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ABSTRACT

The problem of obtaining absorption probability distributions of random paths, as out-
comes of sampling from finite populations either with replacement or without replacement,
on any given barrier sets is considered. The absorption probability of random path at a
point in the barrier sets is simply the product of an easily computable “latent”, which is a
function defined on the barrier sets, and the underlying probability at this point. The latent
(function) is evaluated recursively on the barrier sets. This result holds when underlying
probability for the random path is multinomially or multihypergeometrically distributed.
Above investigations are done for the cases when absorption of paths is defined as first hit-
ting (or second hitting and etc.) to some points in the barrier sets, as well as ordered hittings
on ordered barrier sets. Applications of these methods to obtain absorption probability dis-
tributions for sequential tests in dichotomous populations, such as multiple-stage test or test

of three hypotheses, are given.



1 Introduction

In many practical problems, a random variable (or vector) is under investigation. Suppose the
distribution of this interested random variable (or vector) belongs to certain class {Fy, § € 0},
where 0 = (6,---,04), d > 1, but the true § is unknown to us. We are interested in testing
hypothesis Hy : 6 € ©g v.s. H;: 0 € ©,. To make a statistical decision, a number of
observations from this random number (or vector) are sampled to provide information about
the underlying true . More observations are sampled, more information is obtained. But
in real life, more observations means higher costs and longer time needed. A challenge to
statisticians is to find ways to get more information from less observations. Sequentially
gathering observations and making decision whenever information provided by the gathered
observations is enough, this practice provides efficient means to achieve the goal mentioned
above. Now suppose the observations are X, X5, --and S, = gn(f(l, oo ,Xn) is a sufficient
statistics for 0, where X; and 5, are vectors. We can always imagine that the sampling is
ever going thus the infinite sequence 51, 55, - - -, can be observed. In sequential procedure, we
have an opportunity to look at S, Sy,+++in sequence one by one, stop (looking) and make
decision whenever the early stages of this sequence shows strong evidence either in favor of
B9 or in favor of ©;. The observations in later stages of this sequence are ignored at all. In
fixed sampling size procedure (assuming sampling size is ng), we making our decision only
depends on outcomes of S,,, so the observations in stages, up to ng — 1 and after ng, of
the sequence are ignored at all. Looking at these two kinds of decision procedures from this
unique point of view, pinpoints their similarities and differences.

Next we give some definitions to summarize above idea. Let S = (5’1, S’g, -++). Through
out this paper, we will call S the random path. Let X be the set of all sample paths of S.
Let Py(-) be a probability measure on X, derived from Fy. Then {P(-),8 € O}, derived
from {Fy,0 € O}, is a class of probability measures on X. In order to test Hy : 6 € O,
v.s. Hy: 0 € 0, we divide X into a partition {H,,a € A} (A is some proper index
set) according to {Py(-),0 € O}, the probability measures on X. We say {H,,a € A} is
a partition of X if U, g Ho = & and Hy N Hy = § for any o # o'. The partition of
X, {H,,a € A}, should be such that for each H,, if P(S € H,) is “large” (“small”) for
0 € Oy, then it is “small” (“large”) for § € O, (here “large” and “small” are in a relative
sense). When doing the test, we observe which H, that S falls in, assume § fell into H,,,
accordingly we make decision in favor of Qg if Py(S € H,,) is “large” for 6 € Oy, in favor of

0, otherwise. Obviously there are many different partitions met above requirements. If the



partition is made only according to the possible values of S,,, then we have a procedure of
fixed sampling size ng. If the partition is made according to possible values of S, for some
different n’s, then we have a sequential procedure. We further illustrate this idea in later
discussion of random paths from finite populations.

Even though sequential procedures are more efficient than the fixed sampling size proce-
dures, there are two difficulties which disencourage practitioners to prefer the former to the
latter. One difficulty is that in most cases, it is difficult (too complicated or too tedious),
sometimes impossible, to compute OC (operation characteristic) and expected sampling size
for a given sequential procedure. The other difficulty is that in most cases, there doesn’t exist
a sequential procedure which is superior than other procedures (sequential or not) uniformly
on 6. (

In this paper, we only discuss sampling from finite populations. We will develop methods
of obtaining the probabilities of random paths, as outcomes of sampling from finite popula-
tion either with or without replacement, being absorbed by a specified set of points. These
methods, simple in formulation and easily computable, not only overcome the first difficulty
mentioned above but also help to select proper procedures by providing easily computed
power function and expected sampling sizes for any tentative sequential procedure.

Fisher[1952], Aroian[1968] and other authors had used direct methods to obtain proba-
bility distributions of first hitting for random walk from binomial and other distributions. In
direct methods, computation of absorption probabilities is tedious because it involves, based
on convolution, all continuous and barrier points. Continuous points, in most sequential
tests, are much more than barrier points.

In methods introduced in this paper, absorption probabilities on barrier sets is just simply
the product of the latent (function) of these sets and underlying probabilities. Evaluation
of the latent (function) involves only points in barrier sets. Compared with direct methods,
our methods are more convenient and simpler. Its advantage becomes more obvious when
absorption of random path is defined as mth hitting or as ordered hittings. Absorption
probability distribution for mth hitting or for ordered hittings are useful in multiple-stage
tests and two-sided test with three decisions, examples are given in Section 4.

A drawback in our methods is large number of binomial coefficients are includeded in
formula, which might greatly slowdown the computation in computer because computation
of factorial is time consuming. This drawback can be overcome by computing binomial
coefficients recursively by (Z) = ( _1) + (";1), and storing those binomial coefficients in

k-1
memories for later usage.



2 Random Paths from Finite Populations

A finite population is defined as a population P}‘f’ ~ consists of d classes of items such that
Npy items of which are of kth class, k = 1,..-,d and Y¢_, py = 1. Here and throughout
this paper, IV, a positive integer, denotes the population size; p;, a number between 0 and 1,
denotes the proportion of kth item in the population, and p = (py,---, pd). Sampling with
replacement from a finite population, we designate X, as the outcome of Ith observation,
ie X = (X, -+, Xiq) where X = 1 if Ith sampled item belongs to kth class, Xj =
0 otherwise, thus ELI Xix = 1. Then Xl,---,Xn,--- are independent random vectors
identically having p; as the success rate for kth component for k = 1,---,d.

Let S, = Ha Xz, then S, = (Sn1y: ", Snd) Where Sp; = Y1, Xi. Obviously, S, has a

distribution of multinomial My(n;py,---,pa). Let

g'n = (snla e ,Snd), Snk integel‘ }

X = §=(.§1,°",§n,"'): d
Snk —Sp1k =0 or 1, Y4 S =n

Sampling with replacement, § = ($,5,,---,S,, - -) is a random path with increment X,,
which is independent of passage position S, 4 = 3,4 for n = 1,2,---.

We can imagine sampling is done infinite times with replacement, then § is the random
path, and X is the set of all possible sample paths. In other words, X is the sample space
of S. Random path S = (§y,5,,---, 5, -} can be “graphed” as a sequence of points on
d-dimension space which has coordinates (s, - - -, $nqa). Connecting those neighboring points
with lines, we have a random path starting from origin and extending infinitely to positive
direction of all coordinates.

Let {Hy,H;,---, Hy} be a partition of X'. Since elements in each H; are sample paths,
for the reason of intuitive thus easier conception, we call H; a bunch of paths. So partitioning
of X is to divide all paths in X into a number of bunchs in a way such that each path in X
belongs to some bunch, and no single path belongs to two different bunchs.

For an example in dichotomous population(d = 2), we have random path § = (81,85,
where S, = (Sn1; Snz) = (Sa;n—S5,), Sy is binomially distributed as B(n,p) where0 < p < 1.
A simple partition of X' is {Hngo,"*, Hyyn, } Where Hppi = {8 € X : 8,y = (5,n0 — i)} and
no is any fixed positive integer. It is easy to check that {Hyy;, s = 0,---,no} is a partition
of X, and we have P(S € H,,;) = P(S,, =) = ("z.")p"(l —p)~ifori=0,---,n,.

When sampling is carried out without replacement, population PZ,N is exhausted at
the Nth step of sampling, and Xl,Xz,---,XN are not i.i.d. Sy = (S’l,gg,---,S'N) is a



random path with increment X,,, which is dependent of passage position S, = &, for
n=1,2,-.-,N. Let Xy be the set of all possible sample paths of Sy, then

gn = (S'I'Llﬁ e 73nd)7 Snk lnteger }

XN= §N=('§1"“7§n7"'7'§N): P
Snk —Spak =0 or 1, i  su=n

AN is the sample space of Sy.

