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Abstract

The problem of selecting the population with the largest mean from among k(> 2)
independent normal populations is investigated. The population to be selected must be
as good as or better than a control. It is assumed that past observations are available
when the current selection is made. Accordingly, the empirical Bayes approach is
employed. Combining useful information from the past data, empirical Bayes selection
procedures are developed. It is proved that the proposed empirical Bayes selection
procedures are asymptotically optimal, having a rate of convergence of order O( i1"—1:‘)1),
where n is the number of past observations at hand. A simulation study is also carried
out to investigate the performance of the proposed empirical Bayes selection procedures
for small to moderate values of n.
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1 Introduction

Consider k independent normal populations 7y,...,7 with unknown means 6y, - -, 0.
Let ;) < ... < O denote the ordered 0;’s. A population 7; with 8; = 0 is called the
best population. The problem of selecting the best population was studied in the pioneering
works of Bechhofer (1954) and Gupta (1956), by using the indifference zone approach and
the subset selection approach, respectively. Gupta and Panchapakesan (1979,1985) provide
a comprehensive survey of the development in this research area.

In a practical situation, one may not only be interested in the selection of the best
population, but also require the selected population to be good enough. For example, in
medical studies, the performance of any proposed new treament must be better than a
standard treatment before it can be accepted by medical practitioners. In the literature,
Bechhofer and Turnbull (1978), Dunnett (1984) and Wilcox (1984) investigated procedures
for selecting the best normal population compared with a control, respectively. Using the
subset selection approach, Gupta and Sobel (1958) and Lehmann (1961) have made some
contributions to this problem.

In this paper, we employ the empirical Bayes approach to select the best normal pop-
ulation provided it is as good as a specified standard. The empirical Bayes methodology
was introduced by Robbins (1956, 1964). This empirical Bayes approach has been used
in selection problems by several authors. Deely (1965) studied the empirical Bayes rule
for selecting the best normal population. Recently, Gupta and Hsiao (1983), Gupta and
Liang (1988,1989), and Gupta and Leu (1991) have investigated empirical Bayes procedures
for several selection problems. Many such empirical Bayes selection procedures have been
shown to be asymptotically optimal in the sense that the empirical Bayes risk converges to
the minimum Bayes risk.

This paper deals with a single-stage selection procedure for selecting the best normal pop-
ulation compared with a specified standard using the parametric empirical Bayes approach.
In Section 2, we describe the formulation of the selection problem, and derive a Bayes selec-
tion rule. In Section 3, we construct the empirical Bayes selection rules. In Section 4, the
asymptotic optimality of the proposed empirical Bayes selection rules is investigated. It is
shown that the empirical Bayes selection rules have a rate of convergence of order O(&:ﬁ),
where n is the number of past observations at hand. In Section 5, we present the results
of the simulation study of the proposed empirical Bayes selection procedures for small to
moderate values of n.

2 Formulation of the Selection Problem and a Bayes
Selection Rule

Let m1,..., 7 be k independent normal populations with unknown means 64,...,0k,
respectively. Let fj;) < ... < fj denote the ordered values of the parameters 6,,...,0.
It is assumed that the exact pairing between the ordered and the unordered parameters is
unknown. A population x; with 8; = ) is considered as the best population. Let 8y be a
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known control. A population x; with 6; > g is considered as a good population. Our goal
is to derive empirical Bayes rules to select the best normal population which should also be
good compared with the control 6. If there is no such population, we select none.

Let @ = {§ = (61,...,0)|0; € R,i = 1,...,k} be the parameter space. Let ¢ =

(ao, @1, - .,ax) be an action, where ¢; = 0,1;i = 0,1,...,k and an, = 1. When a; =1

for some i = 1,...,k, it means that population =; is selected as the best population and
considered to be good compared with the control §,. When ao = 1, it means that all &
populations are excluded as bad populations. We consider the following loss function:

k
L(8,a) = max(fp, 60) — > aib. (2.1)
i=0
Thus, if fj) > 6o and all populatlons are rejected then the loss is O — 6. On the other
hand, if 8o > j5) and populatlon ; is selected as the best and good then the loss is 8y — 6;.
For eachi=1,2,...,k, let Xi,- -, Xim be a sample of size M from a normal population
m; which has mean 0 and variance o?. It is assumed that 0; is a realization of a random
variable ©; which has a N(u;,72) prior distribution with unknown parameters (u;,77),i =
1,...,k. The random variables 01, ..., O are assumed to be mdependent We let fi(z; | 6;)
and h :(0; i, 7?) denote the condltlonal probability density of X; = X; = M E 1 Xij and the
density of G),, respectively. Let X = (Xi,...,Xx) and let X be the sample space generated
by X. A selection rule d = (do,...,d;) is a mapping defined on the sample space . For
every ¢ € X,di(z),i = 1,...,k, is the probability of selecting population =; as the best and
good, and do(z) is the probability of excluding all £ populations as bad and selecting none.
Also, YF di(z) = 1, forall g € X.
Under the precedmg statistical model, the Bayes risk of the selection rule d is denoted
by R(d). Then, a straightforward computation yields the following :

/ lzd (2)pi(w:) ] f(z)dz + C, (2.2)

1=0
where
( C = [qmax(0),00)dH (9),
wo(zo) = bo,
o2
3 pi(z;) = E(Bi|z) = 3'1'—"'-5%& : the posterior mean of ©; given X; = x;, ¢ #0, (2.3)
7+
flg) =TTk filws), fi(e:) = Jg filwil0:)hi( il i, 7) 6,
| H(§) : the joint distribution of @ = (04, ..., Ok).

For each ¢ € &, let
I(z) = {i|pi(z:) = max (,oJ(a:]) 1 =0,...,k},

{ 0 if I(z) = {0}; (2.4)

min{i|: € I(z), ¢ # 0} otherwise.

it =1"(g) =
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Then a Bayes selection rule d8 = (d2,...,dP) is given as follows:

di(z) = 1,
{d?(ac) = 0 forj#i" (2.5)

3 The Empirical Bayes Selection Rules

Since the parameters (u;,7?),7 = 1,...,k, are unknown, it is not possible to apply the
Bayes rule d® for the selection problem at hand. In the empirical Bayes framework, it
is assumed that certain past data are available when the present selection is made. Let
Xijti,j = 1,..., M, denote a sample of size M from 7; at time I,/ = 1,...,n. It is assumed
that conditional on (8y,0?), Xij1,7 = 1,..., M, follow a normal distribution N(6;, o; o?) and 6;
is a realization of a random variable ©; which has a normal distribution N(u;, 7; ) It is also
assumed that ©;,¢1=1,...,k, [ =1,2,..., are mutually independent. For ease of notation,
we denote the current random observations X;jn41 by Xij, j=1,...,M, i=1,...,k.

For population 75,1 =1,...,k, let X;; = X be the sample mean of the M observations
obtained at time I, X;(n) be the overall sample mean of past data and let S?(n) be the
overall sample variance of the past data. That is

X = %IM X,
Xi(n) = L¥0 X, (3.1)
SHn) = 25 Eki(Xu—Xi(n))>

Also, let v? = 72 + 3 —*— Then, from the statistical model described before, X; 1, X;.2, . X, n

are marginally mdependent with a N(u;,v?) distribution. Hence, X;(n) has a N (p,,—n'-)
distribution and ”v"_l S%(n) has a x*(n — 1) distribution. By the strong law of large numbers,

we have x
2:(n) — ,u; a.s. , (3.2)
S%(n) — v? as..
3.1 Case 1: (y;,7?) unknown and ¢? known, i =1,...,k
Consider the case where both (u,, 72) are unknown and o7 is known i=1,--+,k. Since
E(X;(n)) = i, E(S}(n)— ;;) = 7?2 and it is possible that S?(n) — —'— < 0, we define p;, and

72 as estimators of y; and 72, respectlvely, by the following:

{”i" = X, ) (3.3)

2 = max(S?(n) — %4"7 0).



Now, we define, for : = 1,2,...,k,

2
vi2n = Ti2n.+%4l'7
o?
oin(z:) = E&%ﬁﬂ, (3.4)
in
¢on(Za) = bo.

We use v2, and @;,(7;) to estimate v? and ¢;(z;), respectively.
For each £ € X, let

L(z) = {ilpm(:) = max @in(z;),i =0,..., k},

o) = { 0 if I(z) = {0}, (3.5)
*»7 | min{ili € L.(z), ¢ # 0} otherwise.

We then obtain an empirical Bayes selection rule &** = (dg",...,d;") as follows:

dir(z) = 1, 2.6
d&™(z) = 0 for j#1;. (36)

3.2 Case 2: (u;,7?) and o? unknown, ¢ =1,---,k.

When ¢?, i = 1,...,k, are unknown, it is assumed that M > 2. Foreach: =1,---,k, at
time [, let W2, and W2( ) be the sample variance at time ! and the overall (pooled) sample
variance, respectively. That is

W?.l = Ml_l ZjAL(Xijt - Xi.l)z,
I/1112(77‘) = % Z?:l W2

(3.7)

Then, M52 W32,, - -, Y51 W2, arei.i.d. having a x?(M—1) distribution and hence —(—r-lwz(n)

of ’ a?
has a x?(n(M — 1)) distribution. From the above discussion and by the strong law of large
numbers, we have

Xi(n) — pi as.,

W2(n) — o? as.,

S5%(n) — v} as.,

< S%(n) — E__("_) — 7} as., (3.8)

E(Xi(n)) = pi, E(S}(n)) =9}, E(W}(n)) =0,

E(S3(n) - My = 02 - % = 12

\

2 n A a A A .
Since, it is possible that S?(n) — V—V'A—}—) < 0, we define fi;,, 62,92 and 72 as estimators of



ki, 02, v? and 72, respectively, by the following :

ﬂin = Xi(’"‘))
&%, = Wi(n),

(3.9)

o5, = Si(n),
72 = max(0Z, — %‘?}, 0).
Fort:=1,2,---,k , we define
o2
5 zitl + 3 fin
{“0‘"(””") - s, -
Pon(Zo) = 0o,
and use @;,(z;) as an estimator of ;(z;).
For each £ € X, let
In(z) = {il¢m(z:) = max jn(z;),i =0,.... k},
0 if f.(z) = {0}, (3.11)

b= ha(e) = {

min{ifs € I.(z), i # 0} otherwise.

We then have an empirical Bayes selection rule dr = (cig, ceey ‘22) as follows:

{ @) = 1
: o (3.12)
d*(z) = 0 foryj #in.

4 Asymptotic Optimality of the Empirical Bayes Se-
lection Rules

In this section, we prove two theorems ( Theorem 4.1 and Theorem 4.2 ) concerning the
asymptotic optimality of the preceding empirical Bayes rules.

Consider an empirical Bayes selection rule d* = (dg,...,d}). We denote the associated
Bayes risk of this empirical Bayes rule by R(d"). Then, from (2.2),

k

R@) = - [, [Sdrtayete)| ez +c. a1)
=0

Also, R(d")— R(d®) > 0, since R(d?) is the minimum Bayes risk. Thus, E,[R(d")]—R(d®) >

0, where the expectation F, is taken with respect to X;;;, ¢ = 1,...,k, y =1,...,M and

I =1,...,n. The nonnegative difference E,[R(d")] — R(d®) is generally used as a measure

of the performance of the selection rule d".



Definition 4.1 A sequence of empirical Bayes rules {d"}32, is said to be asymptotically
optimal of order 8, if E,[R(d")]— R(d®) = O(B,), where B, is a sequence of positive numbers
such that lim,_, 8. = 0.

In order to investigate the asymptotic optimality of the proposed empirical Bayes selection
rules, we introduce some useful lemmas.

Lemma 4.1 is part of Theorem 1 of Chernoff (1952).

