A TWO-STAGE PROCEDURE FOR SELECTING THE POPULATION WITH
THE LARGEST MEAN WHEN THE COMMON VARIANCE IS UNKNOWN

by
Shanti S. Gupta Baiqi Miao
Purdue University University of Science and
Technology of China
and

Dongchu Sun
University of Missouri-Columbia

Technical Report # 93-3C

Department of Statistics

Purdue University

January 1993



A TWO-STAGE PROCEDURE FOR SELECTING THE POPULATION
WITH THE LARGEST MEAN WHEN THE COMMON
VARIANCE IS UNKNOWN*

Shanti S. Gupta Baiqi Miao

Department of Statistics Department of Mathematics
University of Science and

Purdue University )
Technol f Chi
West Lafayette, IN 47907 Heecfe;lo:ng}{u? 23001212
?

U.S.A. P.R. China

and

Dongchu Sun

Department of Statistics
University of Missouri—Columbia,
Columbia, MO 65211
U.S.A.

Abstract

In this paper, a new technique to select the population associated with the largest mean from
k populations with unknown locations parameters and a common unknown scale parameter is
investigated. Asymptotic approximations to the distribution of the linear combination of the
sample mean and the sample standard deviation have been derived. Using the approximations,
an elimination type two-stage selection procedure is proposed and investigated. Furthermore,
two lower bounds on the probability of the correct selection are obtained. This procedure is

applied in detail to the selection of the best logistic population.
AMS (1980) Subject Classification. 62C20, 62E20

Keywords and Phrases: Two-Stage Procedure; Subset Selection; Indifference Zone; Largest

Mean; Best Population; Logistic Population; Edgeworth Expansion.

*This research was supported in part by NSF Grant DMS-8923071.



1 Introduction

Consider k(k > 2) populations IIy, ..., IT, where

Hi,vp(u),
o

and F is continuous distribution over the real line. The location parameters py,...,ux and the
common scale parameter ¢ are unknown. Our goal is to select the population associated with the
largest means (a correct selection or CS). It should be pointed out that in this model the selection
problems in terms of the means or the location parameters are equivalent. We adopt the indifference
zone formulation of Bechhofer (1954) in which the probability of CS is required to be at least as
large as a prespecified probability level whenever the largest and second largest population mean
are at least some prespecified distance apart.

There are many papers for selecting the population with the largest mean from %k populations
having the common known variance 62. When o2 is unknown, we need to use a two-stage selection
procedure. One such procedure is based on a combination of Gupta’s subset selection (1956) and
the indifference zone formulation. At the first stage one chooses a random number of populations
to enter the second stage eliminating all those populations whose first-stage sample means indicate
they are inferior. Cohen (1959), Alam (1970), Tamhane and Bechhofer (1977, 1979), Gupta and
Kim (1984) and Gupta and Liang (1991) have studied two-stage elimination type procedures for
normal populations with a common variance 62 (known and unknown), in which they used Gupta’s
(1956, 1965) subset selection procedure in the first stage to screen out non-contending populations
and Bechhofer’s(1954) indifference zone approach to select the best from among the remaining
populations in the second stage.

For normal populations with a known variance o2, Tamhane and Bechhofer(1977, 1979) studied
a two-stage elimination type rule in which they adopted a minimax criterion to choose a rule from
this class. Santner and Hefferman (1992) further studied this procedure and derived the maximum
expected total sample size. Gupta and Han(1991,1992) studied a two-stage procedure P; for logistic
populations with a common known variance o2 using Edgeworth expansion for the sample mean.
They derived the minimum expected total sample size and relative efficiency of P, with respect to
a single stage procedure P;. For the case of normal populations, reference could be made to Gupta
and Kim (1984) where other references are available.