3 Absorption Probability Distribution on Barrier Set

Our goal is to derive methods of obtaining absorption probability distributions of random
paths, which arise by sampling with or without replacement from finite population, on any
specified barrier sets. Obtaining absorption probability is of broad interests. Especially
in sequential tests, absorption probability is critical for computation of OC and expected
sampling sizes for the tests. Even though this method is motivated in sequential tests, here
we treat it as general as possible in hope it can find applications widely. First the discussion
is given when the absorption of a random path is as the usual sense, i.e. the random path
first hitting a point in the specified set of points. Then we will generalize this method for the
cases when absorption of random path is defined as mth hitting, as well as ordered hittings
in specified barrier sets.

Let B be a set of some interested points on this space that S might hit. We call B the
set of barrier points. Hence B = {b = (by,---, ba) : by is positive integer, k = 1,---,d}. As
an example for d = 3, let B = {(1,2,2),(2,1,2),(2,3,3),(3,2,3), (4,1, 3),(3,4,4),(5,4,2)}.

Let B, be the subset of B, points in which random path § might hit at time n (during
the nth sampling), that is B, = {b, = (ba1ye 3 bng) : 4, bt = n}. Let I, be the number
of points in B,, then I, = 0 if B, is empty. We call B, the set of barrier points at time n.
Hence B = U, B,, and By, Bs,-- - are disjoint.

In last example, B; ={(1,2,2),(2,1,2)}, Bs={(2,3,3), (3,2,3), (4,1,3)}, By = {(3, 4, 4),
(5,4,2)}, and B, =@ for n # 5,8,11. B is the set of all barrier points which random path
S might hit during the whole process of sampling.

3.1 Absorption Defined as First Hitting

Let B be the subset of X', which includes all sample paths which pass through some points
in B. 2B can be partitioned into bunchs of paths {H(b): b€ B} = {H(b,): b, € B,, n=



1,2,---} where

H(En)={§€XZ§n=I;n, §[¢B{, l=1,2,,n_1}
ZnGBn; n=12--- (1)

It is not difficulty to check that {H(i)n) b, € By n=1,2,- } is a partition of 8B and
P(S€ H(bn) = P(Sn=bs, Si¢ B, 1=1,---,n—1). (2)

The right side of above equation indicates P(S € H(})) is the probability that random path
S hits b before hitting other barrier points in B, or the absorption probability of S at b. For
this moment, absorption of S by & is defined as § hits b for the first hitting in B. Later on,
we will discuss the cases when the absorption of § by b is defined in other meanings.

Let ng be the subset of Ay, which includes all sample paths passing through some
points in B. With same idea, Xjé can be partitioned into bunchs of paths {Hy(d), b €
B} = {HN(E,L) : b, € By, n= 1,-+-, N} where

HN(En)={§N=(§17"',§N): §n=i)n; §1¢Bla l=172,"'an_1}
beB,; n=1,---,N. 3)

It is easy to see that { Hn(5,): b, € By;n = 1,---,N.} is a partition of xB and
N

~

P(SN € HN(Zn)) = Pp,N(gn = bn, g] ¢ By, l= l,---,n— 1). (4)

Definition 3.1 Let I¢ be set of all d — tuple of integers. Given a barrier set B on I, ¥(+),
“the latent of B”, is a function defined on B = U, B, such that, for any b, € B

W) =1-5 ¥ ié H"‘( §"'“> , (5)

I=1 }eB,

where a convention is assumed : ( ) =0ifm<tort<O. |

Obviously, the latent 1(-) on B can be evaluated for all b, € B recursively in n by (5).

Theorem 3.1 Given a barrier set B, sampling from a finite population ’PS,N with replace-

ment, the absorption probability at b, € B, for any p = (P1y-++ypa), T e =1, 0 <



plﬁ.'.’pdsll is
P (Se H(b,)) = ﬂ/)(7> )Pp(Sn = bn)

. (,)HP (6

k=1

where (g’:) = (b"“’f,’bﬂd) b bnd' and (-) is given by (5).
For the same B, sampling without replacement, the absorption probability of Sy at b, € B,

for any N andp:xl,—,---,%, is

Pon(Sy € Hy(b)) = %(8u)Pon(Sn = ba)

~ szl (ikN)
= P(bn) 7 (7)
(%)
|

Ilustrative Example 1:
Assuming 'P;N is a population with 3 classes(d = 3), size N and proportions of classes p =
(P1,P2,p3). As we defined before, B = {(1,2,2),(2,1,2),(2,3,3),(3,2,3),(4,1,3),(3,4,4),
(5,4,2)}. Bs={(1,2,2),(2,1,2)}, Bs={(2,3,3),(3,2,3),(4,1,3)}, Bu1 = {(3,4,4), (5,4,2)},
and B, =0 for n #5,8,11. We have B =, B

The latent () on B can be evaluated by follow formula (5).

$(1,2,2) =1, ¥(2,1,2) =1 because By =0 for I =1,---,4. For b = (2,3,3) € B, as
B =0,1=1,23,4,6,7, we have

¥(2,3,3) = 1- ,2_7;2 ¢(i,1)_(bu) (E;z)) (b;s)

Ly e EE)E)

29

56

N
v 00
SN’



Similarly

3,2.3)=1— 1.(?)(3)(3)“,(3)(3)(3) _2
$(3,2,3) { 0 o } 0
41.3)=1— 1.(1')(3)(3)“,(3)(1)(3) 19
VLY { (5 ® } 28’

sag = 121066 L OOC, 1 OO,
¥(3,4,4) { (151) (151) 14 (181)
2 066 19 Q6 (3)} _ 148
56 (1) 28 (1) 385
sa2) = 1- 1. 0EE | 006, 1 OOE,
¢( » Fy ) { 11) (151) 14 (181)

2 ()G

) BT

Sampling with replacement, the underlying distribution is multinomial with parameter

p = (p1,P2,p3), i.e. Ms(n;p1,pz,p3), n =1,2,---. Then by (6) the probability random path
S absorbed by point (5,4,2) is

148

Py(8 € H((5,4,2)) = $((5,4,2)) P,(Sn = (3,4,4)) = %(

11

s a2 PiFiEh = 44400t

Sampling without replacement, the underlying distribution is multihypergeometric with pa-
rameter p = (p1,p2,p3) and N, i.e. Ha(n;p1,ps,ps;N), n = 1,---,N. Then by (6) the
probability random path Sy absorbed by barrier point (3,4, 4) is

p1NY (02N (psN
Pon(Sy € Hn(3,4,4) = 4(3,4,4) B, (511 = (3,4,4)) = ;gg ( 5 )(("‘1’))( 2 )

The absorption probability distributions on barrier set B are listed on table below for these

two cases, in which the underlying distributions are multinomial or multigeometric.



Barrier Points Absorption Probability Distributions on B
n b, €B ¥(bs) | Ma(n;p1,p2,p3) for S | Hs(n; p1,pa,ps; N) for Sy

5 (1,2,2) 1 30p} p3p3 L

3)
N N
5 (2,1,2) 1 30p2pLp? %))
5
N N N
8| (23,3 2 290p?pip? 20 (% )% (%

PANY(P2NY(pP3 N
s| 623 | B 29053727 L—)%—;K—l
8 41,3 19 3804 pl 2 )%

( » ) 28 p1p2p3

EUAYEZLAYEZ L
n| eay || o éé?ﬁ—ﬂmx—l

PiN\ (P2 NY(pa N
n| (42 | B | sssosisind 0

3.2 Absorption Defined as mth Hitting

We have obtained the absorption probability distribution of random path S(or Sy ), as out-
come of sampling with(or without replacement) from a finite population, on barrier set B
where the event that S is absorbed by a point b in B was defined as that S(or Sy) hits b
before hitting any other points in B, or in brief words, as that b is the point of first hitting
in B. Now we will discuss the general case, in which absorption of S by a point bin B is
defined as that S hits b after hitting other m — 1 points in B, or in other words, b is the point
of mth hitting in B.

Let H™(B,) be a bunch of sample paths (in X') which hit b, as the mth hitting in B, then

. So=0by 5, €EB,, t=1,---,m—1;
H™(,) = U {§ex: € 5 . (8)
1< <lp—1 <1 Si ¢ Bl, I< n, l?é l17 : m ~1.