Lemma 4.1 Suppose S, is the sum of n independent observations X;, X3,..., X, of a ran-
dom variable X with moment generating function M(t) = E(e*X). Let m(a) = inf; E(e!X~%)) =
inf; e=**M(t). Then,

(a) If E(X)> —o0 and a < E(X) then P(S, < na) < [m(a)]",
(b)) If E(X) < +oc0 and a > E(X) then P(S, > na) < [m(a)]™

Corollary 4.1 Let X have a x?(1) distribution. Then, S, has a x?(n) distribution and

(a) P{Sn<n(1-n)} < exp(—5g:(n) forany 7, 0<p <1,

(8) P{S» 2 n(l+n)} < exp(~5g2(n)) for any 7, 7> 0;

where
g1(n) = -n—In(l—n) forany 5, 0<n<1,
92(n) = n—In(l+9) forany 5, n>0.
Proof : The moment generating function of X is given by M(t) = (1 — 2t)~% for ¢ < 2
and hence m(a) = inf, E(ef¥~%)) = E(e% X-2)) = [e(1-®)q]3. Therefore, m(1 — 7) =
[677(1 — n)]% = e%("]'*'ln(l—")) = e—%(_"]—h‘(l—")) - e—%gl(ﬂ) and m(l + 7’) — [6_77(1 + n)]% —
e=2(n-1n(14n)) = ¢~392(") The results follow from Lemma 4.1. O

Remark 1. Observe that g;(0) = ¢2(0) = 0, %91(77) > 0,for 0 <y <1, and %gg(n) > 0,
for n > 0. Thus, ¢g1(n) and g2(n) are positive and strictly increasing functions for 0 < 7 < 1

and 7 > 0, respectively.

' e
Remark 2. lim,_, %12111 = lim,_0 2# = lim, o 1,5;}”— = % Similarly, lim,_,o %}l = %

4.1 Case 1: (y;,7?) unknown and o? known, i =1,...,k

Let P, be the probability measure generated by the past random observations X;;, 7 =
,...,k,j=1,...,.Mand l =1,...,n.

Lemma 4.2 Let u;, and 72, be the estimators of y; and 72, respectively, as defined in (3.3).
Also, let g1(n) and g2(n) be the functions defined in Corollary 4.1. Then, for any ¢ > 0 and



0<ecy, <vZ i=1,...k, we have

2v; 1 —c?
(@) Po{lpin —pil 2 ¢} < -\7—2—11_27 eXp(2—2n),

(6) Puflr — 7] 2 i} < exp(—= =Ry 2))

gz( ))

Proof : (a) Note that p;, = Xi(n) has a N(p;, = ) distribution and by the fact that P{Z >

91( 2))+exp(—

1
2

+exp(— )) + exp(—~

n} < %%—zﬁ—, for any > 0 and for a N(0,1) distributed random variable Z, ( see Pollard
(1984) Appendix B ) the result follows.

()
Poflrh, — 77 2 eu}

< P{SHn) = 5 < 0 + PAISHR) - o 721 > e, S2) — 25 > 0)
< Pu{ISHrm) — 021 2 72} + Pu{IS20) - o2 2 )
= Pn{l"—tj?—lsiz(n)—(n—lnz(n—l):}+P{| B SHm) — (0= 1) 2 (1= 1))
< expl="5 00 (Z) + exp(-" g2<; )
(-2 () + ol (2 )

The last inequality follows from Corollary 4.1 and the fact that 251S?(n) has a x*(n — 1)
distribution. O

Lemma 4.3 Let ¢;(z;) and @;,(x;) be defined as in (2.3) and (3.4), respectively. Then,
for any € > 0 and any z; € R, we have

Mv1
(@) Pu{pin(z:) — i) > €} < Pa{lpin — il > 5~}
4
+P{Ir2 — ] > },
2(5rle: — pal + evf)
Mv2e
(6) Pu{pin(:) — pi(z:) < —€} < Paf{lpin — sl > 557}
vie

+Pu{|ry — 77| >

a? )
235l — il + evf)
Proof : We prove (a) only. The proof of (b) is similar to that of (a). Let a = z;,b = %;'-,y =
72,2 = pi,Yn = 72, and 2, = flin. Then, y + b = v? and we have

Po{pin(2:) — pi(z:) > €}



ay, + bz, ay+bz
= P, — >
{ Yn +b y+b 2

= Pu{lbla—2) —e(y + b)](y= —y)+b(b+y)( —2) > e(y +5)°}

= Pn{[%(:ﬂ, — ,u,-) - 61)?](T,n 2) + (ﬂm ,lt,') > 6’!);-1}

2 1 1
< PG — 1) > St} + Pullon (o = ) — ol = 77) > Jeof)
Mvle vie
< Pn{lll'in_”il> 9202 }+P{| |> o2 2}'
o} 2(3zi — pil + &vf)

O

Since 1 (X1), . . ., r(Xk) are mutually independent, WLOG, we assume ¢;(X;) # ¢;(X;),
V i # j. This assumption does not change the Bayes risk R(dB ) and the empirical Bayes
risk R(d*") and hence the difference E,[R(d"")] — R(d®).

To investigate the convergence rate of E,[R(d*")] — R(d?), we state some facts :
lIfz =0, pi(z)) <o foralll=1,...,k. Then,if i} =5 #0,

P{i*=0, ii =j} = Pu{pi(z1) < O VI#0, pju(z;) 2 ‘Pln(xl) VIi#j}
< Pu{pi(z)) < 90, in(2;) 2 bo}
< Pu{pin(z;) — pi(zs) > 00 — @i(z)}-

2 Ifix =0, pr(z)) < foralll=1,...,k Then, if i* =1 #0,

Po{i* =1, 1, = 0} = Po{pi(zi) 2 @u(z) VI# i, om(z1) < b0 V1#0}
P {pi(zi) > 0o, pin(zi) < 0o}
Po{pin(x:) — pi(z:) < —(pizi) — bo)}-

IA A

3Ifi*=i+#0, ¢t =5 #0and ¢ # j, then

Po{i* =1, i, = j} = Pa{pi(@:) 2 @u(@) VI # 3, 0in(@) 2 oin(mi) VI # 5}
Po{wi(zi) 2 0i(z;), win(z;) 2 in(zi)}

<
= Pu{pin(z;) — @i(z;) — [pin(z:) — @i(2:)] 2 wil:) — @i(2;), pi(z:) 2 @i(z5)}
< Pu{lim(es) — pifey)| > 2L - @y 4 P {lpim(es) — piles)] > B 5 #il®s)y,

(From (2.2),(4.1) and by Facts 1, 2 and 3, we get
E,[R(d™)] - R(d®)
= B, [ [dB(g)pe(z) - df(2)eis ()1 (2) e



A

kK k

> E, /X Liezijin =3 [i(2:) — @i(z;)1f(2)dz

=0 j=0

k k
% [ P =ivin = Yleied) — ¢i(3)lf(2)d

i:O j=0
> [ Pali” = ivii, = 0)lii(ai) — Oolf(2)da
+ 3 [ Pulit =00 = 1)l00 — ps(e)f(2)de (4.9)

k k
+ 2.2 /X P, {i* =1i,i; = j}ei(z:) — 0i(z)]f(z)dz

i=1 j=1

k
> [ Pallpan(ed) = oila)] > loi(e:) — bol}lei(e:) = ol i) da
£ i(Zi) — pilZ;
+ Z:Z:/R? [Pn{|90in($i) —pi(zi)] > () 2 i )l}
+Pu{liin(ss) — i) > 12— ezl
X li(z:) — (@) fi(z:) fi(z;)dz:dzx;
I, + I1,.

2,
Tt g

Recall that ¢;(z;) = Z553* and X, is marginally N(u;,v?) distributed. Therefore,

2. %5
it

0i(X;) is N(us, 5;) distributed. For e, > 0, and 7,5 = 1,...,k, let

Then,

IN

IA

X; = {zi |pi(z:) — bo| < en},
{ X = {(zi,z5)| lpi(zi) — pi(zi)] < ea}- (4:3)
Z:/X.‘ Po{lpim(zi) — pi(@)] > l@i(z:) — bol}Hepi(z:) — Ool fi(:)dw;
+Z:/R—X.- P {|pin(z:) — i(®i)| > |i(@i) — 0|} pi(®:) — bo| fi(x:)dz;
kC_
Z;/x enfilzi)de: (4.4)
k
+ 3 [ Paloin(ai) — ei(e)] > endloi(ai) = Oolfi(ei)da
O(el)
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k
+ 3 [ Pullom(e) = ¢i(el > SHlpiCes) = il + s = Oollfi(w)ds,

where
u 2
ofi(zi)dz; = O(e,,),
>, enfilai)dai = O(el)

since

fi(zi)dz; < i=1,...,k.

2'0,'
'——87,,,
V2r7?

T .
Moreover, ¢;(X;) — ¢;(X;) has a N(p; — u;j, %;— + =) distribution. Therefore,
s f]

/{r.-l lpi(z:i)—bo|<en}

ko k (2:) — p;(z;
mo= ¥y '__[Pn{|so,-n(z,-)-so,-(z,-)|>"”“ )izl

=1 j=1

+Bullpinte) — gute)] > BN ) — gy o) o) s o

) NT;) — 0 T;
2% o, [Pn{l%n(we) — pi(an)| > EE) i)l

i=1j=1

FP{psn(es) — pi(ay)| > 1222 = il }] loi(2s) — 3(o3) fi(:) f (o5 dasda;

2
< Z;Z_;/X 2¢.fi(z:) fi(z;)dzidz;
) Z— k £ &
+ 33 [ [Plivnted — ezl > 31 + Pullon(z) — eite)] > 5]
X |pi(e:) = ;(zi)| fi(wi) fi(z;)dzidz;
< LA 1 2, (4.5)

~

v

2en =

S

k k
+2% [ [Pllon(e) - i@l > 23+ Pullon(e)) - pi(e)l > 2]

=1 j5=1
X [li(z:) — pal + li(w5) — pi| + i — p51] fil:) fi(zj)dzida;.

Since X3, X3, ..., X} are mutually independent and E|p;(X;) — pi| < 400, 1 =1,...,k, also
by (4.2),(4.4) and (4.5), it suffices to investigate the following two terms.

{ Jr Pel{lpin(2:) — @i(2i)| > 9} filz:)dws,
g Pa{lpin(2:) — pi(z:)] > S Hepi(m:) — pal fi( i) das.

Furthermore, by Lemma 4.2 and Lemma 4.3, we have

Po{|pin(z:) — @i(z:)| > %n}

(4.6)
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Mo?e,
< 2P%ﬂmn—m|>—i§L} (by lemma 4.3)
vie,
+ PA|rl, — 7 > — - —
4( 55l — pil + i)
80‘ 1 —Mz'u.2
< g2 by 1 4.2
n—-1 712 -1 72
+eXP(——2_91(;?)) +exp(—— gz(v—?)) (4.7)
n—1 1 fny? tny?
+exp(— 5 91( )) + exp(—= gz(- 7 2
Ml:z:,—/t,l—i——"-v I -—p,,l—{-—nv

Also, |pi(z;) — wi| = 5;—|x, — p;|. Hence, if we let 9, = TLI———- then, from (4.6) and

—'-Ix.—#.|+-"~v

(4.7), it suffices to consider the rate of convergence of the following terms.

I, = %L exp(Ttieln) + exp(—25tai(%)) + exp(—220x(%)),
II, = fR[exp(——z-gl(nn))+exp(——z-gz(ﬂn))]fz(zz)dwu (4.8)

11, Jrlexp(—252g1(nn)) + exp(— 252 g2 (7)) 2i — psl fi(:)d.

First, we consider the term I1,. Fori =1,...,k, note that 0 < P <1 , hence, g1( —5—)
and 92(5‘;) > 0, by the Remark 1 of Corollary 4.1. Therefore,

exp(~ "L 1() + exp(~ 22 L 0n( ) < Ofexp(—ean)

1

where ¢; = %mimgigk{m(%‘jr) (5;—)} In the sequel, welet €, = \/cln, where c = nﬁnlsisk{lﬁl—;;}.

Then, ' '
1 -M%*? 1
1 <0
e/ exp( 3557 enn) < O

Thus, from the above argument and (4.8), we have

1
nlnn

).

nilnn

1, < O(

). (4.9)

Now, let us investigate the rate of convergence of II,. For the same ¢,, we divide the
2
integration of I, into two parts by the set {|z; — pi| < %’g—:—:m /5 and its complement.
By Remark 1 and Remark 2 of Corollary 4.1 and for n sufficiently large, we have

| |<Mv,-2 [ n
T 207 o\ 128Inn

12



N 1 fnp? S 1 1
17"’ = _a- 5 n
2% le —ml + 507 2R +1
1 128Inn
= > = g1(7n) >gl(4 )
T58lan
-1 n 128Inn
= exp( 91(ma)) < exp(——5—a(; ) (4.10)
128Inn 01 (5/128me)
S expi- ) ( /1281nn)2
1
= 0(=).
Similarly,
Mv? n—1 1
|zi — pa] < 557 " 1281 — = exp(~ 92(1)) < O(=). (4.11)
Therefore,
/ [exp(~ 201 (10)) + exp(~ "5 02(m))] (i)
v? eXp\— n exp\— n))| JilZi)dz;
{loi—il< 2f-en /s } Pimmy Pimm ol
1
< O(=). .
< 0(~) (4.12)

Now, by using a similar argument as in the proof of Lemma 4.2(a), we have

| X — ] . Moy
El v =P >
{|x.--u,-|z“:—;-s,,,/ﬁ;;m} { v; = 202 128c}

1 exp(—3(3VB8))
m [Inn V'
207 ;Izl& 2m
o( ).