Since the unknown variance case is very important and useful in application, we study this



problem further. In many two-stage procedures, the first stage is to select a subset of random size
based on sample means. Generally, we select a subset I of {1, ..., k} by the following rule (assuming

for the moment that o2 is known):

h
select II;,1€ I < E,(-l) > max 7 27

1<i<k 1 /Ay

where 5,(-1) is the sample mean from the ¢th population, and 4 is a positive constant. When the vari-
ance is unknown, we may naturally think of substituting sample variance $2 for 2. The difficulty
is how to find the distribution of /7 X — hS. In this paper, we will find an approximation for the
distribution of \/nX; — hS; where $? is the sample variance of the ith population. This is done by
using the Edgeworth expansion for the function of sample means. When h = 0, this approximation
is just the well-known Edgeworth expansion of v/n X;. The approximation is accurate enough and
can be used in all procedures where both means and variances are unknown.

In this paper, we especially consider an elimination type two-stage procedure P, for selecting
the logistic population with the largest mean from k populations when their common variance is
unknown. For other distributions one can use the same method. In this paper we propose a proce-
dure P, and derive lower bounds on the probability of CS and the infimum over the preference zone
of the lower bounds. Then we determine the supremum of the expected total sample size needed
for P, over the whole parameter space and provide tables of constants for the corresponding single-
stage procedure P; for two special cases of equally spaced and slippage configurations. Finally, we

would like to point out that finding approximate expressions for the distribution of /n X — hS is

of both theoretical and practical interest.

2 Main Theorem

2.1 General Result

In order to state our procedure, we need those notations and results. Let X3, ..., X, be iid samples
from a continuous distribution F' with mean zero and variance unity. Denote the sample mean and

variance §? by
— n 12 —_
X=X, §= ~2 (Xi-X)%
=1 =1

Bhattacharya and Ghosh (1978) made fundamental contributions to Edgeworth expansion of vector

function of sample means. Recently, Babu and Bai (1990) reinvestigated the functions of this type



and relaxed the moment and continuity conditions on F. Using their new results, we obtain the

following results for U,(h) = v/nX — h(S — 1).

Theorem 2.1 If the rth absolute moment of F ezists, then for any h > 0 the distribution P,(z,h)

of Un(h) can be ezpressed as
Pu(o,h) = P (WA = h(S — 1)) < 2) = 8(z) + $(z) 3. Q3(z, h)/w/2 + O(ar-D/2). (1)

where ®(z) and ¢(z) are the distribution function and the density of a standard normal random
variable respectively, and Q;(z,h),j = 1,---,7 — 2, are polynomials in both x and h, whose degree
in z and in h does not exceed 3r — 1 and r — 2, respectively. These coefficients Q ;(x, h) depend only

on the first r moments of F and on the partial derivatives of K(z1,22) = 21 — hy[29 — 22 of order

up to r evaluated at (0,1).

Proof. Let X;,X,---, be a sequence of independent and identically distributed random variables
with mean zero and variance unity. Let f; and f; be real-valued Borel measurable functions on RR.

Consider the transformation
Wo = Va(H(Z,),7:0) = H(n, )], )
where H is a real-valued Borel measurable function on IR? and where
ZW = fi(X,), ZP) = fo(Xa), v = E(X1), v2 = E(X3), 0 > 0,

and

Now, let us choose

h ——
H(21,22) = I((Zl,22) =2z - ﬁ 9 — Z%. (3)
Note that the sample variance $2 can be expressed as
n = n =2 2 (1
§'= ATm(Xi-X)P = iYL XP-X =70 - (ZV), @)

where fi(z) = z, fo(z) = z%. Therefore § is a function of vector Z, and X — hS/\/n can be
expressed by (3). Now our statistic H satisfies all assumptions in Babu and Bai(1990), so we can

use their results for K if F' has finite rth absolute moment. Consequently, Theorem 2.1 holds.



Note that if F is also symmetric, the expression (1) is simplified. The polynomial Q is zero
when j is an odd integer. In the following, we only discuss the logistic distribution. For other

distributions the discussion is similar.