B(l)#0, t=1,-m—1

Let XB (m) be the subset of X', which consists of all sample paths § which pass through at
least m points in B. {Hm(i)n) : bo€B,;n=12,-- } is a partition of XB(m).

Similarly let H(b,) be a bunch of sample paths (in Xx) which pass b, as the mth points
in B, then

- S,=bn s, €B, t=1,---,m—1;
Hﬁ(bn) = U SN € Ay l 1 . (g)
< <lpa1<n S] ¢ By, l<n, l;é I, -y bt

B(h)#@, t=1,..ym—1



Let X, 1{,3 (m) be the subset of Ay, which consists of all sample paths which pass through at
least m points in B. {H}V"(Zn) : b,€B,;n=12,--- } is a partition of Xg(m).

Before giving formula for absorption probabilities P(S € H™(b,)) and P, n(Sy € HF (b,))
for random pathes S and Sy, we need definitions of relative latent go(?)n/, En) and latent-m
™ (b,.), both are functions defined on B.

Definition 3.2 Let I? be set of all d — tuple of integers. Fix i)n/ in I¢ (an not necessarily
in B), @(b,-), “relative latent of B with origin b+ ”, is given by, b, € B, n > n’

n_ Hd= b,,k-bﬂ,
obeb)=1- 5 Y o, b)— 1((””‘7)”"’:). (10)

. n—-n
l='n,l+l b eB; l-n'

We simply say go(i)nr,zn) the “relative latent of B” if b, € B and @(b1,b,) is evaluated for
all Zn,, anB, n' < n. [ |

Given b, € I¢, @(b,1,b,) can be evaluated recursively in n for all b, € B, n > n'. In this
way, for all pairs of (,,5,) such that n’ < n and by, b € B, (b, b,1) is computable. The
definition of (b /,b,) is analogous to that of P(bs). It’s easy to check o(3, b,) = ¥(by),
where 6 is the origin in R?. go(i)nf, En) is the conditional probability that S doesn’t hit any
points in B after time n’ and before time n given § hits b, at time n’ and b, at time n. Or
in other words, ¢(b,/,b,) is the percentage of sample paths passing through b/ and b, that
don’t pass any points in B between n’ and n.

If we define y((b,) = +(b,) whose values are available by (5), with relative latent
@(b,7,b,) whose values are available by (10), the latent-m (function) %™(-) on B is defined

as follow.

Definition 3.3 Form = 2,3,---, for any point b, in B, ¢m(13n), the “latent-m of B”, is a
function defined on B such that

m(i \ _ = m-1/7 i 73 Hi:l (l;:ll:)
Y7 (ba) = - 30 " (B (B B) —7 (11)
I=1},eB, (l)

where P'(-) = ¥(-), ¥(-) is the latent of B given by (5); ¢(-,-) is the relative latent of B given
by (10). |

Above definition indicates that {qu(zn)}z B & be evaluated inductively for m = 2,3, - -.

10



Theorem 3.2 Let absorption of random path S(or Sy ) by points in a given set B be defined
as mth hitting in B. Sampling with replacement, the absorption probability at b, € B, for

= (Pl, T ,pd); is
P(Se H™(b)) = ¢™(ba)Py(

Sn = by,)
- o2 e "

where Y™ (-) is the latent-m (function) on B given by (11).
Sampling without replacement, the absorption probability of Sy by b, € B, for any N and

p=ﬁ7"',%; is
¥™(bn) pN(S' = bn)

™ (bn) — s (n()pm). (13)

Po.n(Sy € Hy (b))

i

|
Corollary 3.1 The probability that S hits at least m points in B is
B m(f n ? bk
P(S€ X% (m))= 3 ¢™(bn) i I1 2, (14)
bneB " k=1
The probability that Sy hits at least m points in B is
_ ., PN
Pon(Sy € X5 (m)) = > ¢m(b )‘——(—‘—)- (15)

bneB (n)

INlustrative Example 1 Continued:

Let B be the barrier set given in Section 3, i.e. B = {(1,2,2),(2,1,2),(2,3,3),(3,2,3),
(4,1,3),(3,4,4),(5,4,2)}. For all b,b, € B, n’ < n, ¢(b.s,b,), relative latent of B, is eval-
uated by (10) as follows. ¢((1,2,2),(2,3,3)) = ¢((1,2,2),(3,2,3)) = ¢((1,2,2),(4,1,3)) =
©((2,1,2),(2,3,3)) = ¢((2,1,2),(3,2,3)) = ¢((2,1,2),(4,1,3)) = 1 because Bs = By = {.
And similarly ¢((2,3,3),(3,4,4)) = ¢((2,3,3),(5,4,2)) = ¥((3,2,3), (3,4,4)) = ¢((3,2,3),
(5,4,2)) = ¢((4,1,3),(3,4,4)) = ¢((4,1,3),(5,4,2)) = 1 because By = Bjp = §. For

11



bs = (1,2,2), by = (3,4,4) in B

¢((1,2,2),(3,4,4)) = 1_2 Z ©((1,2,2) b)(b“_l) (b';_—:)) (b‘3 )

1
=6} bieB,

= 1- Z 90((1 2,2), bs (bsl-l) (b —2) (bsa—z)

()
_ 1_{1.(3)()0 000, 06 )(:)}
© ©

L

Likewise for all an, b,eB,n <n, go(i)n, b.s) is evaluated and listed below.

Sa(i’n'j’n) T’n = (bnl, bn2, bns), 22=1 bk =n
(only for n’ < n) (2,3,3) | (3,2,3) | (4,1,3) | (3,4,4) | (5,4,2)
(1,2,2) 1 1 1 L 1
i’n' = (by'1) bpras b3) | (2,1,2) 1 1 1 % 1
(2,3,3) 1 1
Sk b =n" | (3,23) 1 1
(4,1,3) 1 1

When m=2, by (11) we have

WW‘ZZ¢hh,méw. (16)

=1 bieB;

The latent-2 1?(-) is evaluated as follows.
$*(1,2,2) = ¥%(2,1,2) = 0 because B;=0 for I =1,---,4. For bs = (2,3,3), we have

wmm=§nh%memﬁ%%ﬁ
l

=1 §eB,
— E 1/)(215)(,0(7)5, (2, 3, 3)) (551) (bgz) (bgs)
bs€Bs (5)

11 D06 Q0
© 0

12



Similarly

@)(

NN
A ——

$%(3,2,3) =11

AN TN

N =t v 0o

$%(4,1,3) =1-1- ()

N
o Q0
N’

$*3,4,4) = 1-=-

onn - 10000

2 000 1 GO0 -

56 (]él) + +% -1 (181) =1

The probabilities that point (3,4,4) being hit by random paths S or S ~ as the second hitting

in B are

PP(S € H2(3,4,4)) = "/’2(3a474)PP(‘§11 = (3,4’4))

156 (11 3.4 4
= 383 <3,4’ 4>P1P2P3

= 4680p3pap}.

and

PP,N(SN € H]%T(3,474)) = ¢2(3’474)PP,N(‘§11 = (3a474))

_ 16 () () ()

385 (f; )

When absorption is defined as the second hitting on B, the absorption probability distribu-

13



tions on barrier set B are listed on table below.

Barrier Points Absorption Probability Distributions on B
n I;n €EB ¢2(~n) M3(n;plap2ap3) for S Hs(n;Pl,PZaP3§ N) for SN
5 (1,2,2) 0 0 0
5 (2,1,2) 0 0 0
N N N
s| @3y |z 210527} gl
8
N N N
s| @23 | Z 27053278 g0 00
AN (P2 N (P3N
8| (%1,3) % 90pip3p3 = ‘—)%Izl(—l
1 (3{4a4) %%g 4680p1p2p3 ;gg
PLNY(pa N (pa N
| 642 | 2 120093545} 2 ﬁ—ﬁz—jﬁ—)

When m=3, by (11) we have

¥*(ba) Z > P (b)e(b, b )Hk_( gb"‘)- (17)

=1 b,eB,

With (b, b,) and 92(b,,) known, the latent-3 13(b,) can be evaluated as following. ¥3(1,2,2)
=1%2,1,2) = 0 because By =0 for [ =1,---,4. ¥3(2,3,3) = ¥3(3,2,3) = ¥%*(4,1,3) =0
because By = § for [=1,2,3,4,6,7 and ¥%(bs) = 0, all b5 € Bs. For by; = (3,4,4), we have

¥*(3,4,4) = ) ¢2(35)¢(55,(3,4,4))@-<(L:2l))(ﬁ+ > $2(bs)p(bg (3,4,4))_(”81)((":2)) (”:a)
bs€Bs 5 bscBs 8

_ 0.1 Q006 2 Q06 2 QGG ,
) (151) 5 (151 56 (181)
2 Q00 9 000 _ .
56 (2) 28 (?) 385

Similarly




The probabilities that point (3,4, 4) being hit by random paths S or Sy as the third hitting

in B are
P(S € H(3,4,4)) = ¢33,4,4)F,(81 = (3,4,4))
= ?%15(311 4>p?p‘2‘p§
= 2430p}paps.
or

PP,N(SN € H]%(37474)) = ¢2(3a4’ 4)PP1N(‘§11 = (31474))

_ s (e
385 (N )

11

When absorption is defined as the third hitting on B, the absorption probability distributions

on barrier set B are listed on table below.