IA

Inn
Moreover, observe that 0 < 7, < 1, this implies that g1(7,) > 0 and ga(7,) > 0. Hence,

n—1

[exp(~"5=51(70)) + exp(~

-1
ot 92(7n ] i(zi)dz;
/{Ifi—mlz%?-en\/%} 9 2(mn))| fi(w:)

< 2EI o3 413

- {I1Xi—ui]> %’}2‘5"\/ e ( )
1

< 0 .

- (n\/lnn)
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;From (4.8),(4.12) and (4.13), we get

1
I = 0(0). (4.14)
Again, for the same ¢,, we divide I1, into two parts:
I, =1In+ I1.,, (4.15)
where
n—1 n—1 )
11, / v2 [ex ———g1(7n)) + exp(— ;
! {Izi—#i|<%{‘p‘-5",/1—28':1} p( 2 1(17 )) ( ) 92(77 ))
lz; — pil fi(z:)ds,
n—1 n—1 y
1L, = / [ _ ) ~ ]
’ {lzi—uglz%’;en,/w;‘m_n} exp( 9 91(nx)) + exp( ) g2(n ))d

|z — pal fi(wi)das.
By (4.10),(4.11) and E|X; — pi| < 400, we have

1
11,1 < O(>). (4.16)

Also, recall that g;(7,) > 0 and g2(n,) > 0, then

I, < 2 o2 r; — pil fi(z;)dz;
2 /{Ix.-—u.-lzsz-en '_—ﬁs-"m—n}l pil fi(z:)
< 2v,~/ , z|d®(z
{lzlz%\/i—;&}l 4% (2)
4v; M?%*v? Inn
< - e .
- \/2_7rexp( 8o} 128c (4.17)
1
< -
< o0,
where ®(z) is the c.d.f. of the standard normal distribution.
Hence, from (4.15) — (4.17),
1
I, < O(;) (4.18)
Therefore, from (4.4) — (4.6), (4.8), (4.9), (4.14), (4.18) and for the same ¢,, we have
1 2
L < o) =02, (4.19)
Inn)?
I, < o) =od nn") ). (4.20)

By combining (4.2), (4.19) and (4.20), we have proved the following theorem.

Theorem 4.1 The empirical Bayes selection rule d**(z), defined in (3.6), is asymp-
totically optimal with convergence rate of order O %’Zﬁ) That is, E.[R(d*™)] — R(d®) <
o(dnny,
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4.2 Case 2: (y;,7?) and o? unknown, i =1,---,k.

Lemma 4.5 Let ji;,, 62, and 97, be the estimators of g;, o? and v?, respectively, as defined

in (3.9). Also, let g1(n) and g2(n ) be the functions defined in Corollary 4.1. Then, for any
¢>0,0<c, <v?and 0<c, <o?, i=1,...,k, we have

2'0,' 1 —62

P, lin — pi| 2 —7—F a.27)

(@) Pa{lftin — mil 2 ¢} \/Q—Wc\/—exp( 77)

n(M-1) 1) (

2

gl( )) + eXP(—

£)) + exp(~ —(MT‘Q (&

92( ))

Co;

(6) Pa{l67, — 0f| 2 ¢} < exp(———F— ))

(¢) Pu{l9f, — v 2 cu} < exp(—

Proof : (a) The proof is the same as in Lemma 4.2(a).
()
P{|67, — 0i| Z i}
52
a2,
= P{ln(M-1)—3 —n(M -1 2nM-1)—5

BRI W S

Co;

27

Co;

2)):

The last inequality follows by Corollary 4.1 and the fact that n(M — 1)%35L has a x%(n(M —1))

distribution.
(¢) The proof is similar to that of (b), hence, we omit it. o

Lemma 4.6 Let ¢;(z;) and (;(z;) be defined as in (2.3) and (3.10), respectively. Then,
for any € > 0, any £ > 0 and any z; € R, we have

(a) Po{@pin(zi) — pilz:) > €}

. . M R Mr?
< Poflfin — pil 2 £} 4 Po{ftin — pil > = 2 Y+ Pu{l6?, - oF| > 2’}
Mo? o? ?
P15~ 02| > T} + 2Pufl6%, — oF] >
% |2i — il + ev?
2 2 T 2 2 VE 5”'2
+Po{|t, — vi| > ‘5—} + Po{|6;, — i > _51‘,,2 : h
il = gl + ev?
(b) Po{@in(x:) — pi(x:) < —¢}
R . Mvle M7}
< Pn{l,ufin_;uilZKI}‘*‘Pn{I”in_,uil> }+P{I 2|> 9 }
Mov? 2 2
PRI — 02l > T} + 2P {l0% — of| >
5 Zloe— il +ev
v? ev?

2
TS
P58, = of] > 5} + Pullo} —of] >

15



Proof : We prove (a) only. The proof of (b) is similar to that of (a). Let a = z;,b = %}?—, y =

2

T2 = :unb = Mayn
o2 — %E["* > 0. Therefore,
Po{@in(z:) — pi(z:) > €}
A.2 A2
< Pufginles) = 9ilw) > 6,05 — 32 2 0} + Pa{oh, — 32 <0},
where
P A2 &lz‘n 0
‘n{vin - ﬁ' < }
A2 2 a-z2n 12 2
= P{(0;, —v;) - (M - M) < -7}
M2
< Pt~ o0l > T} 4 Ballod, - o7l > 55)
and
P {pi(z:) — pi(z:) > €,9%, — M— > 0}
< Po{v}(zn — 2)(bn — b) — (@ — 2)v}(ba — b) + v}b(2 — 2) + [(a¢ — 2)b ~ €v]](07,

INA

IA

IA

Pa{vd(za — 2)(ba — b) — [(a = )b+ ev] 25 (b — b) + S5 (b — B)

+oPb(zn — 2) + [(a — 2)b — ev]](¥F,

— vf) > ev?}

2
.&hﬂ%—imm—m+ﬂa—ﬂb+wb%%n—H

+—|b — b| + v?b|z, — 2| + (la — 2|b + ev) |07,

2

Paflzn — #llba — bl > 2
b ev?
Pou{lbn — b > 2} + Po{|bs
Tl l>5b| oy eut H
sv' A 2
+Pu{lzn — 2| > -} + Po{|of, —vil > +

PAlzn — 2| 2 &, |2a

b

+Pﬂ{lbn - bl > gbl

+P.{|zn — 7| >

Po{lzn — 2| 2 £} + Pu{[bn

z| + &v?

— z||b, — b

ev?

2} + Pu{lbn
}+P{|
—H>éﬁ

16

5 bla —

b|>2}
2

z|+5v

b
b|>g}

7}

gv?
> —'—} + P {|zn — 2| < &, |24

— v} > 61)?}

— z||b, — b] >

= 7% and z, = fiin. Therefore, y + b = v? and y, + b, = 02, if

— v?) > evf}

2
E'Ui
5



b ev? b
73+ Pu{|bn — b > —}

P.{|b,—b —
+Pu{ > 5bla — z| + v}
vie . g . U2
. " — _7'._ Pn Ne — p* _'___._.
+P {lZ ZI > 5b } + {lvtn ’01| > 5 bl Zl +€'U2}
2
< Pu{lm—2| 2 6} + Pu{lan— 2| > 27
Pl — B> 2 p 2P — b > oy
mn 5k " 5bla — z|+6v2
v? €V
vl > ?b|a—z|+ev,-2}
. . Mv?e
< Pu{lfin — il 2 £} + Pa{lftin — pal > =5}
Mo? o2 2
+P{16%, — 0F > TaE) 4 2P {l62, - of| > o
5f§ 5 _l_lmt_#'l_*_ev
2 2
FPu {82, — ?] > T},
S Shla; — pi| + ev?
Hence, the result follows. O

Let {d"}22, be the empirical Bayes rules defined in (3.12). Then,
E.[R(d")] - R(dP) < I, + IT,. (4.21)
where
R k
b= 3 [ Pellgin(ed) = i)l > loi(ed) = Galllei(@) ol iadzs,
k

i1, = ZZ/ [P {|@in(zi) — wi(z:)] > |90i($i);‘pj($j)|}

i=1 j=1

+Pullgin(e) — gi(an)] > L= 2ol

X|pi(zi) — <Pj(1'j)Ifi(xi)fj(xj)dwidmj-

By an argument similar to that of (4.4) and (4.5), it suffices to investigate the following

two terms.
[ Pul|#in(2:) = i(i)] > '} fila)des,
{fRP"{l"ain(‘”f) pi(z:)| > L Heiz:) — pil filzi)dai. (4.22)

Moreover, by Lemma 4.6, we have
. €
Pof|@in(wi) — (@)l > 5}
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. . Mv}s A i
< 2| Paflftin — mil 2 £} + Pu{lftin — wil > 52} + Pa{l65, — 07| > }

507 2

M 2¢ 2 £.,2

FP{|62 — 0| > =22} 4+ 2P, {|62, — 07| > o2 } (4.23)
m ¢ 5k 5 o
X,I"Ixz_l‘zl'*'

2 2 £02

+P{[0%, = oF] > T} + Paf[o, — of] > S —2 }].
e — | + 5o

Let e = ¢, = \]/“c_”ﬁ and kK = &k, = v/cxlnn, where ¢, = mm1<,<k{m'-;} and ¢, =
min; <i<x{4v;}. Then, by using Lemma 4.5 and Remark 1 and Remark 2 of Corollary 4.1,
the two terms concerning & in (4.23) have the following convergence rate.

R 1 -
PoAlpin—pil 26} < O ( — exp(—cﬂ(lr%;ﬁ{%?}) 1nlnn)) ,
Muv?2s 1
52 _ g2 2) <« =).
P"{lazn U1|> 5,{‘ } —_ O(n)

Again, by Lemma 4.5, we get

~ MTzz M‘—l MT2
Pullet— ot > 2y < 0 (o5 i (o (5 x5 ).

2

Pt~ f1> D) < 0 (o] pin oz g

21< <k

Now, by a proof of the rate of convergence analogous to that of (4.6), it can be shown that
2

the two terms in (4.22) have a rate of convergence of order O(&n’i)
Hence, by the above argument, (4.21) and (4.22), we have the following theorem.

Theorem 4.2 The empirical Bayes selection rule d*(z), defined in (3.12), is asymp-
totically optimal with convergence rate of order O(gln—:ﬁ) That is, E.[R(d")] — R(dB) <
o(lan),

5 Small Sample Performance: Simulation Study

We carried out a simulation study to investigate the performance of the empirical Bayes
selection rules d**(z) and ¢"(z) defined in Sections 3.1 and 3.2, respectively. Recall that E
and E, are the expectations taken with respect to the probability measures generated by
the current observation X and the past observation X;; (: = 1,...,k, j = 1,...,M and
[ =1,...,n), respectively. In Definition 4.1 E,[R(d")] — R(d®) is used as a measure of the
performance of the empirical Bayes rule d*. For any given current observation X and any
given past observation X;;; 1 =1,...,k, j=1,...,M and I =1,...,n), let

k
D"(X) = ;[d?()f) — &7 (X)]pi(Xi).

18



Then, from (4.2)
E.[R(d")] - R(¢°) = EE,D"(X).

Therefore, by the law of large numbers, the sample mean of D"(X), based on the observations
of X and Xiji 1 =1,...,k, j=1,...,M and I = 1,...,n), can be used as an estimator of
E,[R(d™)] - R(d).

The simulation scheme used in this paper is described as follows :

(1) For each I = 1,...,n and for each : = 1,2 and 3, generate the independent past
observations X, ..., Xiam by the following :

(a) Generate ©; from a N(u;,7?) prior distribution.
(b) Generate random sample X, Xial, - - -, Ximi from a N(0;;,0?) distribution.

(2) Generate the current observation X = (Xi,...,Xxk), where X; has a N(u;, %4'2- + 77)

~

distribution and X, ..., X) are independent.