2.2 Edgeworth Expansion for U,(h) for the Logistic Population

A population is called a logistic population with mean m and variance o2, denoted by L(m,0?), if

its density function is given by
f(2) = (9/0)exp{-g(z — m)/o}[1 + exp {~g(z — m)/o}] %,

where g = 7/v/3, m€R, 0 >0and z € R.
It is easy to see that if X ~ L(m,0?), then the moment generating function of standardized

random variable (X — m)/o is given by
M(t) = V3t/sin (V31), |t| < 1.

Now let X4, ..., X, be n iid observations from L(m,o?). Set Y; = (X; — m)/o, then Y; ~ L(0,1).
Write u = (), u®) = (0,1) and let

Liriy..ip = Diy Diy... Dy  H(21, 22) | (0,1),

where D; denotes partial differentiation with respect to the ith coordinate.

The key of the Edgeworth expansion of W, = v/n(H(Z,) — H(u)) is that H can be approxi-
mated by Taylor expansion H' of H at p up to s—2 degree. Then W,, may be approximated better
by

2 . 2 . .
Wi = Va{L4E -4 + 5 ¥ 6@ - w0 @D - )
=1

fig=1

1 2 i i o 1.
T Go2 S i (25 - ) (2 2)—u("2))}.

114yt g—2=1
We note the relation between cumulants and moments of W), and the facts

() iy, = SR

Bz o1 97

821
0 if j=2w+1,

0 \J -
(—) (22 - 212) 1/ |(0,1) = )
2k -1 ifj=2v.

822



In order to obtain the Edgeworth expansions of distribution function P,(z,h) and density

function p,(z, ) for the statistic Uy, (h), we employ the function H;(z), the Hermite polynomial of

degree j, which is defined by

Then the following approximations of P,(z,h) and p,(z,hk) up to order n=3

() exp(~22/2) = (1P Hye) exp(~2*/2), § = 0,1,-+.

using Mathematica software system (Wolfram,1991):

where

and

Cl(.’t,h)

Cz(z‘,h)

Cs(z,h)

where

Ca(a,h) =

Pn(m, h) = Q(‘v) - ¢($)[Cl($, h)/n + Cz(il?, h)/n2 + C3((B, h)/n3],

iﬂs(x) + h{lg—o - 3H2(x)}+h2{§111(z)}

135Hs(z)+800H7(x) ¥ h{—%+% Hy(e) ~ o Ha(a) -
W { e iz )- L Hy(o) Hh o H(a)
14300 H(2) + 3755 2100 Hs(2) + 48(1)001{“(”’)
6556803 gggg Ha(e) + 156690501 Hy(e)
e Ho(z) — 5o H(z) — sos Hiol) }
- S S e

2537
A g
32000 Ho(z) + 1024 1l(m)}
44703 30099 35101 54453

Ta000 (%) - 14000 Hal=) - 84000 H(e) + 51000 72(2) -
h4{_700H3(”’) 350H5( =)+ 500H7(m)+ 128H9(‘”)}

b’ —%H‘i(.@) 125H6(z)}+h6{ 3751{5(95)}

pn(z,h) = $(z)[1 + Ca(z, h)/n + Cs(z, k) /n? + Ce(z, h)/n?],

H4(a:)+h{10H1(z)— Hg(z)}+h2 Hy(z),

5

Hs(a:)}

Hlo(w)}

can be computed by

(5)

(6)