Barrier Points Absorption Probability Distributions on B

n b,eB ¥(by,) Ms(n; pr, p2, p3) for S Hs(n; p1, p2, p3; N) for Sy
5 (1,2,2) 0 0 0

5 (2,1,2) 0 0 0

8 (2,3,3) 0 0 0

8 3,2,3) 0 0 0

8 (4,1,3) 0 0 0

PINY (P2 V(72N
11 (3,4,4) = 2430p3p3ps e iy
11 (5,4,2) 0 0 0

3.3 Absorption Defined as Ordered Hittings

Suppose we have three disjoint barrier sets B?, B? and B®. We are interested in obtaining
the probabilities that random path § (or Sn) hits B first, then hits B? before hitting B3,
which we call as “ordered hittings of {B2; B!, B3},

In this sense, absorption of random path S (or Sy) by a point b € B? is that, S (or Sy)
hits B! first, then hits this point as the first hitting in B2, before hitting B3.

Given disjoint barrier sets B!, B? and B3. Let Bi = {b, € B : 3¢%_ b, = n}, then
B = UnBi,i=1,2,3. For b, € B2, let Hz;l,g(zn) be a bunch of sample paths (in X) which
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hits b, as the first hitting in B? after hitting some points in B! and before hitting any points
in B3. Then for b, € B?

3, = i)n; 5, € B}, for some r < n; } . (18)

Hyas(b,) =4{s€X:
2;1,3(bn) { si¢ BBUB3, I=1,---,n—1.

Similarly, let H N2;1,3(7)n) be a bunch of sample paths (in Xy) which hits B' first, then hits
b, as the first hitting in B?, before hitting B2. Then for b, € B

(19)

- 3, =b. 3 € B!, for some r < n;
-HN2;1,3(bn) = {§N E XN . n ) T T 3 } .

ss¢ BPUBE, I=1,---,n—1.

To simplify notation, let 8% = B' U B> U B%, B1® = B! U B2 U B3, then B'* = U, B}%.
Let 1123(-) be the latent of B?3, By Definition 3.1, 1123(+) is evaluated by

1h123(bn) ——1—2 > Praa(by M (20)

=1 §,eB}® (1)

Let B2 = B2U B®, B® = B2 U B2, then B* = U,B2. Let ¢1,23(:,") be the relative latent
of B® with origins in B'. For by eB,n>n b, € B®, p13(,-) can be evaluated by

. - n—1 ~ . HZ:I (bnk:bn,’k
er23(by,ba) =1— D Y wra(by,br) (nfz:,)bn k) (21)

I=n'+1 5(€B‘23

I-n'

Definition 3.4 Given disjoint barrier sets B!, B® andB®, the “ordered latent of {848,837,
Y21.3(+), s a function defined on B2, for b, € B?

1¢’2;1,3(b E Z P123( bl )1 23(51, n)nk = (b'k> (22)
=1 szBl (1)

where 123(+) is given by (20), p1.23(:,-) is given by (21). |

Theorem 3.3 Given disjoint barrier sets B*, B? and B®, let absorption of random path S(or
Sy) be defined as ordered hittings of {B* B',B°}, i.e. S(or Sy) is absorbed by beBiff
S(or Sy) hits b as first hitting in B® after hitting B' and before hitting B3. The absorption

16



probability of S at b, € B? is

Pp(S € H2;1,3(Zn)) = ¢2;1,3(Zn)Pp(‘§n = En)
d
= ta1,3(bn) (;) I1 i~ (23)

"/ k=1

The absorption probability of Sy at b, € B? is

Py(Sy € Hnana(bn)) = 223(5:) Po(8n = B,)
~ HZ=1 (pkN)

bnk

= 1h2;1,3(bs) (N)

n

(24)

Illustrative Example 2:
Let B' = {(1,2,2),(3,2,3)}, B® = {(4,1,3),(3,4,4),(5,4,2)}. B® = {(2,1,2),(2,3,3)}.
Since B?3 = U?=lBi is the same as B in Example 1 in Section 3.1, thus th123(+) is the same

as 1(-) in Example 1, listed as follow.

n 5 5 8 8 8 11 11
boeB (122 [ 21,2 [(233) [ 6.23) [ (413) | Baa) | (5.42)
1/’123(@;) 1 1 ?,—2 % % %ﬁ- %

Follow (21), t1,23(, -) is evaluated and listed below.

<P1,23(i7n', En) b, € B2, Ziﬂ bk =n
(only for ' < n) (2,1,2) | (2,3,3) | (4,1,3) | (3,4,4) | (5,4,2)
boeB (1,22 | 1 1 L 1
Y=t by = n’ (3,2,3) " 1 1

Follow (22), 15,1,3(-, -) is evaluated and listed below. The absorption probability distributions
of § and Sy on B2, obtained by (23) and (24), are listed below.

Barrier Points Absorption Probabilities on B2
n b, € B? ¥21,3(ba) | Ma(n;p1,p2,ps) for S | Ha(n; p1, pa, ps; N) for Sy
8 (4,1,3) 0 0 0
: NN/p2 N N
11| (3,4,4) I 922053 p2pt gg—sﬁle;—)xfa—)
11
N N N
1| (54,2 = 4500 pip3 LR W e
11

17



4 Sequential Tests for Dichotomous Populations

As a finite population, dichotomous population is the simplest but most common one in real
life applications. In Section 3, we have developed methods to obtain absorption probability
distributions of S and Sp, as random paths from finite populations, on any given barrier
sets, where the absorption may be defined as first hitting, or mth hitting, or ordered hit-
tings. In this section we apply these results in dichotomous populations to derive absorption

probability distributions for varieties of sequential tests.

4.1 Sequential Tests with Simple Enclosed Boundary

We say a barrier set B is “finite in time” if B = U™_, B, for some m > 0. We say B is
“complete” for random path S if P,(S € X B ) = 1 for any p. We say B is “enclosed” for
S if B is “finite in time” and “complete” for S. In closed sequential tests, sampling stops
whenever random path goes acrossing an enclosed boundary. In that case, the set of barrier
points B is an enclosed boundary.

In sequential tests for dichotomous populations, if we denote S, the number of “non-
defects”, then n — S, is the number of “defects”, in the first n observations. Let S, =
(Sp,m — Sy), then § = (81, 52,+++,) and Sy = (84, -, Sy) are random paths for sampling

with and without replacement. A simple barrier boundary should be

B ={(i,4): (5,3) € {(@nn = @) 175 U {(Bum = B)JISH U {(kym — D)}z, }

where a, b, are integers such that an < b, forn =1,-.-,m. We denote {(a,,n — an)}:::ll
by B2, {(n, ba)}osy by B, {(m,k)};~, by B™. Then B = B°U B*U B™.

To test hypothesis Hyp : p < p* v.s. Hy : p > p*, the decision rule should be defined as
rejecting Hp if random path first hits point either in B® or in By, = {(k,m—k) € B™ : k > k.}
(the cut off point is (k.,m — k.) on B™), accepting Hy otherwise. So the stopping time is
TAm where T =inf{n:S,>b, or <a,}.

Let 4(:) be the latent of B. If we denote un = ¥(@n,n — @r), Yor = ¥(bn,n — b,) and
VYmk = Y(k,m — k), then by (5)

_ o5, Gt | G0 ”
VYan = g{%l (1) Vi (1) }, | (25)
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U =3 I 9 L ) B 9] ) ,
P =1-7 {%1 (,;) + Yu (7) } , (26)

forn=1,---,m—1;

Yk =1~ 7?;-11 {%l ('f')ér)::) + Yu (”k‘)(g’;:"f) } : (27)

fork=an,an+1,--,byn—1,b,.