(3) Based on the past observation X (i = 1,...,k, j = 1,... ,Mand [ =1,...,n) and
the current observation X, construct the Bayes rule d® and the empirical Bayes rule
d™ and compute D"*(X).

(4) Steps (1), (2) and (3) were repeated 4000 times. The average of D™(X) based on the
4000 repetitions, which is denoted by D", is used as an estimator of E.[R(d™)]— R(dB).
Also, SE(D™), the estimated standard error, and nD™ are computed.

It should be mentioned that the same past observation X;;; 1 = 1,...,k, y=1,...,.M
and { = 1,...,n) and the current observation X were used for both rules d*" and tj”. Also,

the term D™ corresponding to d** and d are denoted by D*" and Dn, respectively.

Tables 1,2,3 and 4 list some simulation results on the performance of the proposed
empirical Bayes rules d** and d", for the case where k = 3 populations, o} = 03 = ol =
1.0,7% = 1.0,72 = 2.0,72 = 3.0,0 = 6.0 and M = 3.

;From the tables, we observe that the values of D" decrease quite rapidly as n increases,
for n < 80. Observe that the distances between the u;’s are 0.2 in Tables 1 and 2 (g1 =
5.7,z = 5.9, 3 = 6.1) and those in Tables 3 and 4 are 2 (p1 = 3.0,p2 = 5.0, p3 = 7.0).
Therefore, the result is reasonable, because it is easier to identify the best population when
the distances between the means of the populations are larger. Also, the simulation results
indicate that the values of nD™ are decreasing as well as oscillating as n increases. This
supports Theorem 4.1 and Theorem 4.2 that the rate of convergence is at least of order
o(fek),

Tables 5 and 6 also list some simulation results on the performance of the proposed
empirical Bayes rules ¢*" and ", for the case where k = 5 populations ¢} = 0} = 02 =ocl=
o2 =10, 12 = 1.0,72 = 2.0,7} = 3.0,7 = 4.0,7¢ = 5.0, §o = 6.0 and M = 3. Observe that
the pattern of convergence in Tables 5 and 6 is similar to that in Tables 1, 2, 3 and 4.
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Table 1.

Performance of d*™ for yu; = 5.7, p, = 5.9 and p3 = 6.1

n
20
40
60
80

100
120
140
160
180
200
250
300
350
400
450
500
850
600
650
700
750
800
850
900
950
1000

D*n
379.0539 x 10~%
142.7377 x 1073
100.5828 x 1075

67.4769 x 10~°
48.3055 x 1075
43.2401 x 10753
38.5272 x 107
30.0363 x 10~°
31.4014 x 10~%
28.5429 x 107°
21.5604 x 10~°
18.6757 x 1073
15.4411 x 1075
13.0606 x 10~°
8.6897 x 10~°
6.6412 x 10~°
6.7118 x 1075
6.7059 x 10~°
5.4907 x 105
5.5703 x 10~°
6.3512 x 10~°
4.7742 x 1075
4.6138 x 1075
4.1697 x 10~
3.9447 x 1075
3.4231 x 1075

nD*n
75.81 x 10~3
57.09 x 103
60.34 x 10~3
53.98 x 1073
48.30 x 1073
51.88 x 103
53.93 x 103
48.05 x 1073
56.52 x 103
57.08 x 1073
53.90 x 103
56.02 x 1073
54.04 x 1073
52.24 x 10~3
39.10 x 1073
33.20 x 102
36.91 x 1073
40.23 x 1073
35.68 x 103
38.99 x 1073
47.63 x 1073
38.19 x 103
39.21 x 1073
37.52 x 10~3
37.47 x 1073
34.23 x 10~3

20

SE(D*™)
50.1028 x 10
21.7963 x 10~5
17.6571 x 10~
10.9439 x 10~

8.5001 x 105
8.0966 x 10~
7.8631 x 105
6.6650 x 10~
6.8492 x 10~
6.5033 x 10~°
5.2406 x 10~5
4.5120 x 1075
4.1852 x 1073
3.7982 x 1075
2.8739 x 1075
2.0115 x 1075
1.9547 x 108
1.9551 x 105
1.6339 x 10~
1.6803 x 1073
1.9093 x 10-5
1.7197 x 10~3
1.7375 x 10~
1.5612 x 10~%
1.6174 x 105
1.3860 x 10~



Table 2.

n
20
40
60
80

100
120
140
160
180
200
250
300
350
400
450
500
350
600
650
700
750
800
850
900
950

1000

AN

D
582.5521 x 10~°
173.0359 x 1073
126.7646 x 10~°

55.6173 x 10~°
54.9795 x 10~°
46.5250 x 10~°
40.2595 x 10~°
42.4713 x 10~°
38.0874 x 10~°
30.8239 x 10~°
22.8861 x 10~°
22.0051 x 10~°
16.6170 x 10~°
18.9588 x 1075
17.5423 x 107°
13.3475 x 10~°
9.2189 x 10~°
10.2007 x 1073
5.8174 x 107°
6.1850 x 10~°
7.0418 x 10~°
4.8460 x 10~°
4.4542 x 107°
4.8734 x 1075
4.9814 x 1075
4.7434 x 1075

nD"
116.51 x 1073
69.21 x 10~3
76.05 x 1073
44.49 x 1073
54.97 x 1073
55.83 x 1073
56.36 x 10~3
67.95 x 10~3
68.55 x 103
61.64 x 1073
57.21 x 1073
66.01 x 103
58.15 x 103
75.83 x 1073
78.94 x 1073
66.73 x 103
50.70 x 10~3
61.20 x 1073
37.81 x 1073
43.29 x 1073
52.81 x 10~3
38.76 x 1073
37.86 x 103
43.86 x 103
47.32 x 10~3
47.43 x 1073

21

Performance of (j" for gy = 5.7, 42 = 5.9 and p3z = 6.1

SED")

- 83.4687 x 1075
26.1816 x 10~°
21.5321 x 1075

9.5628 x 10~°
9.5976 x 10~°
8.2954 x 10~°
7.7687 x 1075
8.0760 x 10~°
6.9213 x 10~°
6.0143 x 10~°
4.9300 x 10~°
4.9433 x 10~°
4.2685 x 10~°
4.6921 x 10~°
4.5963 x 10~°
3.9649 x 10~°
3.2928 x 10~°
3.2321 x 1075
1.8195 x 1075
1.9211 x 10—°
2.0546 x 10~5
1.6057 x 10~
1.5668 x 10~°
1.6305 x 10~°
1.6527 x 10~°
1.6151 x 107°



Table 3. Performance of ¢*" for p1 = 3.0, 2 = 5.0 and p3 = 7.0

n

D*n

20 234.4199 x 107°

40
60
80
100
120
140
160
180
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000

98.6160 x 107°
54.9728 x 107°
40.9964 x 107°
29.8254 x 107°
25.7806 x 107°
17.4323 x 107°
16.5850 x 10~°
18.7297 x 1073
11.7901 x 107°

9.3719 x 107°
9.9277 x 107°
5.5070 x 107°
4.5086 x 107°
5.0565 x 107°
3.1582 x 107°
2.1795 x 107°
2.7548 x 107°
2.4533 x 107°
1.7479 x 107°
2.5670 x 107°
1.4740 x 1075
1.9989 x 107°
1.6339 x 107°
1.6339 x 1075
1.5635 x 107°

nD*n
46.88 x 1073
39.44 x 1073
32.98 x 1073
32.79 x 1073
29.82 x 1073
30.93 x 103
24.40 x 1073
26.53 x 1073
33.71 x 1073
23.58 x 1073
23.42 x 1073
99.78 x 1073
19.27 x 1072
18.03 x 1073
22.75 x 1073
15.79 x 1073
11.98 x 1073
16.52 x 1073
15.94 x 1073
12.23 x 1073
19.25 x 1073
11.79 x 1073
16.99 x 1073
14.70 x 1073
15.52 x 1073
15.63 x 1073

22

SE(D*™)
40.2088 x 107°
19.5706 x 10~°
11.7389 x 107°
10.0235 x 10~°

7.4748 x 107°
6.7082 x 107°
4.3719 x 107°
4.2272 x 107°
5.0930 x 10~°
3.5439 x 107°
3.1085 x 107°
3.2287 x 107°
1.9322 x 10~°
1.7411 x 10~°
1.7304 x 1075
1.3989 x 10°°
0.9076 x 10~°
0.9945 x 107°
0.9479 x 107°
0.7678 x 107°
1.1224 x 107°
0.7175 x 10~°
0.8077 x 107°
0.7350 x 107°
0.7350 x 107°
0.7317 x 107°



Table 4. Performance of J" for p1 = 3.0, 2 = 5.0 and p3 = 7.0

n

20
40
60
80
100
120
140
160
180
200
250
300
350
400
450
500
350
600
650
700
750
800
850
900
950
1000

AT

322.3745 x 10~°
123.5071 x 10~°
75.0701 x 10~°
52.7460 x 1075
31.7421 x 107°
35.7179 x 10~°
22.1338 x 10~°
20.8428 x 10~°
17.2954 x 1075
13.7309 x 10~
13.0443 x 1073
10.4571 x 10~°
8.3921 x 1073
6.0642 x 10~°
3.8821 x 10~
3.3148 x 107°
4.1512 x 10~°
3.4319 x 10~
2.8374 x 1073
2.8374 x 1075
1.4740 x 10~°
1.4740 x 107°
1.4740 x 107°
2.0011 x 107°
1.4740 x 107°
1.4037 x 1075

AT
nD

64.47 x 1072
49.40 x 1073
45.04 x 1073
42.19 x 1073
31.74 x 1073
42.86 x 1073
30.98 x 1073
33.34 x 1073
31.13 x 1073
27.46 x 1073
32.61 x 1073
31.37 x 1073
29.37 x 1073
24.25 x 1073
17.46 x 1073
16.57 x 10~3
22.83 x 1073
20.59 x 1073
18.44 x 1073
19.86 x 1073
11.05 x 1073
11.79 x 1073
12.52 x 1073
18.01 x 1073
14.00 x 1073
14.03 x 1073

23

SE(D"
52.7135 x 10~
24.3336 x 10~5
16.8086 x 10~
11.0058 x 10~

8.0309 x 10~°
8.4613 x 107
7.1240 x 107°
4.9779 x 10-°
4.6061 x 10~°
3.8921 x 10-5
3.5459 x 10-°
3.0632 x 10~
2.7565 x 10"
2.0972 x 107°
1.4264 x 1075
1.2925 x 10~
1.5390 x 10~
1.3113 x 105
1.2210 x 10-°
1.2210 x 1075
0.7175 x 10~5
0.7175 x 10~°
0.7175 x 1075
0.8900 x 10~°
0.7175 x 107°
0.7141 x 1073



Table 5. Performance of ¢*™ for py = 1.0, gz = 3.0, 3 = 5.0, 64 = 7.0 and g5 = 9.0

n

20
40
60
80
100
120
140
160
180
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000

D*n
78.0680 x 10~°
34.8640 x 10~°
15.9108 x 10~°
14.6761 x 10™°
11.7843 x 107°

9.9412 x 107°
6.0193 x 10~°
4.0314 x 107°
2.0986 x 10~°
3.6327 x 1075
1.5373 x 10~°
1.5300 x 10~°
1.6649 x 107°
1.5256 x 10°
1.1824 x 1073
2.2978 x 10~°
0.8211 x 1075
0.9623 x 10~°
0.7880 x 10~°
0.6514 x 10~°
0.6514 x 1075
0.5996 x 103
1.2694 x 10~°
1.2694 x 10~°
1.1384 x 10~°
0.5204 x 107°

nD*n
15.61 x 10~3
13.94 x 1073
9.54 x 1073
11.74 x 1073
11.78 x 1073
11.92 x 10~3
8.42 x 1073
6.45 x 1073
3.77 x 1073
7.26 x 1073
3.84 x 1073
4.59 x 1073
5.82 x 1073
6.10 x 1073
5.32 x 1073
11.48 x 1073
451 x 1073
5.77 x 1072
5.12 x 103
4.56 x 1073
488 x 1073
4.79 x 1073
10.79 x 1073
11.42 x 1073
10.81 x 1073
5.20 x 1073

24

SE(D*)
18.5037 x 10~°
8.4872 x 10~°
5.4989 x 10~°
4.6919 x 107°
4.2531 x 107°
3.4225 x 10~°
2.5179 x 107°
2.1292 x 107°
0.9941 x 1073
1.5376 x 107°
0.7277 x 107®
0.7715 x 107°
0.8965 x 10~°
0.8869 x 10~°
0.4642 x 107°
1.2156 x 10~°
0.3541 x 10~°
0.4396 x 10~°
0.3886 x 10~°
0.3109 x 10°°
0.3109 x 10~°
0.3066 x 10~°
0.6916 x 10~°
0.6916 x 107°
0.6791 x 10~°
0.2820 x 107°



Table 6.