Cs(e,h) = 1(1)5H6("”)+80038(“’)+h{ 33(7)’11( )+333H3( )_700H5(z)_200H7(z)}
b W3 le) + oo Fale) = g Hel@) + e a(o)}
+ B{SLH(o) — e Hs(@) b Ha(a)
Colz,h) = 14300 Ha(a )+2100H1°(“’)+48(1)00 Hio(e)
+ h{%ﬂ (=) - ggggﬁ?’(z) + 156690501H5(‘”)
+ 72095:1604070357("”) 823059() soop (@)}
e e o
- 322503070 Hio(z )+1024H12($)}
+ 1 T3005(%) = Tq0005) ~ 5200017®) G4 o) - 535}
* h4{_700H4("") 37590H6(‘”)+500H 8("")'F12815[“0(”’)}
+ hs{—52 = Hy(a) - 7 H7(:c)}+h6{ 375H6(z)}
When h = 0, we get the distribution F,,(z) and the density function f,(z) of v/» X,, as follows:
Fiz) = 8(2) - $@){((Hs@n™ + () Hs() + (G)(3) Hr()] ™
+ [@ED ) + G Es() + CERE Hu@)] =} +0m=T1,
fa(@) = {1+ (D Ha@)n™ + [(6,)( )He(z)+(§?)(6)21fs(z)]n-2
210, 48 5775

(D Es() + G TG MHo@) + (T3P Hrale)|n }+0 (7).

3 A Two-Stage Procedure for Selecting the Population with the

Largest Mean from & Populations

3.1 Two-Stage Procedure

LetII;, : = 1,---,k, be k populations with unknown means y;,2 = 1,---, k, and a common unknown

variance o2, and let
Q= {(ﬂ', U) = (/‘l’l, eeoy His 0‘) t—00 < py <00, t=1,..,k, 0> 0} (7)
be the parameter space. Denote the ordered values of the p; by ppp) < - -+ < py, and define

8 = pp — - (8)



We assume that one has no prior knowledge concerning the pairing of unordered and ordered
pis. We set II(;) as the population associated with p;).

Our goal is to select the ‘best’ population which is defined as the population with the largest
mean fifz). This event is referred to as a correct selection (CS). Any procedure P, to be valid, should
guarantee a specified minimum probability of a correct selection P(CS), say P* (1/k < P* < 1),
whenever the best (assumed to be unique) and the second best populations are apart at least by
a specified amount, i.e. 6;c,k_1 = px) — Pk-1) = 6’ > 0. Note that in this formulation, in order to
select the best population, it is necessary to assume that §’/o must great than a positive specified

constant §. For any specified é§ > 0, let (5 be the subset of the parameter space §2 defined by

Qs ={(r,0) € Q| (1w - pp-11)/ o 2 6} (9)

The subset Qs is called the preference zone. Letting IP(C'S | P) denote the P(CS) of a rule P,

in order to valid, it should satisfy
P(CS|P)> P (10)

for all (1,0) € Q5. Both § and P* are specified by the experimenter in advance.
Now we propose an elimination type two-stage procedure, namely, P, = Py(n1,n2,h), where
n1, N9 are positive integers and h > 0: these are explained later.

Stage 1. Take n; independent observations

(L

Ty ,1= 1,---,m

from II;,5 = 1,- -+, k, respectively, and calculate their sample means and sample variances

(1) _ 1 & (1) .
w] — '—"nl ;zﬁ I J — 1,"',k, (11)
1 &
2 _ Z (1) _ =12 . _
sj = ;l:i=1(zji -%;)°% j=1,---,k. (12)

Next, order the k sample means, say, Efll]) <. < Ef,:]) . Then select a subset J of {1,...,k} such

that

i€ =70 2 max (2! - hsi/ /) (13)

where h is a specified positive number and determined later. Denote the associated populations

II;,j € J by II;. Let S’ be the number of elements in the set J.



1. If §’ = 1, stop sampling and select the one population satisfying (13) as the best one. Note
that this is the population corresponding to the largest observed mean at Stage 1.

2. If 8’ > 1, proceed to the Stage 2.
Stage 2. Take n, additional independent observations :1:5,), =1,...,n3,j € J, and compute their

cumulative sample means

= Z 20 4 E (2)y (nla: Y 4 nyzt 2)), j€eJ,
ni +

n1+n2 =1 =1

where

2 = Z“’(Z)'

Then assert that the population associated with max;cs; is the best.