Sampling with replacement, the power function is, for any p € [0, 1]

Blp) = Z% —b)+§j¢mkp = k)
k=kc
_ = bn n —bn -k
_ z«mn( )p (1- +kz;c¢mk( )p (1-p)" (28)

The expected sampling size S(p) as a function of p on [0,1] is
Slp) = E, T Am

E . { %( ) P (1 = p)" ™ 4 than (Z)p“"(l — p)”—a,,}
+m Z ¢m’°( ) f1-p)m " )

k=k.

2l=

Sampling without replacement, the power function is, for any N and p = &, &, -+,

bm
ﬂ(p) = "/)anp,N(Sn = bn) + Z ¢mka,N(Sm = I{,‘)

Bl 5 B0 "

The expected sampling size S(p), as a function of p, is

S(p) = EnTAm
= Y n G (G (M
b {d)b" G Pan 5 }

n=1

19
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4.2 Multiple-Stage Sequential Tests

Assume we want to test Hy : p < p* em v.s. Hy : p > p* with multiple-stage sequential
tests for dichotomous populations. Let J denote the maximum number of stage, m; denote
the number of observations taken at jth stage, j = 1,---,J. Let n; = E'Z=1 m;, and let
Sy; be the number of nondefects among the n; observations taken in the first j stages. The
sequential procedure is as follow: if S, < an;, stop and accept Ho; if Sn; < Tnj, stop and
accept Hy; if an; < Sn; < 1y, continue to stage j 4+ 1; where ay,, Ty, are given constants.

Let S, = (Sn,n — S,), then S = (5’1,5'2, -+)or Sy = (5'1, e ,S'N) are random paths, by
sampling with or without replacement, from dichotomous populations.

Let barrier set B = U]_, B,,;, where B, = Bl UB;., By ={(i,n; —¢): 0 < i< ajl,
B ={(i,n; —i):1r; <i<n;}. Let B* = U'I_IB“ B = UJ_IB then the multiple-stage
test procedure is: accept Hp if S (or Sy) hits B* before hitting BT, accept H; otherwise.

Let 9(-) be the latent of B, then by Theorem 3.1, the absorption probability distribution
of S (or Sy) on B is given as, for any ’I;nj € B,

S € (b)) = (0 )0 - 9ot (52)
(1-p)N- bn
Pn(Sy € HN(Enj)) 1/)(an) ( )(( )an ) (33)

where b, = (bn;ynj — bn;) and 3(-) is evaluated by

p(bn;) = 1—2 > ¢(bn,)(b"')(("‘)‘b"‘) (34)

I=1 b, €Bp,

Number of barrier points in each B, is usually large for multiple-stage tests. To save
computation, there is an alternative way to evaluate ¥(-), the latent of B, by applying result
in Section 3.2. This alternative way may save computation of 1(-), especially when Tn; = Gn;

J

is much smaller than %
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Theorem 4.1 Let B° = U}'I=_1IB;,- where B = {(i,n; — 1) : an; <1< 1y}, Let 9I(-) be the
latent-j of B° as in Definition 3.3, then for j =2,---,J —1, i)n,- € B¢

G ) G moms,)
bn_.,'_l nj—l—bnj_l
(%)
nj—1

If () is the latent of B = U;-’=anJ., B, = {(i,n; —%):0< i< a; or r; <i< n;}, then
forj=2,---,J,b,, €B

¢c]:(i’n,) = Z ¢£_1(an-1) (35)

bn;_1€BS,_,

bnj \( mi~bn;
¢(5nj) E lﬁg_l(i;nj_l) (b"i—l)((’:j—l)—bm—l)

bn;_1 €Bg,

(36)

Illustrative Example 3:

Consider 3-stage test with m; = 5, m; = 3, m3 = 3 as numbers of observations taken in stages
1, 2, 3; thus we have J = 3, n; =5, ny = 8, n3 = 11. Suppose a5 = 1, r5 = 4; ag = 2, rg = 4;
ay; = 5, r13 = 6. Then we have barrier set B = B;UBgU By, where B; = B¢UBE, Bs = B¢U
Bg, Bu = B}, U Bj;; By = {(0,5),(1,4)}, B = {(4,1),(5,0)}; Bg = {(078),(1v7)7(2’6)}a
By = {(6,2),(7,1),(8,0)}; By = {(0,11),(1,10),(2,9),(3,8), (4, 7), (5,6)}, By = {(6,5),
(7,4),(8,3),(9,2),(10,1),(11,0)}. Barrier points for the 3-stage test are graphed in Figure
4.2.
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Barrier Sets for 3-Stage Test

"1 A A accept HO
R accept H1
(o] continue
A
A
84 A A
A A
[
0 A A
| =
54 A [ R
A C R
c o] R
[ R R
R R R
0 R R R
1 T L] ]
0 5 8 1

Sn

Figure 1: 3-stage Sequential Test

To obtain absorption probability distribution on B, we only need to evaluate #(-), the
latent of B. Though #(-) can be evaluated by (5), to save computation, we apply (35) and
(36) to evaluate 9(-). Let B° = BgUBS where B: = {(2, 3),(3,2)}, Bg = {(3,5), (4,4), (5,3)}.
Let 1(-) be the latent, ¥i(-) be the latent-j, of B°. Follow (5), ¥:(2,3) = 4.(3,2) = 1. By
definition, 1;(-) = 9¢(-). For ny =8, (3,5) € Bg, by (35)

ve(®,5) = 3 zbi(i»s)&s-)%

bs€Bg (&5;
_L.00,,.00
:) (s)
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5
= 7 (37)

In this way, 1i(-), latent-j of B°, is evaluated on By for j =1,---,J —1, listed below.

n=>5 ng =8
latent-1 of B° latent-2 of B¢
bs € BS | 91(bs) on BS | bs € Bg | 42(bs) on Bg
(2,3) 1 | (3,5) 2
(3,2) 1 | «3) g
| 6.3 :

Next we evaluate (-), latent of B. For any bs € Bs, 1,[)(715) = 1 by (5). For bg € Bsg or
b1, € By, () is evaluated by applying the relation between 4(-) and ¥I(-) given by (36).
For instance, by, = (4,7) € By

$(4,7) = 3 $i(bs) (0)(s2)
bs€Bg (1;)
566 , 600 , 560
76 G TE T
= 10T (38)
In same way, ¥(-) is evaluated and listed below.
n =35 n3 =11
bs € B | (bs) || bs € B: ¥(bs) || b1 € BY P(ba) || b1 € By, ¥(bu1)
(0,5) 1| (41 1 (0,11) 0 (6,5) 170
Ly | 1 | 60 | 1 (1,10) 0 (7,4) s
1y =8 (2,9) 0 (8,3) =
bs e B2 | w(bs) I s € By | ¥(bs) | (3,8) £ (9,2) 0
(0,8) 0 (6,2) < (4,7) = (10,1) 0
(1,7) (7,1) 0 (5,6) i (11,0) 0
2,6) | & | (80 | 0

Once 9(+) is known, the absorption probability distributions of S and Sy on B are easily
available by (32) and (33).
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4.3 Two-sided Sequential Tests with Three Decisions

We are interested in testing hypothesis Hy : p = p*v.s. Hi:p>p* v.s. Hy : p < p*. Though
this hypothesis is just for one dichotomous population, an adaptation of this hypothesis
testing is widely utilizeded to compare the proportions of “defects” in two dichotomous
populations in double dichotomy sampling. Various closed sequential procedures for testing
this hypothesis have been proposed by authors such as Bross[1952], Armitage[1957]. In their
sequential schemes, a simple enclosed boundary is divided into three sections. Decision is
made in favor of Hy or H, or H, exclusively according to which section the random path
hits first.

Here we discuss a class of closed sequential procedures, for testing this hypothesis, which
is simple in implementation and more efficient than procedures with simple boundaries. We
illustrate the ways to obtain absorption probability distributions for this class of sequential
procedures by using results in Section 3.

As proposed by Soble and Wald([1949], testing Ho : p = p* v.s. Hy : p > p'vs. Hy:p<p*
is equivalent to testing simultaneously hypotheses Hy : p < p* v.s. H :p> p*, and
hypotheses Hy, : p > p* v.s. H, : p < p*. The relations among decisions for those hypotheses
are: Hy : p = p* is favored iff H, : p < p* and Hy:p> p* are favored; H; : p > p* is favored
iff H, : p > p* and Hy :p> p* are favored; H, : p < p* is favored iff Hy:p < p* and
H{ : p < p* are favored.