Performance of Jn for py = 1.0, p2 = 3.0, u3 = 5.0, 4 = 7.0 and ps = 9.0

n

20
40
60
80
100
120
140
160
180
200
250
300
350
400
450
500
350
600
650
700
750
800
850
900
950
1000

2N

104.1815 x 1075
43.0341 x 1075
32.0583 x 10~°
21.8620 x 10~°
16.8074 x 10~°

9.9662 x 10~°
7.8557 x 1073
5.2283 x 10~°
8.2048 x 10~
8.1503 x 1075
5.0492 x 10~°
2.8145 x 1075
3.1544 x 10~°
5.0784 x 10~°
0.8631 x 1073
2.0451 x 10~°
0.7693 x 10~°
0.8903 x 1075
0.4701 x 1075
1.5939 x 1075
0.4701 x 10—°
0.4701 x 107°
0.3821 x 10~
0.3821 x 1075
0.3821 x 10~
0.3821 x 1075

nD"
20.83 x 1073
17.21 x 1073
19.23 x 10~3
17.48 x 1073
16.80 x 1073
11.95 x 103
10.99 x 1073
8.36 x 1073
14.76 x 1073
16.30 x 10~3
12.62 x 1073
8.44 x 103
11.04 x 1073
20.31 x 1073
3.88 x 103
10.22 x 1073
4.23 x 10-3
5.34 x 1073
3.05 x 1073
11.15 x 103
3.52 x 1073
3.76 x 103
3.24 x 1073
3.43 x 1073
3.63 x 10~3
3.82 x 1073

25

SE(D")

21.5616 x 10~°

9.6348 x 10~5
9.1339 x 1073
6.5085 x 1073
4.9772 x 10~°
3.4675 x 105
3.1872 x 10~°
2.3531 x 1073
3.2318 x 10~°
3.1371 x 1073
2.3132 x 1073
1.4592 x 10~3
1.5650 x 10~°
2.4860 x 1073
0.3760 x 10°
1.1867 x 103
0.3503 x 10-°
0.5521 x 10~
0.2333 x 1073
1.1476 x 10~5
0.2333 x 1073
0.2333 x 105
0.2161 x 1075
0.2161 x 103
0.2161 x 103
0.2161 x 10~°
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Abstract

The problem of selecting the population with the largest mean from among k(> 2)
independent normal populations is investigated. The population to be selected must be
as good as or better than a control. It is assumed that past observations are available
when the current selection is made. Accordingly, the empirical Bayes approach is
employed. Combining useful information from the past data, empirical Bayes selection
procedures are developed. It is proved that the proposed empirical Bayes selection
procedures are asymptotically optimal, having a rate of convergence of order O(Q—nnﬂﬁ),
where n is the number of past observations at hand. A simulation study is also carried
out to investigate the performance of the proposed empirical Bayes selection procedures
for small to moderate values of n.
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1 Introduction

Consider k independent normal populations my,..., 7, with unknown means 6,,---, 0.
Let 0y < ... < Oy denote the ordered ;. A population 7; with 6; = 0f is called the
best population. The problem of selecting the best population was studied in the pioneering
papers, Bechhofer (1954) and Gupta (1956), by using the indifference zone approach and
the subset selection approach, respectively. Gupta and Panchapakesan (1979) provide a
comprehensive survey of the development in this research area.

In a practical situation, one may not only be interested in the selection of the best
population, but also require the selected population to be good enough. For example, in
medical studies, the performance of any proposed new treament must be better than a
standard treatment before it can be accepted by medical practitioners. In the literature,
Bechhofer and Turnbull (1978), Dunnett (1984) and Wilcox (1984) investigated procedures
for selecting the best normal population compared with a control, respectively. Using the
subset selection approach, Gupta and Sobel (1958) and Lehmann (1961) have made some
contributions to this problem.

In this paper, we employ the empirical Bayes approach to select the best normal pop-
ulation provided it is as good as a specified standard. The empirical Bayes methodology
was introduced by Robbins (1956, 1964). This empirical Bayes approach has been used
in selection problems by several authors. Deely (1965) studied the empirical Bayes rule
for selecting the best normal population. Recently, Gupta and Hsiao (1983), Gupta and
Liang (1988,1989), and Gupta and Leu (1991) have investigated empirical Bayes procedures
for several selection problems. Many such empirical Bayes selection procedures have been
shown to be asymptotically optimal in the sense that the empirical Bayes risk converges to
the minimum Bayes risk.

This paper deals with a single-stage selection procedure for selecting the best normal pop-
ulation compared with a specified standard using the parametric empirical Bayes approach.
In Section 2, we describe the formulation of the selection problem, and derive a Bayes selec-
tion rule. In Section 3, we construct the empirical Bayes selection rules. In Section 4, the
asymptotic optimality of the proposed empirical Bayes selection rules is investigated. It is
shown that the empirical Bayes selection rules have a rate of convergence of order 0(&:&),
where n is the number of past observations at hand. In Section 5, we present the results
of the simulation study of the proposed empirical Bayes selection procedures for small to
moderate values of n.

2 Formulation of the Selection Problem and the Bayes
Selection Rule

Let m,...,7; be k independent normal populations with unknown means 6,,..., 60,
respectively. Let ) < ... < 0j denote the ordered values of the parameters 6,,...,0;.

It is assumed that the exact pairing between the ordered and the unordered parameters is
unknown. A population m; with 8; = 0 is considered as the best population. Let 6 be a
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known control. A population m; with 6; > 6, is considered as a good population. Our goal
is to derive empirical Bayes rules to select the best normal population which should also be
good compared with the control 8y. If there is no such population, we select none.

Let @ = {§ = (61,...,0¢)|0; € R,i = 1,...,k} be the parameter space. Let ¢ =

(ao,a1,-..,a;) be an action, where a; = 0,1;2 = 0,1,...,k and an, =1. Whena; =1
for some ¢ = 1,...,k, it means that population =; is selected as the best population and

considered to be good compared with the control 5. When a = 1, it means that all &
populations are excluded as bad populations. We consider the following loss function:

L(9, ¢) = max(fj), bo) Za, (2.1)

1=0

Thus, if O > 6 and all populations are rejected then the loss is ) — 6. On the other
hand, if 6 > 04 and population ; is selected as the best and good then the loss is 6y — 6;.

Foreacht=1,2,...,k, let X;y,--- ,X,-M be a sample of size M from a normal population
m; which has mean 6; and variance o?. It is assumed that 6; is a realization of a random
variable ©; which has a N(p;,7?) prior distribution with unknown parameters (u;,72),: =
1,...,k. The random variables O, ..., ®; are assumed to be 1ndependent We let fi(z; | 6:)
and h :(0:|pi, 7?) denote the cond1t1ona,l probability density of X; = X; = - Z 1 Xi; and the
density of ©;, respectively. Let X = (Xi,...,X;) and let X be the sample space generated
by X. A selection rule d = (do,...,d;) is a mapping defined on the sample space X. For
every z € X,di(z),7 =1,...,k, is the probability of selecting population m; as the best and
good, and do(z) is the probability of excluding all k populations as bad and selecting none.
Also, Y o di(z) =1, for all z € X.

Under the preceding statistical model, the Bayes risk of the selection rule d is denoted
by R(d). Then, a straightforward computation yields the following :

R(d / [Z di(z ,)} f(z)dz + C, (2.2)

where
C= fQ max(O[k], GO)dH(Q))
900(170) = 007
$ wilz;) = E(O]z;) = f'—féiz-‘%_-ﬂ : the posterior mean of ©; given X; = z;, 1 #0, (2.3)
Tt
fle) =TI filzs), fi(zi) = Jp filw:l0i)ha(Oil s, 77)d6s,
| H(9) : the joint distribution of @ = (0,...,0%).

For each z € X, let

I(z) = {ilpi(e) = max i(e),i = 0,..., b},

i*(z) = { 0 if I(z) = {0}; (24)
~ min{z|z € I(z), ¢ # 0} otherwise.

z'*
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Then a Bayes selection rule d2 = (d&,...,dP) is given as follows:

dii(z) =1,
{ dB(z) =0 for j #i*. (2.5)

3 The Empirical Bayes Selection Rules

Since the parameters (pi,7?),7 = 1,...,k, are unknown, it is not possible to apply the
Bayes rule dP for the selection problem at hand. In the empirical Bayes framework, it
is assumed that certain past data are available when the present selection is made. Let
Xiji, 7 =1,...,M, denote a sample of size M from m; at time I,/ = 1,...,n. It is assumed
that conditional on (6;,02), X;j1,7 = 1,..., M, follow a normal distribution N(;,5?) and 6;
is a realization of a random variable ©; which has a normal distribution N(y;,7?). It is also
assumed that ©;,¢:=1,...,k, [ =1,2,..., are mutually independent. For ease of notation,
we denote the current random observations X;;,4+1 by Xi5, 7=1,...,M, i =1,... k.

For population n;,2 = 1,...,k, let X;; = X;, be the sample mean of the M observations
obtained at time [, X;(n)be the overall sample mean of past data and let S?(n) be the overall
sample variance of the past data. That is

X = %YM X,
Xi(n) = 3% X, (3.1)
SHn) = 5 Tki(Xu— Xi(n))?.

Also, let v? = 72 + iy Then, from the statistical model described before, X; 1, X;o,...,Xin
7 ? M

are marginally independent with a N(y;,v?) distribution. Hence, X;(n) has a N(u;,gj-)

distribution and 25ts?(n) has a x*(n — 1) distribution. By the strong law of large numbers,

we have

Si(n) — v? as. .

{ Xi(n) — pi as., (3.2)

3.1 Case 1: (u;, 7?) unknown and ¢? known, i =1,...,k

Consider the case where both (y;,7?) are unknown and o? is known, ¢ = 1,---, k. Since

E(X;(n)) = wi, E(S*(n)— %43-) = 77 and it is possible that S?(n) — 9M*2— < 0, we define p;, and

72 as estimators of p; and 77, respectively, by the following:

{ fin = Xi(n),

72, = max(S?(n) — %,_,?-, 0).

(3.3)

Now, we define, forz = 1,2,...,k,

Gin(z;) = Bt Trsin + 3 in (3.4)



We use v2, and ¢;,(z;) to estimate v? and ;(z;), respectively.
For each z € X, let
In(z) = {ilpin(z:) = max @jn(2;),i=0,..., k},
i*(zg) = 0 if In(@) = {0}, (35)
22 ) min{ili € I(z), 1 # 0} otherwise.

4

o
We then obtain an empirical Bayes selection rule ¢** = (d§",...,d;") as follows:

{ dif(z) =1,
d*(z) =0 forj # 1.

3.2 Case 2: (u;,7?) and o? unknown, i =1,---,k.

When o2, i =1,...,k, are unknown, it is assumed that M > 2. Foreach: =1,---,k, at
time [, let W2 and W2(n) be the sample variance at time [ and the overall (pooled) sample
variance, respectively. That is

W = sy TiL (Ko = Xur)?, (3.7)
Wi (n) = 3 Zin Wh.

Then, ¥52W2 - MZLW? areii.d. having a x*(M—1) distribution and hence ﬂA—:?_—l-lW?(n)

has a X2(n(M - 1)) distribution. From the above discussion and by the strong law of large
numbers, we have

( Xz(n) — Mi a.s.,
Wi(n) — o? as.,
S2(n) — v? as.,
S2(n) — Z;# — 72 as.,
E(Xi(n)) = wi, E(S}(n))=v}, E(Wi(n)) =07},

E(S¥(n) — Ty — o2 % — 72

(3.8)

\

2
Since, it is possible that S*(n) — K‘% < 0, we define fin, 62,02 and 72 as estimators of

ti,o?,v? and 772, respectively, by the following :

i2n = VV,?(TL),
82, = S3(n), (39)
72 = max(2, — %{2}, 0)

For:=1,2,---,k , we define

{ fin(ai) = St n (3.10)



and use @;n(z;) as an estimator of ¢;(z;).
For each ¢ € X, let

jn(:g) = {i|in(z:) = or%akxk @in(25),1=0,...,k},
T T min{ili € I,(z) 1 # 0} otherwise.