3.2 Some Lower Bounds on the PCS for P,

If we do not constrain the sample size, there are an infinite number of combinations of (ny,n3) for
given h,k,§ and P*, which will exactly guarantee that PCS of P, satisfies (10). Besides, h can be
choose appropriately to reduce total sample size and satisfies (10). In the sequel, we will consider

such a criteria. Let

S =818 >1), (14)
where I(A) is the indicator function of the set A. Then the total sample size required by P, say
TSS, is given by

TSS =kny + Sny (15)

Let Ey o(TSS | P;) denote the expected total sample size for P; under (u,0).
We adopt the following criterion to select (n1,ng,h). For given k,§ and P*, choose (n1,ng, h)

to minimize

sup By o(TSS | P2) (16)
(m,0)€Q
subject to
f 1P CS|Pg) > P 17
(”,1011)6 po(CS|Ps) 2 (17)

Since the exact probability of IP(CS | P2) is too complicated to compute, we will study some
lower bounds on IP(C'S | P;) and derive conservative two-stage procedures. For convenience, we

write n = n1 + na.



Theorem 3.1 For any (p,0) € Q, we have

inf_ Pp,o(CS|Py) 2 / PE @+ 6/ + by ) fu (2)ds) ( / Fi=(z + 8/ ) fu(2)dz).(18)

(p,0)es

For proving this theorem, we need a simple lemma.

Lemma 3.1 If the random variable U is independent of random variables V and W, then we have

for any real values a and b and any ¢ > 0,
P(V+W<a,cV4+ULH)>2P(V+W<La)lP(cV+U<D).
Proof. First we prove for any random variables V and W, the following probability inequality:
PV+W<a,VSh)>2PWV+W<La)P(V<D).
Using conditional expectation one gets
PV+W<a Vb = EwP(V4+W<La,VIb|W)
= EwlP(V<a-W,V<b|W)

v

Ew{min[IP(V < a-W |W),P(V < b)]}

v

EwP(V <a-W |W)P(V <b)

P(V+ W< a)lP(V L)

Since U is independent of V and W, the above probability inequality implies that
PV+W<a,cV4+U<Lb) = EgyP(V+W<a, VS (b-U)/c|U)

> EuP(V+W <PV < (b-U)/c|U)

P(V + W < a)P(cV + U < b).

This completes the proof of Lemma 3.1. O

Proof of Theorem 3.1. Set
1,_7(11) = (XJ(,I)"IIJ)/U, izl,"')”lﬁj:l,""k7
}/.1(12) = (XJ(‘?)—#J.)/0-7i:n1+1,"°7n1+n27j:]-,"',k7
70 _ 155, |
Yil o= -2
=1
2 1N o w12
Syj = azl(sz _Yj ) ’
1=

T _ Mgy, P2 Xhy0)
Yj = =X Vi + =3 Y

n

=1 =1



Let P,, (- | ;) and F,(- | p;) denote the distributions of /n; 75,-1) — hSy; and v/n Y ; respectively,
and H(:,- | p;) denote the joint distribution of |/n; 7;-1) ~ hSy; and v/n Y;. Without loss of
generality we assume that y; < --- < ug. Noting the definitions of 75-1) and ?j, we have
1 1 ad a
Pp,o(CS|P2) = Puo(XL) 2 max (X))~ hS;/y/m0), X = max X))
> ]Pu,a(jf(-l) — b8 <X X < Xpyj=1,-+, k= 1)

= ukaHPu,a(Y‘” hS;/y/m < X, X; < X | X, X

= E,., H P, .(var (T3 — b(Sy; — 1)/v/aT ) < /a1 Y + /A1 bijfo + b,
1
VR Y, <Va T+ Vi biifo | /a1 Vi,V T
k-1
By [ Puo(v/ar (T3 = b(Sy; — 1)/vAT ) < var YO + /a7 6+ b,
1

