2(k — 2) (5.4)

Z 3 - 2(k - 2)(k e 3) P{X;; = (1,1,1) and X: in R12 U ngle_g}
> Q(kn; 2) _ 9k - 2)(k — 3)(6n — 9) P{A|Gx_2)

= 2(k = 2)(k - 3)(3n — 5) P{B|Gx-2}

[Explanation for the last inequality: There are (6n.—9) choices for X} in Ry UQ12 which have
one coordinate in common with (1,1,1) and all these choices are equally likely, given X3 = (1,1,1)
and Gj_,. Thus

P{X; = (1,1,1), X5 ~ X],and Xj in Ri; UQ1s|G]_p} -
(6n —9) P{X3 = (L,1,1), X] = (1,2,2)|G}_»}
(6n —9) P{A|Gs-2} .

Similarly, there are (3n —35) choices for X 4 in Ry UQ12 which have no coordinates in common

with (1,1,1).] But by (4.8) and (1.9), with %k — 2 in place of k,

1 4k

P{AIG}_,} < m + 5 (5.5)
and (5.6)

PUBIGE)} < Ty + o5 (56)
Plugging these inequalities into (5.4) yields that

22D na(fﬁy - 2 (5

is a lower bound for the second .l term in (5.2). Thus, this second term in (5.2) is always less

than gI:;_z)’ but only a little less if ;’Z— is small.

The fourth and last term of the A expansion (5.2) is less than

13



( ’2“) P{Gy; X; and XJin Qu|Gi_,NA}

= (§) PiGy X5 and Xiin Qu, X3 ~ Xi|Ghz 0 4}

) P{Gi; X5 and XJin @2, not X5 ~ XJ|Gs_, N A}

2(n - 2)(10n - 2)P{Xs = (1,1,3), X = (1,2,4) ]G5y} (5.8)

) An—2)(5n = TIPIXE = (1,1,3), X = (2,3,2) [Gls)

[N

Il

o~ —
o e

The explanation for the second equality in (5.8) is that there are 2(n — 2)(10n — 21) ways of
choosing X3 and X in @2 so that X3 ~ X and so that Gy is not necessarily false in the
presence of A. These 2(n — 2)(10n — 21) ways are conditionally equiprobable. Likewise, there
are 2(n—2)(5n - 7) allowable chcﬁces for X3 and X7 in Q2 without X3 ~ X7.

An inclusion-exclusion argument shows that a lower bound for the fourth A term in (5.2)is
k * L34 *
(2) P{Gy; X35 and X{in Q12|G}_, N A}

k . *
- 3 (}) POs X3, X5 i QuilGiand)

IS (;) 2n — 2).(10n —21) P(A|Gk_3) | (5.9)

+ (;) 2(n — 2) (50— 7) P(B|Gr—2)

-3 (’;) 8(n — 2)? (15n — 28) P (Cmaz|Gr-2)
where Cha, is the C; in Section 4 (with %k — 2 in place of k) maximizing P(C;|Gk—2). By

Proposition 4.15,
1 12k

P(Cmaa:le—Z) < m + —T;H oy

since the denominator of d, in (4.14) is greater than (n—1)* for n > 3. Thus,a lower bound
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for the fourth A term in (5.2) is

2(n - 2)(10n — 21) P(A|Gk,)

+ <:) 2(n — 2)(5n — 7) P(B|G4,) (5.11)
60k3 720 k*
n3(n—1  n8

The same arguments as in the previous paragraph show that the fourth term in the B version

of (5.2) is bounded above by

(%) 2tn-2)6n-9) P(41GL-)
. (5.12)
+ (2) 2(n — 2)(9n — 21) P(B|Gk-2)
and bounded below by
(5) 2n-26n-9) PG
k
+ (2) 2(n — 2)(9n — 21) P(B|Gy,) (5.13)
60k3 720 k*
m(n-18  n8

Thus, by Proposition 4.6 and (5.5), the difference between the fourth term in (5.2) and the corre-

sponding B term is bounded in absolute value by

16k3 2k? + E 603 720k*
nb n3(n—-1)2 = naf n3(n - 1)3 n8

(5.14)

Putting the above results [including the bounds in (5.3), (5.7) and (5.14)] together yields for
k< 71‘—; that

k—2
| PGHGE, N 4} — PGHGE, 0 B .
18k? 72k 16k3 2k? N 8k3 . 60k3 N 720k*
- nd(n-1)? n? n® n}(n—-1)2 " a7  nd(n-1)3 n8
LR [ 20 80k, 76k 720K (5.15)
nd 2 nd  (n-1)(n-2) nt

2

{ 14 £ if n >2 and k <
<

n

0.86- £ if n > 1000 and k < 2%
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[The inequality (n — 1)2 > n(n — 2) was used in going from the second line to the third line in
(5.15).]

For the sake of keeping the formulas simple, let’s assume n > 20 and %k < %;, keeping in
mind that the constant 14 can be replaced by a smaller value if n > 20 and k < ’1‘—;, or in general

by the expression in square brackets in (5.15). Multiplying through in (5.15) by

2
P{Gy} ™' P{Gi_aNA} = P{Gi} ! P{Gr—2}n"® < -
yields
Proposition 5.16. If n > 20 and k < %, then

2(k —2) P{Gk—2} 2k?
e P{Gk} < 14 . W .

P{A|Gx} - P{B|Gs} -

Now recall from Section 4 that there are 3n3(n — 1)? choices (equiprobable, given Gy ) for
X, and X; with X ~ X; and n®(n — 1) choices (equiprobable, given G ) for X; and X,
with no common coordinates. It is, of course, still true that the average conditional probability
of these n®(n — 1)3 + 3n3(n — 1)® choices must be the reciprocal of this number. From this and

from Proposition 5.17 we get for n > 20 and k < 71‘—; that

1 2(k - 2)(n = 1) P{Gr_2} 2k?
‘P{“”G"}' T WG WwrarGy | < M am o (61D

Now by (5.17) and (4.3) we get
Proposition 5.18. If n > 20 and k < —’1%, then

v k-2 - 1)3 _ 2
'P{leszle}— 3 _ 8kl PG <14'%,

n+2 n8(n + 2) P{G4} n’

where the 14 can be replaced by the expression in square brackets in (5.15), providing k < 1z~

Propositions 5.18 and 4.14 applied to formula (2.5) yield the following improvement (at least
for large n) of Proposition 4.15.

12

o) e ()« - () SR
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Proposition 5.19. If n > 20 and k < %, then the difference between P{G+1|Gx} and




is bounded in absolute value by

6k* 12k*
W-2e 0

Remark. Again, the 14 in the bound may be replaced by the expression in square brackets in
(5.15) when k < 11‘; holds. Also, the ratio of probabilities in the estimate of P {Gy4+1|Gx} is equal
to the reciprocal of

P{Gi|Gr-2} = P{Gr-1|Gr-2} P{Gk|Gr-1} ,
which can be estimated by the product of our estimates for P{Gy_1|Gx—2} and P{Gi|Gi_1}.

A Final Remark: The methods of this section could be used to improve Proposition 4.15, which

would cause the 1721';4 term in the bound in Proposition 5.19 to be replaced by a smaller order

term. One could also use Proposition 5.16 in place of Proposition 4.6 to replace the first term of
(5.14) by something of smaller order in n. Finally, one could replace the last two terms in (5.14)
by terms of smaller order by working harder to get more cancellation between the fourth A and
B terms in (5.2). The result of all this would presumably be to replace the bound in Proposition

5.19 by a bound of the form ¢ Z—; for some constant ec.
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