We then have an empirical Bayes selection rule d* = (cig, ceey A}c‘) as follows:

{ d? (z) =1,

K, o (3.12)
d¥(z) =0 for j # 1,.

4 Asymptotic Optimality of the Empirical Bayes Se-
lection Rules

In this section, we prove two theorems ( Theorem 4.1 and Theorem 4.2 ) concerning the
asymptotic optimality of the preceding empirical Bayes rules.

Consider an empirical Bayes selection rule ¢* = (dg,...,d}). We denote the associated
Bayes risk of this empirical Bayes rule by R(d"). Then, from (2.2),

k
R&) = - [, [ L& @tz Sz +0. @)
i=0
Also, R(d™)—R(d®B) > 0, since R(dP) is the minimum Bayes risk. Thus, E,[R(d")]—R(d?) >
0, where the expection E, is taken with respect to X, ¢ = 1,...,k, j = 1,...,M and
[ =1,...,n. The nonnegative difference E,[R(d")] — R(d?) is generally used as a measure
of the performance of the selection rule d.

Definition 4.1 A sequence of empirical Bayes rules {d"}22, is said to be asymptotically
optimal of order 3, if E,[R(d")]— R(d®) = O(B.), where B, is a sequence of positive numbers
such that lim, . 8, = 0.

In order to investigate the asymptotic optimality of the proposed empirical Bayes selection
rules, we introduce some useful lemmas.

Lemma 4.1 is part of Theorem 1 of Chernoff (1952).

Lemma 4.1 Suppose S, is the sum of n independent observations X;, Xs,..., X, of a ran-
dom variable X with moment generating function M(t) = E(e!X). Let m(a) = inf, E(e!*~9) =
inf, e"** M (t). Then,

(a) If E(X)> —o0 and a < E(X) then P(S, < na) < [m(a)]",

(b) If E(X) < 400 and a > E(X) then P(S, 2> na) < [m(a)]".
Corollary 4.1 Let X have a x*(1) distribution. Then, S, has a x?(n) distribution and
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(a) P{S.<n(l—-19)}< exp(—ggl(n)) forany 7, 0 < <1,

(b) P{Sn>n(1+n)} S exp(—5g2(n)) for any 7, 1> 0;
where

gi(n) = —-n—=In(l—n) forany 5, 0<n<1,
g2(n) = n—In(1+7) forany 5, n>0.

Proof : The moment generating function of X is given by M(t) = (1 — 2t)~% for t <
and hence m(a) = inf; E(e!X- “)) = E(e"(X- “)) = [e=)g]Z. Therefore, m(l — 7)
[e"(1 — 77)]% = es(ntn(1-n)) — —3(-n-In(1-n)) — o~Fa(n) znd m(l+17) = [e"(1 + 7])]%
e~z(n=In(14n)) = ¢=392(n) The results follow from Lemma 4.1.

Remark 1. Observe that ¢;(0) = ¢2(0) = 0, zd;)gl(n) >0, for 0 <n <1, and %gz(n) > 0,

for § > 0. Thus, g1(n) and ¢2(n) are positive and strictly increasing functions for 0 < < 1
and n > 0, respectively.

i o

O

= % Similarly, hmﬂ_,o g2(n) L

= 3-

Remark 2. lim, o 2 20 — lim,_ 22 = lim,_, =2 b=

2n

4.1 Case 1: (y;,7?) unknown and o? known, i =1,...,k

Let P, be the probability measure generated by the past random observations X;;;, ¢ =
Lk,j=1,...,Mandl=1,...,n

Lemma 4.2 Let u;, and 72, be the estimators of y; and 77, respectively, as defined in (3.3).
Also, let ¢1(n) and g2(n) be the functions defined in Corollary 4.1. Then, for any ¢ > 0, we
have

@ Pallin -2 ¢} S —2Texp(zn)
(8) Pullrh— 72 ¢} < exp(- 219{ ) + exp(~ " 02( )
AT ,

+exp(—"o—g1(=3)) + exp(—=

-1 ¢
2 gz(z)_ﬁ-))‘
Proof : (a) Note that pi = Xi(n) has a N(p;, 2 ) distribution and by the fact that P{Z >

n} < 1 ezp( D) , for any n > 0 and for a N(0,1) distributed random variable Z, ( see Pollard
(1984) Appendlx B ) the result follows.

(6)
Pn{|7'i2n - Ti2l 2 C}



2 o} 2 o} 2 2 o}
< : -t <L : —_—— A > : — X
— Pn{Sz (n) M —0}+Pn{|Sz(n) M Tzl —0751 (n) M >0}

< B {152( )—'02| > 77} + Pu{|S}(n) —’021 2 c}

7?2
= PRS0 - (0= D12 (0= D) + TS0 - (- DI 2 (= D)
n—1 72 n — 72
< exp(—— 91(7)—3)) +exp(——; gz(vf))
n—1 c —1 c
+exp(—— 1(;;2‘)) + exp(—= 5 92(—3))-

The last inequality follows from Corollary 4.1 and the fact that 2 1,5'2(n) has a x*(n — 1)
distribution. o

Lemma 4.3 Let ¢;(z;) and ¢;,(z;) be defined as in (2.3) and (3.4), respectively. Then,
for any € > 0 and any z; € R, we have

Mvle
20?2 }

(@) Pu{pin(z:) — pizi) > e} < Pa{lppin — il >
vie

o2
2%k |zi — ] + ev?)
Muv3e

(0) Pufpin(zi) — wi(z:) < —e} < Puf{lpin — s > 20’2 }

+P.{|r2, - >

4
vie

+Pn{!7'igz - Ti2' > — .
2(35|zi — pi| + €v?)

Proof : We prove (a) only. The proof of (b) is similar to that of (a). Let a = z;,b = %zi, y =

72,2 = pi, yn = 72, and 2z, = pi,. Then, y + b = v? and we have

Pn{som(-’l?i)b— wi(z:) >;}
_ ayn+ Zn__ay+ z c
= P,{ — m—— > e}
= Po{lbla —2) —e(y + b)](yn — )+b(b+y)( —z) > e(y +b)*}

2
ag;
= Pn{[ﬁ(xt - /‘1) - 5”12]( 2) + (:um /‘i) > 5”:’1}
0'.2 2 1
< Po{ 20 (pin — i) > 560?} + Pn{[‘]\j(wi — i) — evf)(td — 7F) > 55021}
M2 4
< Pa{lin = il > 557} + Paflrf = ] > ——

o }
2(57lz:i — il + evf)
O
Since p1(X1),. . ., pr(Xk) are mutually independent, WLOG, we assume ¢;(X;) # ¢;(X;),

V ¢ # j. This assumption does not change the Bayes risk R(d®) and the empirical Bayes
risk R(d*") and hence the difference E,[R(d*")] — R(d®).
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To investigate the convergence rate of E,[R(d*")] — R(d®), we state some facts :
CAsir =0, =7#0, pz) <bpforalll =1,...,k. Then

Pt =0, i =35} = Po{oi(m) <O VI#£0, @in(z;) > @in(zi) VI# 5}
< Po{wj(z;) < o, win(z;) = o}
< Pudein(z;) — pi(z;) > 00 — pj(z;)}-

CAstr =150, 17 =0, giu(z) <o foralll=1,...,k Then

Po{i™ =14, 17, = 0} = Pu{wi(z:) = wul(z1) VI # 4, @in(z1) < b0 V1 # 0}
< Po{wi(zi) 2 0o, win(z:) < 6o}
< Po{pin(zi) — @i(z:) < —(wi(z:) — 60)}.

cAst* =140, ¢ =5 #0and i # j. Then

Pu{i® =4, 7 = j} = Pu{wilw:) 2 ez VI# 4, oinlz;) 2 @ila) VI# 5}

< Podwi(z:) 2 @i(25), winlt;) = @in(zi)}
= Poein(z;) — 0i(z5) — [pm(z:) — pi(@:)] = wiz:) — @;(25), wilz:) = pi(z5)}
< Pullpm(es) — os(es) > EELZ 8@y 4 p (10 (2 — i) > L) i@y

2 2

From (2.2),(4.1) and by facts 1, 2 and 3, we get
E.[R(d™)] ~ R(d®)
= By [ [dE(2)pe (o) — dif ()i (i) (2)da

= 20 B [ Lrmiizmnlioda) — ¢i(2:)1 (@)

=0 j=0

kk
= 2% [ Pait =03 = i} li(a) - eilei))f2)de

1=0 j=0

= X[ P = iz = 0} () — Gl f(e)ds

k
+3 [ Pl =0, = )00 — (2,))f(2)ds (4.2)
+ LT [ Bli =65 = lee) — eslesf(e)ds

k

; /R Foflpin(zi) — @i(wi)] > |pi(e:) — Ool}pi(2:) — ol filz:)da

IA

9




+ ZZ/ {P {I‘Pm ) Soi(wi)l S I‘Pi(mi);<Pj($j)|}

i=1 j=1

FPu{loim(es) — sl > 12D - ZCHIN
lpi(z:) — i) filz:) fi(z;)dz:dz;

= I+ 11,

Recall that ¢;(z;) = _“”_‘L_‘*_'J%'_“; and X; is marginally N(u;,v?) distributed. Therefore,

2+_;_

@i(Xi) is N(pi, o ) distributed. Fore, >0, t=1,...,kand y=1,...,k, let

X = {z lpi(z:) — 00| < en},
{ Xy = {(@io5)] loi(m:) — 05(25)] < en). (43)
Then,

k
I, = Z/X PoA{lpin(z:) — wi(z:)] > lpi(z:) — O]} wi(z:) — Oo|fi(z:)dz;
+ ;/R—A.’; Pr{lpin(z:) _ oi(z)| > lpi(z:) — 0ol }i(z:) — b0l fi(z:)dz;

k
Z / enfilzi)de: (4.4)

AN

3 [ Pullpn(ed — pian)] > exllones) = bol ()

=1

O(e?)

n

k
+Z:/RPn{|90m(mi) — @i(z;)] > %}Hgoi(a:;) — il + |pi — B0l fil@:)dus,

IN

where
Z/ enfz ZB, dCL’, - ( n)
=1
since ,
Ui .
dx‘-—- €n, Zzl,...,k.
/{mzl Jwi(zi)—bo|<en} fil=:) A /27”.{2

Moreover, ¢;(X;) — ¢;(X;) has a N(u; — p;, 5;— + %Z') distribution. Therefore,
i f]

[P {|pin (i) — @i(:)| > i (;) ; SOj(:L'j)I}

(=) ; (pj(wj)l} lpi(zi) — @i(@i)|fi(wi) fi(z;)dzidz;

+Pu{lejn(z;) — pi(z;)| >

10




+ZZ/ {Pn{f%n(xi) - pilay)] > 124 3 el

=1 j=1

FPullpin(e) — st > BB BE 00y — o) i) o5 daida

k kK

ZZ/ 25nft f] -’E])d.’ll,d:cj

z—l}: 1 . .
+05° [ [Pullon(ed = wi@l > 3 + Bullpun(es) — oi(e] > 2]
|<Pi( i) — @i(@)| fi(zi) fi(z;)dwidz;
k k 2617.
3> 2, \/_ = (4.5)

i=1 1=1 s
=17 v? -+ ;-%-

IA

IA

+Z;Z;/;{2 [Pn{]SOm(%) wi(zi)| > ""'} + Pu{lpin(z;) — i(z;)] > ""}]
(i) — wil + lpj(zs) — pil + | — w51} fi(z:) fi(z)dzidz;.

Since ¢1(X1), p2(X2), ..., 9k(Xk) are mutually independent and E|p;(X;) — ;| < 400, i =
1,...,k, also by (4.2),(4.4) and (4.5), it suffices to investigate the following two terms.

{ Jr Paflpin(z:) — @i(@)| > 2} fil:)das, (4.6)
Jr Pa{lpin(zi) — @i(zi)| > 2 Heu(z:) — pil fi(z:)dzs. '

Furthermore, by Lemma 4.2 and Lemma 4.3, we have

En
Po{lpin(zi) — @i(z:)| > >

Mv?e,
< 2 {Pn{[,u,‘n — il > —4?2—:—} (by lemma 4.3)
vie,
+Pn{|7'i2n_7'i21 > — : }
437l — gl + 07)
80 1 ——M%f
< [\/Zr-Mv . \/_. 3204 ein) (by lemma 4.2)
7} n—1 12
+exp(— 5 gl(ﬁ)) +exp(——5—92(=3)) (4.7)
n—1 1 5"-’0,-2 n—1 Eﬂv?
+exp(——5—a (57— ) + exp(——5 gz(— 2

el = il + ot Tlas — il + 207

Also, |pi(zi) — | = %;—Ia:, — pi|. Hence, if we let 5, = 1———1—‘— then, from (4.6) and

_le‘_“‘l_i_._n.,u?