VaYi <vVa Vi +va 6| s Y, VoY)
= Eu B (va Y + /a1 6+ b/ Vi + /7 6), (19)

v

where the expectation is taken with respect to the joint distribution of /ny 7&1) and /n Y. By
(19) we have

WL Puo(CS|P) 2 int B BN (V0 46+ byva (Te+9). (20)

Lemma 3.1 implies

H(/m Y + /a1 6+ hy/n Vi + 4/ 6)
= P(/ar (T = h(Sy1 - 1)/v/Ar ) S VAL T + /A 6+ h, Vi < Vi +6)
= PV~ h(Sy1—1)/sne < TN + 6+ h//nr ,’;_179 + 1;1752) <Vi+6)
> PV - h(Sy; - 1)/var ST +6+h/var) BV + 270 <7, +4)
= Poy(vir (T +8) + b, h)Ea(va (T +9)). (21)
Using (21) and a version of Chebyshev’s inequality (Hardy, Littlewood and Pélya, 1934) we have
By o B (/o1 T3 + /1 84 by /2 i+ /7 )

Eyy o (Poy (VAT (V) + 6) + b, B Fu(v/ (T + 8)))F2
Eu,0 P (VAr (V) + 8) + hyh) - By o FE 1 (VR (T + 6)). (22)

v

A\

10



Combining (21) and (22) implies

WL Puo(CS P02 [ PENe+ AT 64 b Wn(ede- [ F7 o+ VA (2
] &

which prove the theorem. |

Since ab > a + b — 1 for any a,b € [0, 1], we can get another lower bound.
Corollary 3.1

L Puo(CS | Pr) 2 / PF1 (gt 6+h, h) oy () d+ / (2 4/m 8) fu(z)dz—1. (23)

;From the proof of this theorem it can be seen that the key to sharpen the lower bound is to
sharpen the lower bound of the estimator of (20). We believe that the Edgeworth expansion of the
vector function of sample means and the standard deviation can do it, although it is much more

tedious.

4 Expected Total Sample Size for P,

4.1 The Supremum of E,,(T'SS|P,)

In procedure P, one important problem is to calculate the expected value of the total sample size
and how to estimate it in the preference zone. We first consider the supremum of the expectated

value of the total sample size over the parameter space (2.

Theorem 4.1 If the distribution F has the monotone likelihood ratio property, then for fized k and

(n1,ng, h) one has
e Ep,o(TSS | P2) = k{n + na / PE1(g + h, h) foy (2)dz — / FE (@ - h)puy (2, h)dz) }.(24)
Proof. For any (g, 0) € ©, (15) implies

Eu,o(TSS | P2) = kn1 + n2Epy,o(S | P2), (25)

where S is defined in (14). It is easy to see that

Eu,0(S | P2) = Ep,o(S' | P2) - Puc(S' =1|P2).

11



Noting the definition of S/, we have

w0 5 () _ pro _
ZBI(X 2 max (X5 = k(5; = 1)/v/nr)). (26)

Equation (26) implies

PXY > max (X1 - h(S; - 1)//a1))

7
IE””US 1<5<k,j#i

9~ i

E,.. [JPEY - 1S /v/m < XD | TD)
1 j#i

= / IT Pes (2 + /71 85+ by B) o (2)d, 27)

J#i

.
w 1l

where 8;; = 6! / o. Also, it is seen that

I(s':1)=§kjl( max X < X~ hSi/ /A1)