Let B' = B* UB™ be an enclosed barrier set for testing Hy : p < p* v.s. H :p>p".
Decision is made in favor of H, if random path hits B* before hitting B™, in favor of H,
otherwise.

Let B? = B* U B" be an enclosed barrier set for testing Hy : p > p* v.s. H; :p < p
Decision is made in favor of H, if random path hits B*? before hitting B™, in favor of H{'
otherwise.

In order to test Hy : p = p* v.s. Hy : p > p* v.s. Hy : p < p*, these two procedures are
carried out simultaneously by observing a same random path from sequential sampling. Final
decision is made as soon as both procedures are completed. Equivalently for the combined
test, decision is made in favor of Hj if random path hits B2 and B* before hitting B™ UB"?;
in favor of H; if random path hits B™ and B* before hitting B** U B™; in favor of H, if
random path hits B* and B™ before hitting B™ U B2,

For this combined sequential test, absorption of random path by b € B* UB™ UB®* UB™
is defined as b being hit by the random path when both two sequential procedures are
completed. Let 1(-) be the “interactive latent of {B*,B™;B%,B™}”, which is defined as
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"»b() = ¢01;6277172(') on B%; d)() = ¢a2;a1,1'11'2(') on B%; ¢() = ¢T1;a2,a1rz(') on B™; ¢() =
Vrasaysazrs () 00 B™. Yaysaqmry () is the “ordered latent of {B*;B*,B"UB™}” as defined in
(22)? likewise for 'baz;al ,1'11'2(') or ¢T1;a2,a11'2(') or 1/"Tz;anazrl(')'

Once 9(-) is known, by Theorem 3.1 and Theorem 3.3, absorption probability distribu-
tions of S or Sy are, for any b, € B*UB™UB*2UB™

PEeHE) = 36 () B - )

or

; N leral)

P(Sy € HN(bn)) = '»b(bn)'_"'_(}T'— (40)
where H(b,)(or Hy(b,)) is a bunch of sample paths in X'(or in X'x) which are absorbed by
b,., where absorption is defined above.

Hlustrative Example 4:
Assume we want to test Ho : p = % v.s. Hy:p> -12- v.s. Hy:p< % sequentially, the maximum
sampling size is 28. Suppose it is required that X', the sample space for random path S, be
partitioned into {Xo, X1, X2} such that H; is accepted if S € X; 1 =0, 1,2. P%(S € Xo) >
0.90, min,¢1 P(Se X)) = P%(S € &X1) 2 0.95, min,> 4 Py(S € Xy) = P%(S € X3) > 0.95.

1 1

For testing hypotheses Hy:p< -;— v.s. H :p> 3 and hypotheses Hy :p> 3 V.S

lip< % simultaneously and independently, barrier sets B*, B™, B* and B™ are given

H,

in Table 1 and graphed on Fig 2. It is clear that for each n there is only one, if any, b,
in B*. We denote this b, by &1,. Similarly, we denote the only b, if any, by 1, in B™; by
G2, in B*; by Fan in B™. These barrier points are obtained by following procedure. Detail
of this procedure is discussed in Xiong[92].

Let ajy=—1,7r1 =2, a9 =2, 791 = —1. Forn =2,---,m, let

. n—1+1 n—ain-1-— *
Qnoy + 1 if G(Ze=iil fotino 2 p)) = g

Ay, = { " ’ (41)

A1n—1 otherwise

Tin =

{ rime i G(Ra, ek ph) > g (12)
’

Pin—1 + 1 otherwise
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Testing Hypothesis
Hy:p>p* vs. H :p<p

Testing Hypothesis
Hy:p<p*vs H :p>p*

Favor H, Favor H, Favor H, Favor H;

n [ @1, € B® | ¥1(@1s) || F1n € B | 1(F1n) || n || @on € B | 9a(@an) || F2n € B™ | 2(72n)
1 1

2 2

3 (0,3) 1.000 3 (3,0) 1.000

4 (0,4) 0.000 4 (4,0) 0.000

5 (0,5) 0.000 5 (5,0) 0.000

6 (1,5) 0.500 6 (5,1) 0.500

7 (1,6) 0.000 (7,0) 1.000 || 7 (5,2) 0.000 (0,7) 1.000
8 (2,6) 0.429 (8,0) 0.000 | 8 (6,2) 0.429 (0,8) 0.000
9 (2,7) 0.000 (9,0) 0.000 || 9 (7,2) 0.000 (0,9) 0.000
10 3)7) 0.358 (10,0) 0.000 |f 10 (7,3) 0.358 (0,10) 0.000
11 (4,7) 0.458 (11,0) 0.000 |f 11 (7,4) 0.458 (0,11) 0.000
12 (4,8) 0.000 (11,1) 0.583 | 12 (8,4) 0.000 (1,11) 0.583
13 (5,8) 0.295 (12,1) 0.000 | 13 (8,5) 0.295 (1,12) 0.000
14 (6,8) 0.396 (13,1) 0.000 | 14 (8,6) 0.396 (1,13) 0.000
15 (6,9) 0.000 (13,2) 0.533 | 15 (9,6) 0.000 (2,13) 0.533
16 (7,9) 0.241 (14,2) 0.000 }f 16 (9,7) 0.241 (2,14) 0.000
17 (8,9) 0.341 (15,2) 0.000 |f 17 (9,8) 0.341 (2,15) 0.000
18 (8,10) 0.000 (15,3) 0.462 (118 | (10,8) 0.000 (3,15) 0.462
19| (9,10) 0.201 (16,3) 0.000 [ 19 {| (10,9) 0.201 || (3,16) 0.000
20 || (10,10) 0.298 (16,4) 0.497 || 20 || (10,10) 0.298 (4,16) 0.497
21 | (11,10) 0.343 (17,4) 0.000 [l 21 (10,11) 0.343 (4,17) 0.000
22 | (12,10) 0.362 (17,5) 0.480 22 | (10,12) 0.362 (5,17) 0.480
23 [ (13,10) 0.367 (18,5) 0.000 | 23 | (10,13) 0.367 (5,18) 0.000
24 || (14,10) 0.364 (18,6) 0.453 |f 24 | (10,14) 0.364 (6,18) 0.453
25 [ (15,10) 0.356 (19,6) 0.000 |25 | (10,15) 0.356 (6,19) 0.000
26 [ (16,10) 0.345 (19,7) 0.423 | 26 || (10,16) 0.345 (7,19) 0.423
27 | (17,10) 0.329 (19,8) 0.552 || 27 | (10,17) 0.329 (8,19) 0.552
28 [ (18,10) 0.305 (19,9) 0.580 | 28 || (10,18) 0.305 (9,19) 0.580

Table 1: Latents 1;(-) and () on Barrier Sets
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Barrier Sets for Sequential
Test of Three Decisions

8
o _|
(4]
Q -
a -]
ﬁ ] a accept HO"
r accopt H1"
8 -
rrrr
® rr a
rr a
© rr a
= rr a
wé 3 r a A accept HO'
rr a R accept H1'
N v a
rr a
4 AABAAAAAAAAA
r AAA a R
© — r AAA aa R
r AAA a R
© - AA aa R R
A A a R R
<« - A aa R R
A a R R
& — aa RRR
aa RRA
o - aaa RRRRR
T | ] 1 1 | T I | I I ] I I | I
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Sn
Figure 2: Sequential Test of Three Decisions
: a2p—1 N—A2pn—1, %
a _ Aon-1 if G( ;,, ’ mn 1p2) 2 g2 (43)
2n  — . )
Ain-1+1 otherwise
: Ton—1+1l n—Top-1-1,
Tan—1 + ]- lf G( nm ) .,r; )p;) Z g22
T2n = ’ (44)

Ton—1 otherwise

where G(u, v;p*) is called “the ratio function”, in which p* is a parameter in [0,1], for u, v
suchthat 0 <u<p*and 0 <v<1-p*

u+v N l—u—v
—(p —u)log—p,——

1
G(u,v;p") = p’log i ulog

U - U
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1
B L S ()

1
+(1-p*)log p —vlog

1-—

for u ¢ [0,p*] or v ¢ [0,1—p*]

1 1
G(u,v;p") = p*logl;+(1—p*)log1_ (46)

P
In (41), (42), (43) and (44), m, P}, P}, G11, G12, 921, 922 are called “operating parameters” for
this sequential test. In this example, we let m = 28, p} = 0.65, p} = 0.35, g11 = g12 = g1 =
g22 = 0.11.