11



(4.7), it suffices to consider the rate of convergence of the following terms.

o2 —M2y? n— T? n— 7?2
II, = V%Weni/ﬁ exp(—g5;7-€xn) + exp(—"3101(3¥)) + exp(— 251 02(3%)),

Iy = [glexp(—25191(n)) + exp(— 252 2(nn))] fil:)das, (4.8)
II. = [plexp(—25101(nn)) + exp(—252ga(nn))l: — pil fi(zi)das.

First, we consider the term I,. Fori =1,...,k, note that 0 < %;— < 1, hence, gl(fg-) >0
and gz({j:-) > 0, by the Remark 1 of Corollary 4.1. Therefore,

n—1  7? n—1
exp(——5—01(3)) + exp(——

(5)) < Ofexp(~exn)

wherec; = % min15i5k{g1(5§'), gg(%;-)} In the sequel, welet g, = %, where ¢ = Hﬁnlgigk{%%};;}-
Then,
1 -M%W? 1
Env/n exp( 320 ean) < O(nlnn)'
Thus, from the above argument and (4.8), we have
1

nlnn

11, < O(——). (4.9)

Now, let us investigate the rate of convergence of II,. For the same ¢,, we divide the
2
integration of I, into two parts by the set {|z; — p;] < —2]\%"-6,” /=) and its complement.
By Remark 1 and Remark 2 of Corollary 4.1 and for n sufficiently large, we have

2t — ] < Mv? [ n
T 20?7 “n\ 128Tnn

o 1 np? >1 1
n— 573 ’s o
2 %lwi — il + 20?2\ 1

N S 1 1 = g1(ne) > (1 1281nn
M - oy 91\"n i\
4 V 128Inn 4 n

= exp(—— o) Lgr(7)) < exp(~2 > 191(%\/ 128;“)) (4.10)

<oxp [-PTL [128Inn ,01(5/2522)
= eXp 2 4 n (%\/12811171,)2

1
= O(;)
Similarly,
Mv? n n—1 1
e . : — < -1, .
|z — pil < 557 "\ T381mn exp(——5—92(m)) < O(~) (4.11)

12




Therefore,

/{.|$i~ﬂi|<-¥—§-en\/———"7:} [exp(—n 2 91(1)) + eXp(—— 192(77n))] fi(zi)dz;
o) (4.12)

Now, by using a similar argument as in the proof of Lemma 4.2(a), we have

[ |X il > M,
{1X: —u‘|>;g-em/12mﬂ} v; ~ 20 1280

1 exp(— o3 307V 1)
Mv; [lnn ,/
L
202 V 128¢

< owlm)-

Moreover, observe that 0 < 7, < 1, this implies that g;(7,) > 0 and g2(n7.) > 0. Hence,

=)

< 2

-1 n—1
o3 n)) + exp(— n ] i(zi)dz;
/{'T--'-ME%;%\/W}[ g 91(1)) + exp(=—5=g2(nn))] fi(=:)

2 E] y 4.13
{le—uiIZ%;sn\/ Svrreds ( )

1

Inn’

exp(~"

< O
From (4.8),(4.12) and (4.13), we get
I, < 0(%). (4.14)

Again, for the same ¢,, we divide I, into two parts:

IIC — IIc,l + IIC,z, (415)
where

II / [exp( n—lg( 1)+ expl n—1 ( ))]

ol = o2 —_ n - o

R IR Ay 3 Plmg o

i — il fi(zi)des,
n—1 n—1

]]c, = / [CX n +ex — n }
P Nt/ P(=—5—91(7:)) + exp( 92(n))

lz; — pi fii)dz;.
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By (4.10),(4.11) and E|X; — u;| < 400, we have
1
Il.; < O(;) (4.16)

Also, recall that g1(7.) > 0 and g2(n.) > 0, then

I, < 2/ 2 @i — | fi(zi)dai
2 {Iwe—ule%‘;-;-En m}l © If( )
< z|d®(
- /{lZlZ;;z‘\/igs'L}l 42 (2)
4o; M?v? Inn
< — L 4.17
S o P57 1o (4.17)
1
< O(-
< o)
where ®(z) is the c.d.f. of the standard normal distribution.
Hence, from (4.15) — (4.17),
1
11, < O(;). (4.18)
Therefore, from (4.4) — (4.6), (4.8),(4.9), (4.14), (4.18) and for the same ¢,, we have
Inn)2
o< o =om) (4.19)
2
1, < 0(2)=o(ny (4.20)
n

By combining (4.2),(4.19) and (4.20), we have proved the following theorem.

Theorem 4.1 The empirical Bayes selection rule d**(z), defined in (3.6), is asymptot-
ically optimal with convergence rate of order O(Lh-‘;@i) That is, E,[R.(d*")] — R(d®) <
o(dnnly,

n

4.2 Case 2: (u;,7?) and o? unknown, i =1,---, k.

Lemma 4.5 Let f;s, 62, and 02, be the estimators of y;, 0? and v?, respectively, as defined
in (3.9). Also, let g1(n) and g2(n ) be the functions defined in Corollary 4.1. Then, for any
¢ > 0, we have

2'0,' 1 ——62

(@) Po{lftin — il 2 ¢} < %T (2 n),

(b) Pfl6f, —ofl2 ¢} < eXP(—'“(‘“E‘—) (%))JrexP( (M )2( )),
n—1 n—1

(¢) Paflol, = vl = ¢} < exp(—"5—g1(=5)) + exp(~— 92(‘6—2))

14



Proof : (a) The proof is the same as in Lemma 4.2(a).
(6)

Po{|6}, - o?] 2 ¢}
Pulln(M ~ )22 — n(M ~ )| 2 n(M ~1)5}
< exp(—@gl(ﬁ))+eXP(—%ga(§))-

The last inequality follows by Corollary 4.1 and the fact that n(M — 1)%‘251 has a x*(n(M —1))

distribution.
(¢) The proof is similar to that of (b), hence, we omit it. O

Lemma 4.6 Let p;(z;) and @in(z;) be defined as in (2.3) and (3.10), respectively. Then,
for any € > 0, any k > 0 and any z; € R, we have

(a) Po{@in(@i) — pi(2:) > €}

X . Mv?e . M}
< Pn{l:“t'ﬂ‘“/‘t">’§}+Pn{lﬂin_/‘i : Uizn“o'?]> 21}
Mv € o? cv?
+P{lo, — ol > == 2k{len — ol >
2jw; — il + ev?

) 2 Ti2 "2 2 v 12
+Pﬂ{|vin—vi|>5—}+Pn{|vin_vil>_ },

2 ev
5 %4‘2‘1331' — pil + v}
(b) Po{@in(z:) — wilz:) < —¢}

~ ~ M’U [ R ]\47‘1.2
< Po{lin — wil > 6} + Po{|ftin — ] > 507 }+Pn{]0'i2n—0i2|> 5 }
. Mv € o? ev?
+P{|65, — ol > ==} 2P{]08, - ol > = ‘ }
e — pl + e0?
v? cv?
+Po{[0%, — 0P| > }+P{| v > —= :

S Stlzi — il + ev?

2

Proof : We prove ( ) only. The proof of (b) is similar to that of (a). Let a = z;,b= 3,y =
T2, 2 3 Wiy by = M,yn = 72 and z, = flin. Therefore, y + b = v? and y, + b, = 0%, if
02 — %;,!n > 0. Therefore,

Pl pin(z:) — pi(z:) > €}

52 52
< - Y _— ~2 m
— Pn{‘Pm(xt) SO( )>€7 zn M —O}—I—Pn{vtn M <0}7
where
2 h2
P, {0; 0
{82, - =2 < 0}

15



IA

AN

IN

IN

IA

= 52 2y (Zin _Tiy 2
- Pn{(vm Uz) (M M)< Tg}

2 2
< Pufloh — ol > T} 4 Pafled, - o] > 25

and

52
Podpin(zi) — i) > €,0%, — gj\‘—{" > 0}

4

? 4
(a = 2)b+ e0f] 2 (bn — b) + (b — b)

P {v?(2n — 2)(by — b) — (a = 2)v}(by — b) + v7b(2, — 2) + [(a — 2)b — ev?] (92, —
[

Pof{vi(zn — 2)(bn — b) —

F02b(zn — 2) + [(@ = 2)b — e0?](82, — v2) > evf)}
2
Pa{v?lzn = 2llbn — bl + (la — zlb+ 0?) 7 |bn — b

5 Pblzn — 2| + (Ja — 2lb+ vD)[oF, — of] > evf)
2
Po{|zn — 2||bn — b] > Ei}
Py {|b — b] > -L} 4 Pof{|bn — b > é}
m 5b| z| + ev?
‘2 2
_ f& 52 _ 2> i GY
+Pn{|2n Z;> }+Pn{l’0m' l> 5 b]a z]+sv2}

P.A{lzn — z| > &, |20 — 2||bn — b| > —} + P {lzn — 2| < &, |20 — 2||bn — b >

+P.{|b —b|>9—-——6£f————}+P{|b b|>-}
me 5b|a z| + ev? 5
2 2
Pn n P - 2 v_t €vi
Pl — 21 > T2 + B0} 9> e
P.{|zn — 2| > &} + P{|bn — b] > '—}
b ev? b
P.{lb, — b| > =t} + P {lb, — b] > =
FRb = > Fr— T+ Rl -8l > 3)

gv?

vie :
Pn n - Pn 02, — v? TP
+P.{|zn — 2| > 5b}+ {l95, — vl > 5 b|a—z]+ev,~2}

vie

P {|zn — 2| 2 &} + Pou{|2n — 2| 55

2e b
+P,{|b, — b] > %—} + 2P {|by — b > =

2

5 bla — z] +sv2}

+P{]05, — vl > — 5}

5 bla — z] + evf

16

v?) > ev}}

2

5}



< Po{lftin — il 2 6} + Po{|frin — ] > 50_2 }
Muv? 2 2
+R{l02, - oF > 2} + 2P {l6F, — oF| > T
Kk |z — pi| + ev
v} ev?

+Pﬂ{|{)z2n - vzzl —a
O Trlei — pil + v}

Hence, the result follows. |

Let {d"}, be the empirical Bayes rules defined in (3.12). Then,
E.[R(d™)] — R(dP) < I, + IT,. (4.21)

where

:’\u
Il

> [ Pollin(ai) = @i(ai)| > louta) = Gallgilz:) = Golfiwi)da,

f]n = ZZ/ [p {|Gin(z:) — iz )[>|ga,(z,) ‘PJ(‘EJ)I}

+Pullfn(as) = (o) > (2AZL iy

lpi(z:) — v ()| filz:) fi(z;)deide;.

By an argument similar to that of (4.4) and (4.5), it suffices to investigate the following

two terms.
o {nbeliznlz) — el > it )
Jr Pu{l@in(zi) — wilzi)| > L Hei(z:) — pil fi(wi)dai. '

Moreover, by Lemma 4.6, we have

Pu{lfin(e:) — (@] > 5)

. R Mv?s Mr+?
< 2| Pulln = il > ) + Pollin = il > 2552 + Paflo = of] > 25)
Mo2s 2 €2
+P I —ofl > =} 4 2RIt — ol > Fr———)  (423)
: Z i — ul + 507

2 2
FPAI85 = 0| > S} Pa{loh, —of > 2
"Aff| — il + 3
Let € = ¢, = \l/ngﬁ and Kk = k, = v/cglnn, where ¢, = nﬁnlsisk{%} and ¢, =
min; <i<k{4vi}. Then, by using Lemma 4.5 and Remark 1 and Remark 2 of Corollary 4.1,
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the two terms concerning « in (4.23) have the following convergence rate.