1<5<k, 3¢
and
k
1 1
Puo(S'=11P2) = 3 Ppo( max X <XV~ hsi/var)
i=1 ==
k
= Z]Em,cr]P(_X-g‘l) < _Xz('l) —hSi[\/ry , Vi # 1)
=1
k
= > Euo [T Fu(X +8i4/m1 —h)
i=1 J#i
k
=y / [ For(z + 6i/R1 = h)pny (2, B)dz, (28)
=17 j#i

where expectation IE,; , is with respect to the distribution Py, (z) of /7 }_’;-(1) — h(Syi —1).
Combining (25),(27) and (28), we have

k
Eupo(TSS|P2) = kni+ng E (/ H P, (z + /1 6;; + h,h) fy, (2z)dz
Jfi

=1

_ / H Fo (z + /n1 6i5 — h)pp, (z, h)dz) . (29)

i
On the other hand, from Gupta (1965), it can be shown that both the supremum of Ey, (5" | P2)
and the infimum of Py o(S5' = 1 | P2) are attained when ppy = --- = Pk in the limit for any
distribution with monotone likelihood ratio property. Using this result and (29), the theorem is

proved. O

12



4.2 Optimal Design Problem

Theorem 4.1 provided an exact formula for the supremum of the total sample size over 2, and (29)
yields an exact formula for fixed g and o. It is helpful to solve the optimal design problem (16)
and (17). But since the exact value of infy o(CS | P;) is very complex, we replace this quantity
by the conservative lower bound in Theorem 3.1 and consider such an optimal design problem: For

given k, 6 and P*, choose the triple (n, n2, h) such that

k{nl + nz[/ P,’fl'l(z + h, h) fn,(z)dz — /F,’fl_1 (z — h)pn, (=, h)d:v]}: min (30)
and
/ PEY (g 4 6y/mry + by b) fuy (a)da - / F*(¢ + 6/ Ypa(z, h)dz > P*, (31)

where 1, and n, are non-negative integers, n = ny + ng and A > 0.
Tables 1 and 2 provide these design constants and the expected total sample size (ETSS) for
§ =0.1,0.3,0.5,1.0. and k = 2,3, 5,10,20, P* = 0.90; k = 2, 5,10, 20, P* = 0.95.

4.3 Relative Efficiency of P; w.r.t. P,

To select the ‘best’ population from k populations, the simplest procedure is to take the population
associated with the largest mean based on samples of common size n, as the best. Denote this
procedure by P;. The relative efficiency(RE) of P, with respect to P; is defined by the ratio
Eyu o(TSS | P2)/ kns, where n, is the smallest integer for which

/F,’f:l(:c + 64/n5) fn,(z)dz > P*.

Now the RE is given by

k
RE = — {knl-i-nzz:(/ﬂpm(z‘F‘sij\/ﬁI + ks h) fr (2)de

kns i=1 Y i

_ /H Fo,(z + bij4/m1 — h)pn, (z, h)dw) } (32)
J#i

Let (181,752, k) be the solution of the optimization problem (30) and (31) treating n; and n; as

continuous positive variables. Take ([riy + 1], 124 1], k) as the approximate design constants, where

[u] denotes the greatest integer part of u, then we get an approximate value of RE if (nq,ng, ) is

substituted by ([ﬁl],‘ [#g), ) in the formula (32).

13



In the sequel we consider the RE for two special cases, namely, the equally spaced and slippage
configurations. In the first case, we assume that the unknown mean of II; are p 4 (i — 1)§',i =

1,---,k. Since §{; = (i — j)&', set 6§ = §' /o, then the RE of this case is

k
RE, = — {knl+nzz[ﬂpm(z+m(i—j)5+h,h)fnl(z)dz

kns i=1 Lizi

— /H Fo (z + /71 (i — )6 — h)py, (2, h)da:] } (33)
J#i

In the second case, we assume that u; = pfor 1 <i<k-1,uyr=p+6,8’>0and é§ = &'/o.
Then the formula (29) yields the RE of this case