Let @, = (aln,n - aln), Fin = (Tln,n - Tln), don = (azn,n - azn), Ton = (Tzn,n - 7‘2n)-
Deleting all of those points which have negative components, we obtain barrier sets B!, B™,
B™ and B™ which are graphed in Figure 2.

To obtain absorption probability distribution for sequential test of Hy : p < 3 v.s.
H :p> 3, let 1(-) be the “latent of B! = B**UB™”. t)y(-) is evaluated by, for b, = &, € B*

or 1, € B™

Ya(bn) =1 IZ {¢1(&1!)_“—(a:l )((I)_a;:) + 1/’1(T11)__(T:)((1)_T1’:) } : (47)

For this test, absorption is defined as first hitting in B'. Absorption probability distribution
for this test is obtained easily by (39) or (40), in which ¥(-) is used instead of ().

To obtain absorption probability distribution for sequential test of H, : p > % v.8. H{' :
p < 2, let 15(-) be the “latent of B? = B® U B™”. ¥y(+) is evaluated by, for b, = d,, € B*

or 79, € B™

bn ) (n—bn bn\ (n=bn

"/’2(7711) =1— Z {¢2(&21) (azt) (l—am) + ha(72) (Tzz) (I—Tzz) } ] (48)
i< () ()

For this test, absorption is defined as first hitting in B?. Replacing () by t,(-) in (39) or

(40), we obtain the absorption probability distribution for this sequential test. Latents Pa(-)

and ,(-) are evaluated and listed on Table 1.

For the combined sequential test of Hy : p = % v.s. Hy : p > % v.s. Hy : p < %,
it is clear that if random path hits B™ before hitting B*, then it did hit B°® and didn’t
hit B™. Therefore it is not difficult to find out that: %u,;00rr(*) = Yaysapm () on B;
'/’02;01,7'11'2(') = ¢¢12;01,T2(') on B*; "»bh;az,al'l‘z(') = 1»[)1() on B™; ¢'T2;a1,1127'1(') = ¢2() on B’

28



where 1,, 0+ () is the “ordered latent of {B*; B*2, B™}”, ¢1(-) is the latent of BY; Yayiay,0 (%)
is the “ordered latent of {B°; B*,B™}”, 1(-) is the latent of B%.
Vayia2,r (+) can be evaluated by, for @, € B*,

I<n {

¢a1;a2,r1 (&ln) = E {¢a1a2 (&21)¢a2,a1r1 (6217 &ln) '(GL((J):LT)'} (49)

where t,, q,r, (*,*) can be evaluated by, for a,,, € B*, n > n/, b, = @y, or F1pn € B

'
(o) ()
~ aii—ea, r -n —~ayyta, s
~ _ ~ ~ 2n 1 2n
¢a21a171 (a’2n'7 bn) = 1- Z 1>baz,¢11T1 (a’2n' ’ al’) (n_n')

n'<l<n

I-n'

(brmtan') (n—n’—bn+a2n,)
. ” Ti—a, ! l—n'—ry+a !
+¥a,01m1 (820", F11) . (n—-n’) : ’ (50)

I-n'

Vaya,(*), latent of B U B*2, can be evaluated by, for b, = dy, € B*, or dy, € B*

bn\ [ n—bn bn\ (n—bn
'»balaz(zn) = 1- Z {d)alaz(&u)'(gi)'—'(nw‘a“')_ + ¢a1a2(fll)'@'(:_¢l)} . (51)
I<n (l) (l)

Formula for evaluation of 14,.4, () is similar to those of ¥4, a;,r, (+)-

(-), the “interactive latent of {B*,B™;B%,B™}”, is such that for #1, € B, ¢(F1n) =
$1(F1n); for Fan € B, (Fan) = P2(Fan); for @1n € B*, (d1n) = Yayiap,ri (F1n); for G2, € B,
Y(G2n) = YPapsar,ra(@2n). ¥(:) is evaluated and listed in Table 2, Absorption probability
distributions of S or Sy on b € B**UB™UB*UB"™ are available by simply follow (39) or (40).

Assume sampling with replacement, the underlying probability distribution for the ran-
dom path is binomial. The acceptance probabilities for Ho, Hy, Ha are Bo(p), B1(p), Bz(p)
which are given by, for any p € [0, 1]

o) = 2 {wt@a (7 )= e (2 ) -pre)
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Testing Hypotheses
Hy:p=p*vs Hy:p>p*vs Hy:p<p*

" Favor H, Favor H, Favor H,
n H d1n € B* | ¥(G15) || G2n € B* | ¢(20) || Fin € B™ | ¥(F1n) || Fan € B | ¥(F2n)
1
]
3 (0,3) 0.000 (3,0) 0.000
4 (0,4) 0.000 (4,0) 0.000
5 (0,5) 0.000 (5,0) 0.000
6 (1,5) 0.000 (5,1) 0.000
7 (1,6) 0.000 (6,1) 0.000 (7,0) 1.000 (0,7) 1.000
8 (2,6) 0.000 (6,2) 0.000 (8,0) 0.000 (0,8) 0.000
9 (2,7) 0.000 (7,2) 0.000 (9,0) 0.000 (0,9) 0.000
10 (3,7) 0.008 (7,3) 0.008 (10,0) 0.000 (0,10) 0.000
11 (4,7) 0.021 (7,4) 0.021 (11,0) 0.000 (0,11) 0.000
12 (4,8) 0.000 (8,4) 0.000 (11,1) 0.583 (1,11) 0.583
13 (5,8) 0.024 (8,5) 0.024 (12,1) 0.000 (1,12) 0.000
14 (6,8) 0.048 (8,6) 0.048 (13,1) 0.000 (1,13) 0.000
15 || (6,9) 0.000 (9,6) 0.000 (13,2) 0.533 (2,13) 0.533
16 || (7,9) 0.058 (9,7) 0.058 (14,2) 0.000 (2,14) 0.000
17 (8,9) 0.170 (9,8) 0.170 (15,2) 0.000 (2,15) 0.000
18 H (8,10) 0.000 (10,8) 0.000 (15,3) 0.462 (3,15) 0.462
19 u (9,10) 0.201 (10,9) 0.201 (16,3) 0.000 (3,16) 0.000
20 | (10,10) 0.298 (10,10) 0.298 (16,4) 0.497 (4,16) 0.497
21 (11,10) 0.343 (10,11) 0.343 (17,4) 0.000 (4,17) 0.000
22 || (12,10) 0.362 (10,12) 0.362 (17,5) 0.480 (5,17) 0.480
23 | (13,10) 0.367 (10,13) 0.367 (18,5) 0.000 (5,18) 0.000
2 || (14,10) 0.364 (10,14) 0.364 (18,6) 0.453 (6,18) 0.453
25 || (15,10) 0.356 (10,15) 0.356 (19,6) 0.000 (6,19) 0.000
26 || (16,10) 0.423 (10,16) 0.345 (19,7) 0.423 (7,19) 0.423
27 || (17,10) 0.329 (10,17) 0.329 (19,8) 0.552 (8,19) 0.552
28 || (18,10) 0.305 (10,18) 0.305 (19,9) 0.580 (9,19) 0.580

Table 2: Interactive Latent (:) on Barrier Sets
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10) = X vt (" )t -y (53)

n>1 T1in

i) = 3. ) )1 =y (50

n>1

Obviously it must holds Bo(p) + B1(p) + B2(p) = 1. The expected sampling size is

Slp) = is: n { % (G1n) ((:n) PP (1 = p)" ™" 4 p(dzn) (azn) pan (1 — p)r=oan 4

n>1

+(F1n) (r"

1n

Jrm o v (2 )rma -l )

Acceptance probabilities fo(p), B1(p), f2(p) and expected sampling size S(p) for the combined
sequential test of three decisions are graphed in Fig 2.
Sampling without replacement, corresponding fo(p), S1(p), B2(p) and S(p) can be formu-

lated easily by replacing binomial by hypergeometric probabilities in above equations.

5 Appendix

5.1 Proof of Theorem 3.1

First let us consider the case of sampling with replacement, in which, S, has multinomial

distribution My(n;p) for n = 1,2,--.. Now we define, for any b, € B,

b(b) = { PolSo=n)

. BOEHEB) i+ p (& —§)>0 56)
1 if (S, =8)=0

By this definition, obviously equation (6) holds. We only need this definition agrees with
that given in (5).
Assume P,(S, = b,) > 0. Since P,(S € H(b,)) = P, (S € H(b,), S5, = En), by (56)

¥(ba) =
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Figure 3: Sequential Test of Three Decisions
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= P, (X,€D.|8, =b,), (57)

where X, = (X1,---,X,), X is the outcome of Ith sampling we mentioned in Section 2;
D,eTl,=c ({)_(n = (&1, +",&n) : &1 = (zn, *,T1a), Tk = 0 or 1,2z=1 T = 1}) such that
(X.€D)= (5 ¢B), I=1,-,n— 1).