1
Pof{lfin — sl > e} < O( exp(—cx(max {2v/}) nlnn),
nlon 1<5<k
Muv2e 1
P {62 — o > =22} < ).
(lo%,—ofl > 522} < 0()
Again, by Lemma 4.5, we get
Mr? M-1 M~} M}
52 22 1 _ : 3 3
Putiot, - o> ) < 0 (ent-22 g (G, an (i)

Pl — o> %) < 0 (exp(—3 min {o1(2op), a(op)}m)
nii%n = % 2° ” LT G 2v,~2)’gz(2v,~2 "
Now, by a proof of the rate of convergence analogous to that of (4.6), it can be shown that

the two terms in (4.22) have a rate of convergence of order O(Lh—‘fﬁ)
Hence, by the above argument, (4.21) and (4.22), we have the following theorem.

Theorem 4.2 The empirical Bayes selection rule ¢*(z), defined in (3.12), is asymp-
totically optimal with convergence rate of order O((h‘—:ﬁ) That is, E,[R.(d")] — R(dB) <
oty

n

5. Small Sample Performance: Simulation Study

We carried out a simulation study to investigate the performance of the empirical Bayes
selection rules d**(z) and J”(:g) defined in Sections 3.1 and 3.2, respectively. We considered
k = 3 populations 7,7 and 73. Recall that £ and E, are the expectations taken with
respect to the probability measures generated by the current observation X and the past
observation X;j; (¢ =1,...,k, y=1,...,M and [ = 1,...,n), respectively. In definition 4.1
E.[R(d™)] — R(d®) is used as a measure of the performance of the empirical Bayes rule d".
For any given current observation X and any given past observation X;; (t =1,...,k, j =
I,...,Mand I =1,...,n), let

k
D™ (X) = ;[d?()!) — & (X)lpi(X3).-
Then, from (4.3)
E.[R(d") - R(d°) = EE.D"(X).

Therefore, by the law of large numbers, the sample mean of D*(X ), based on the observations
of Xand Xy ¢ =1,...,k, j=1,...,Mand [ =1,...,n), can be used as an estimator of
E.[R(d")] - R(d).

The simulation scheme used in this paper is described as follows :

(1) For each I = 1,...,n and for each ¢ = 1,2 and 3, generate the independent past
observations Xjyy,. .., Xia by the following :

(a) Generate ©; from a N(p;,7?) prior distribution.
(b) Generate random sample X;1;, Xiai, - - -, Xip from a N(0y,0?) distribution.

3
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(2) Generate the current observation X = (Xi,...,X}x), where X; has a N(/t,',%; + 77)
distribution and Xj, ..., X} are independent.

(3) Based on the past observation X (¢ = 1,...,k, 7=1,...,Mand [ =1,...,n) and
the current observation X, construct the Bayes rule d® and the empirical Bayes rule
d" and compute D*(X).

(4) Steps (1),(2) and (3) were repeated 2000 times. The average of D"(X) based on the
2000 repetitions, which is denoted by D", is used as an estimator of E,.[R(d")]— R(d5).
Also, SE(D"), the estimated standard error, and nD™ are computed.

It should be mentioned that the same past observation X;;; (: =1,...,k, y=1,...,.M
and [ =1,...,n) and the current observation X were used for both rules ¢** and (j". Also,

the term D™ corresponding to d** and (j” are denoted by D** and ﬁn, respectively.

Tables 1,2,3 and 4 list some simulation results on the performance of the proposed
empirical Bayes rules ¢** and d", for the case where 02 = 02 = 02 = 1.0,72 = 1.0,72 =
2.0,72 =3.0,0, =6.0 and M = 3.

From the tables, we learn that the values of D™ decrease quite rapidly as n increases,
for n < 100. In tables 3 and 4, the value of D™ are almost all 0 when n > 650 and
n > 800, respectively. Observe that the distances between the y;'s are 2 in Tables 1 and 2
(41 = 3.0, 2 = 5.0, 3 = 7.0) and those in Tables 3 and 4 are 4 (¢1 = 0.0, p2 = 4.0, s = 8.0).
Therefore, the result is reasonable, because it is easier to identify the best population when
the distances between the means of the populations are larger. Also, the simulation results
indicate that the values of nD™ are decreasing as well as oscillating as n increases. This

supports Theorem 4.1 and Theorem 4.2 that the rate of convergence is at least of order

o(tny,

n
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Table 1.

Performance of d*” for gy = 3.0, g2 = 5.0 and p3 = 7.0

n

D*n

20 309.3678 x 107°

40
60
80
100
120
140
160
180
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000

85.3516 x 10~
60.0714 x 1075
51.3486 x 10~°
35.1271 x 105
19.5562 x 10~°
16.6746 x 10~°
20.1251 x 10~°
17.6404 x 10~°
11.3668 x 107°
10.4540 x 10~°

8.9227 x 107°
4.3252 x 103
4.8568 x 107°
5.2380 x 103
3.3443 x 10°°
3.6253 x 1073
3.7534 x 103
2.5596 x 10~
3.3443 x 107°
3.3662 x 1073
3.3443 x 1073
3.3443 x 10-°
2.1784 x 10-5
2.4315 x 1075
1.9673 x 1073

nD*n
61.87 x 1073
34.14 x 1073
36.04 x 1073
41.07 x 1073
35.12 x 103
23.46 x 1073
23.34 x 1073
32.20 x 1073
31.75 x 1073
22.73 x 1073
26.13 x 1073
26.76 x 103
15.13 x 103
19.42 x 1073
23.57 x 1073
16.72 x 1073
19.93 x 1073
22.52 x 10~3
16.63 x 1073
23.41 x 1073
25.24 x 1073
26.75 x 1073
28.42 x 10~3
19.60 x 1073
23.09 x 102
19.67 x 1073

20

SE(D*)
75.8224 x 10~°
29.9093 x 1075
14.8358 x 1075
17.7981 x 10~°
15.6088 x 10~°

6.4159 x 10~°
5.8600 x 10~5
6.5213 x 1073
5.9192 x 10~
4.3587 x 1073
4.2630 x 1073
3.3842 x 1075
2.2729 x 1075
2.4191 x 10-°
2.4485 x 107°
1.5542 x 10~°
1.7340 x 10~®
1.7955 x 10~°
1.3424 x 10~°
1.5542 x 10~°
1.5543 x 10~°
1.5542 x 10~°
1.5542 x 10~°
1.2874 x 107°
1.2588 x 107°
1.1705 x 10~°



Table 2.

Performance of d" for y; = 3.0, g2 = 5.0 and p3 = 7.0

n

an

20 345.6666 x 107°

40
60
80
100
120
140
160
180
200
250
300
350
400
450
500
550
600
650
700
750
300
850
900
950
1000

97.6678 x 103
91.4959 x 10~°
57.5668 x 1075
50.5301 x 10~°
16.0868 x 10~°
17.3240 x 1075
24.5363 x 103
17.0878 x 10735
10.8352 x 10~°
14.9260 x 10~°

9.6272 x 1075
9.9422 x 1075
4.4898 x 10~°
6.3836 x 107°
2.3513 x 1075
3.5451 x 1075
4.8291 x 10~°
4.4580 x 10~°
3.2860 x 1073
2.5815 x 1073
2.5815 x 107°
2.9308 x 1073
1.6687 x 107°
1.8872 x 107°
1.8872 x 107°

AT
nD

69.13 x 102
39.06 x 1073
54.89 x 102
46.05 x 1073
50.53 x 10~
19.30 x 10~3
24.25 x 1073
39.25 x 102
30.75 x 103
21.67 x 1073
37.31 x 1072
28.88 x 1073
34.79 x 102
17.95 x 10~3
28.72 x 103
11.75 x 103
19.49 x 1073
28.97 x 1073
28.97 x 1073
23.00 x 103
19.36 x 10~3
20.65 x 1073
24.91 x 103
15.01 x 1073
17.92 x 1073
18.87 x 10~3

21

SE(D"

81.7556 x 107°
32.7335 x 10°
23.1381 x 107°
18.6208 x 10~°
17.8186 x 10~°

5.7544 x 105
6.3963 x 1075
7.9382 x 10~°
5.5962 x 105
4.2796 x 1073
6.3393 x 10~°
3.4559 x 10~5
3.4691 x 1075
2.1748 x 1075
2.8822 x 1075
1.2105 x 1075
1.6993 x 10~
2.0490 x 105
1.9281 x 10~°
1.5156 x 10~°
1.3425 x 10~°
1.3425 x 10~°
1.5111 x 1073
0.9852 x 10~°
1.1184 x 103
1.1184 x 103



Table 3.

Performance of d** for y; = 0.0, p2 = 4.0 and p3 = 8.0

n

20
40
60
80
100
120
140
160
180
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000

D*n

210.8993 x 107°
88.0526 x 10~°
39.0124 x 10°°
39.1506 x 107°
22.3508 x 1075
27.0754 x 1075
14.8855 x 10~°
17.2913 x 10~°
14.0296 x 10~°
14.0296 x 107°
12.6434 x 10~°
20.0851 x 1073
10.7009 x 10~°

7.4840 x 1075
3.3130 x 10~°
2.3934 x 10~°
2.3934 x 10~°
1.3404 x 107°
0.0000 x 10~°
0.0000 x 103
0.0000 x 10~°
0.0000 x 10~°
0.0000 x 10~3
0.0000 x 10~°
0.0000 x 10~°
0.0000 x 10~°

nD*n
42.17 x 1073
35.22 x 10~
23.40 x 1073
31.32 x 1073
22.35 x 10~3
32.49 x 1073
20.83 x 1073
27.66 x 1073
25.25 x 1073
28.05 x 1073
31.60 x 1073
60.25 x 1073
37.45 x 1073
29.96 x 1073
14.90 x 1073
11.96 x 1073
13.16 x 1073
8.04 x 1073
0.00 x 1073
0.00 x 1073
0.00 x 10-3
0.00 x 1073
0.00 x 1073
0.00 x 1073
0.00 x 10~3
0.00 x 1073

22

SE(D™)

53.4561 x 10~°
23.6048 x 10~°
13.7470 x 1075
13.9124 x 10°°

9.3681 x 1075

11.3922 x 10~°

6.4664 x 10~°
6.8967 x 1075
6.2722 x 10~°
6.2722 x 10~°
5.9333 x 1075

10.6554 x 105

5.7736 x 10~5
4.1339 x 1075
1.9359 x 10~°
1.7041 x 105
1.7041 x 1075
1.3404 x 1073
0.0000 x 10™°
0.0000 x 1075
0.0000 x 105
0.0000 x 10~%
0.0000 x 10~°
0.0000 x 10~%
0.0000 x 1075
0.0000 x 1075



Table 4.

Performance of d® for p; = 0.0, i3 = 4.0 and pz = 8.0

n

20
40
60
80
100
120
140
160
180
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000

AT

232.8929 x 107°
151.5610 x 10~°
46.8879 x 10~°
38.8236 x 107°
32.0151 x 1075
51.0811 x 1075
26.3587 x 1075
14.6873 x 107°
14.6873 x 10~°
11.0007 x 10~°
14.5926 x 10~°
11.7237 x 107°
10.7009 x 10-°
11.6206 x 10™°

8.0087 x 1075
8.0087 x 10~°
9.9906 x 1075
4.6979 x 10~°
3.2191 x 107°
1.3404 x 107°
1.9491 x 107°
0.0000 x 10~°
0.0000 x 1073
0.0000 x 10~°
0.0000 x 10~°
0.5590 x 10~°

AT
nD

46.57 x 1073
60.62 x 103
28.13 x 10-3
31.05 x 1073
32.01 x 10~3
61.29 x 103
36.90 x 103
23.49 x 10~3
26.43 x 1073
22.00 x 1072
36.48 x 1073
35.17 x 1073
37.45 x 10~3
46.48 x 103
36.03 x 103
40.04 x 1073
54.94 x 1073
28.18 x 10~3
20.92 x 103

9.38 x 1073
14.61 x 1073

0.00 x 102

0.00 x 1073

0.00 x 1073

0.00 x 1073

5.59 x 10~3

23

SE(D")

55.3256 x 107°
42.0964 x 1075
17.4218 x 10~°
14.8289 x 10~°
12.2051 x 10~
17.5057 x 1075
11.1613 x 10~°

6.6145 x 10~5
6.6145 x 10~°
5.4955 x 10~°
6.2433 x 1075
5.8626 x 10~°
5.7736 x 1075
5.8454 x 10~°
4.5993 x 10~°
4.5993 x 10~°
4.9867 x 10~°
2.5449 x 1075
2.3073 x 107
1.3404 x 10~°
1.9491 x 107°
0.0000 x 1075
0.0000 x 10~
0.0000 x 1075
0.0000 x 1073
0.5590 x 10~
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Figure 1: D** vs n and D" vs n for Table 1 and Table 2
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