1

RE, = kng

<kn1 + ng{(k -1) [ / P¥2(z + h,h) - Py (z — 63/n1 + B, R) fn,(2)dz
- / FE=2(z — h) - Foy (2 = 8y/71 — h)pay (3, h)d:c]
[ i+ 8y 4 k) (o) — [ B @ 6/ — By (2, W)ds] }). (30

Table 3 gives the value of RE; for given values of P* = 0.90,0.95, k¥ = 2,5,10,20 and § =
0.1,0.3,0.5,1.0. ;From these tables, we see that the P, is more efficient than P; based on the

criteria of the expected total sample sizes.
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Tabel 1: Optimal Design Constants for P, for Logistic Populations
P*=0.90

k| ¢ (5 %) h| ETSS

210.1]177.1163.4 | 2.438 651.8
0.3 |26.71 | 10.72 | 2.732 72.96
0.5 | 4.771 | 7.146 | 2.980 11.93
1.0 | 2.643 | 8.814 | 3.634 5.160
310.1(280.3|245.8 | 1.463 | 1463.5
0.3 | 16.27 | 42.37 | 2.869 161.8

0.5 | 8.080 | 7.320 | 9.260 46.20
1.0 | 3.872 | 1.243 | 9.900 11.61
510.1]369.1|400.7 | 1.564 | 3153.8
0.3 | 42.46 | 41.82 | 1.743 354.1
0.5 {9.718 | 12.97 | 3.180 123.6

1.0 | 3.840 | 1.497 | 0.345 22.22

10 | 0.1 | 456.8 | 644.6 | 1.374 | 7509.2
0.3 | 51.16 | 70.43 | 1.489 841.0
0.5 | 13.13 | 23.32 | 1.978 275.1
1.0 | 2.091 | 1.851 | 0.776 23.40

20| 0.1 | 518.4 | 893.5 | 1.393 | 16490.9
0.3 | 55.41 | 99.69 | 1.564 | 1834.6
0.5 1 5.996 | 0.287 | 1.341 119.9
1.0 | 3.498 | 2.124 | 1.032 47.41
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Tabel 2: Optimal Design Constants for P, for Logistic Populations
P*=10.95

k 6 1 ) h ETSS
210.1]306.3| 278.7| 1.773 | 1051.6
0.3 38.90{ 27.11 | 1.753 | 119.29
0.5 | 4.567 | 11.02 | 2.877 9.135
1.0 | 2.600 | 7.286 | 1.594 5.200

510.11}541.3 | 523.4 | 1.393 | 4265.5
0.3 162.63| 56,67 | 1.408 | 479.00
0.5(19.03 | 22.62 | 2.025| 174.10
1.0 | 4.407 | 7.385 | 0.412 32.26

10 | 0.1 | 630.1 | 767.0 | 1.352 | 9746.6
0.3 | 71.27 | 84.76 | 1.397 ; 1091.9
0.5 | 13.06 [ 32.08 | 2.072 352.7
1.0 | 3.923 | 17.02 | 0.1917 | 41.958

20 { 0.1 | 693.6 | 1015.9 | 1.413 | 20981.6
0.3 |76.62{ 113.6 | 1.499 | 2341.7
0.5 | 5.330 | 15.581 | 0.608 | 287.73
1.0 | 3.970 | 3.336 | 0.184 83.71
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Tabel 3: Relative Efficiency of P, w.r.t. P, for Logistic Populations
Slippage Configuration

P*| k )

0.1 0.3 0.5 1.0

090 | 2| 0.927 | 0.973 | 0.861 | 0.817

5 || 0.853 [ 0.869 | 0.881 | 0.767
10 || 0.844 | 0.859 | 0.885 | 0.734
20 || 0.855 | 0.868 | 0.850 | 0.707
0.95| 2| 0.822 | 0.843 | 0.844 | 0.835

5 || 0.740 | 0.753 | 0.794 | 0.549
10 || 0.677 | 0.689 | 0.627 | 0.525
20 |} 0.625 | 0.628 | 0.596 | 0.475

18