¥ (b,) doesn’t depend on p because S, is a sufficient statistics of p. Hence we write
¥(b,) = P ()_(n € D,|5, = I;n), the intuitive meaning of which can be explained as following.
The sample paths in X’ passing through b, can take (1:. ) different passages from origin 4 to
b,. Each passage is taken equally likely by random path S. Of these passages, some encounter
other barrier points in B before reaching b,,, while the rest didn’t. Actually 1(b,) is the ratio
of number of passages which didn’t encounter other barrier points before reaching b, and
the number of all passages reaching b,. Obviously, 1(5,) doesn’t depend on p.

In the case of sampling without replacement, S, has multihypergeometric distribution

Hi(n;p,N) forn=1,---,N.
Claim 5.1 For any p, N such that N is a positive integer and p = ]—{,-, %, -1,

Py (S € Hy(ba) = $(52) P (8 = b) (58)
holds for any b, in B.

Proof of Claim 5.1:
If P, (S, = b,) > 0, then by definition of Hy(b,) in (3),

P (Sn € Hn(8.)]5n = 5a)
Pp,N(§n=5n,§1¢Bla l=1,"',n—1l§n=i’n)
= P (Si¢B, I=1,--,n-1|5, =1,)

¥

P, n (5’1 ¢B, I=1,---,n-1|8, = i)n) is well defined. For D,, in (57), we have
Pp,N(S’I ¢ Bl, l= L,n— 1l'§'n = Zn) = Pp,N(Xn € Dnlgn = 5n)

If we denote P,(-) as the probability measure of multinomial distribution for sampling

with replacement, and denote P, n(-) as the probability measure of multihypergeometric
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distribution for sampling without replacement, then for any x, € Z,,
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3
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where X,, = (1, -, %z) and 8, = Y., #. So consequently we have

Pon(X, € Dnlgn Zn) = Po(X, € Dnlgn = En) = 71/)(7’71)

Hence P, n(Sy € Hn(8:)|5n = bs) = 9(bs), (58) holds.
If P,n(S, =b,) =0, then P, v (SN € HN(En)) = 0 because

Pon (Sy € Hn(6)) = Pon (Sn = bn,
< Pow(8a=ba).

~ ~

Thus for any p, N and b, € B, whether P, x(S, = b,) >0 or =0, it always holds
PP.N(SN € HN(En)) = d’(zn)Pp,N(gn = i’n)

||
Now we want to show 1(b,) defined by (56) satisfies (5). Fix n and point b, in B, let
N =n and p; = 9:‘1, thenforl=1,---,N

Mo () _ T ()

@) 8

Pon(Si=b)=

Hence

Y Pn(Sy € Hn(b)) = Y v(b)Pon(Si=h)

bieB; bieB,
d bk
oy T ), 59)
bieB; (1)
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Let I = N then (59) leads to

= )
bnk

Y. Pn(Sy € Hn(by) = > ¢(bn) — = P(ba), (60)
NEBN bnEB" n)
i, () 1 B =0,
which is because of %me = 0 ZZ 4 Zn,

R

It is not difficult to check that if (p1 N, - - -, palN) € Bn, it always holds YN, 5, Poun(
b)) = 1. Thus by (59) and (60), we have

-~

d bnk
P(ba) =1— Z > v(b) Mt ()

=1 },eB, (z)
n=12,---. (61)

¥(+) can be evaluated for all b, € B recursively in n on B. [ |

5.2 Proof of Theorem 3.2

Similar to the definition of ¥(b,) given in (56) and (57), here we define

™G = P (S e H™(,)|S, = bn)
P (X € Dul8. =1,) (62)

where H(™)(b,) were given in (8) and D, is such that

S, =b,; S't €EB,, t=1,---,m—1;
()—(n e D ’":) = U ~ : : .
1< <lyp—1<n Sl ¢ B[, l < n, l # ll) tecy, l'm-—l
B(l:)#8, t=1,,m-1
By this definition, P(™)(b,) satisfies equations (12). With justifications similar to those
leads to (7), ¥(™(b,) also satisfies (13). Now we only need to show (™)(b,) defined by (62)
satisfies equation (11), thus can be evaluated recursively with that equation. Before doing
this, we need to give an intuitive presentation of relative barrier function Lp(i;n/, i)n) which is

defined in (10) and plays an important role in equation (11).

35



We give another definition of @(b.1,b,). For n’ < m, b, b, € B, let
gO(i)n',‘i)n) = PP (S’l ¢ Bl') l= n, +1,---,n— 1|Sn' = Zn"gn = B"’) : (63)

Then we show this definition agrees with that in (10).
Conditioned on S,/ = b, random walk S* = (S, +1 - 85,5 +2 Sn:,---) has same

n?

stochastic behavior as that of S. Let *=[—n/,n*=n—n', §5 =5 — nl, b =b—b,,

then equation (63) became

o, b) =Py (S5 & B*(1"), I'=1,-++,n" 1|5 =b2., 50 =5.1). (64)
Let §* = (81,5;,-), B* = {Br=bi—by: bie B,I*=1-n,I=n"+1,n'+2---}, then (10)
can be derived from (64) and (5) just by replacing (by) by @(b1,b,), n by n* =n —n', by
by b}, = b — b, etc. in equation (5). Justification of this derivation is analogous to the proof

of (5) given in Section 3.
Now we proceed to show that 1™ (b,) defined by (62) satisfies (11). Recall that H )(b,,)
is a bunch of paths in X’ that just pass the b, as the mth hitting in B.

F, (SE H™ () = P, (S € H™(E,), 8, = 5)
= Z ZP (SEH(m 1)(bl) Sl bl,S ¢BT,7-_[+1 S n— 1,§n:i)n)
I= lbIEB[

= Z Y B, (S € H™V(8)|S=b55, & B,yr=1+1,--,n—1;5,=8,) -

I=1 §,eB,
-P,,(S'l:i)l; §T¢Br,r=l+1,---,n—1; S'n:i)n). (65)

But in (65),

P, (S € H(m—l)(El)IS’, = i)l; S’T g B,,r=1014+1,-- ’,'n—l;Snzi)n)
= P (S’ e Hm=D(5)|5 = 771)
= ¢(m_1)(gl) (66)

and
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B, (5 ¢ By r=1+1,---,n-1 §i=b, Sn="ba). (67)

, & _ g8 1y M=t (55) -
With the fact P,(S; = bi|Sn = bn) —TTT“‘— and because of (66), (67) and (63), equation
(65) became

B, (§ € H™(5,))

A ) (o ) PP
= 3 > I (ba)e(br, ba) s P50 = ba)- (68)
=1 SIGB( (l)
Divided both sides by P,(S, = b,), equation (68) became (11). |
ACKNOWLEDGMENTS

I am very grateful to Professor Steven P. Lalley for his guidances, advices and recourage-

ment.

References

[1] Alling, D.M. (1966). Closed Sequential Tests for Binomial Probabilities. Biometrika 53,
73-84.

[2] Armitage, P. (1957). Restricted Sequential Procedure. Biometrika 44, 9-26.
[3] Aroian, L.A. (1968). Sequential Analysis, Direct Method. Technometrics 10, 125-132.

[4] Breslow, N. (1970). Sequential Modification of the UMP test for Binomial Probabilities.
J. Amer. Statist. Ass. 65, 639-648.

[5] Bross, I. (1952). Sequential Medical Plans. Biometrics 8, 183-205.
[6] Fisher, R.A. (1952). Sequential Experimentation. Biometrics 8, 183-187.

[7] McWilliams, Thomas P. (1989). How to Use Sequential Statistical Methods—Volume
13. American Society for Quality Control, Wisconsin.

[8] Soble, M., Wald, A. (1949). A Sequential Decision Procedure for Choosing One of
Three Hypotheses Concerning the Unknown Mean of a Normal Distribution. Ann. Math.
Statist. 20, 202-222.



[9] Wald, A. (1939). Sequential Analysis. John Wiley, New York.

[10] Xiong, X. (1992). The Principle of Conditional Generalized PLR Sequential Test and
its Applications. Working paper.

38



