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1. INTRODUCTION

1.1 The Basic Conditional Test

We observe the random variable X € X and wish to test the simple hypotheses
Hy: X has density fo(z) versus Hy: X has density fi(z).

Denote the likelihood ratio of Hy to Hy or Bayes factor in favor of Hy by

B(z) = fo(z)/ f1(z).

(Note that small values of B(z) correspond to rejection of Hy.) Let Fy and Fy be the
c.d.f.s of B(X) under fy and f;, respectively. For ease of exposition, we will assume that

Fy and F; are continuous and invertible, and denote their inverses by FO—1 and Fl_l.

The standard equal-tailed (minimax) most powerful test is determined by the critical

value ¢, which satisfies

FQ(C) =1- Fl(c).

This test rejects Hy if B(z) < ¢, accepts Hy if B(z) > ¢, and has error probabilities of
Type I and Type II given by a = = Fy(c) = 1 — Fi(c).

Consider, instead, the testing procedure T; defined as follows:

if B(z) < ¢, reject Hy and report the conditional error probability a(B) = B/(1 + B);
if B(z) > ¢, accept Hy and report the conditional error probability 8(B) = 1/(1 + B).

This simple procedure has a number of attractive properties. First, «(B) and §(B) are
the posterior probabilities of Hy and H;, respectively (assuming equal prior probabilities),
so the reported error probabilities are those that a Bayesian would report. Second, T}
is a test often considered by Likelihoodists. Birnbaum (1961) called a(B) and B(B) the
“intrinsic significance levels.” Third, and quite surprisingly, T is also a valid frequentist
procedure, more precisely a valid conditional frequentist procedure. (See Section 2 for
definitions and justifications.) The situation here thus differs from that in classical testing
of simple hypotheses where the unconditional error probabilities @ and 3 are typically

very different from the Bayesian (or likelihood) a(B) and §(B). Indeed, this is one of the
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common criticisms of classical testing of simple hypotheses: the reported error probabilities
don’t distinguish between data at the boundary of the rejection or acceptance regions and

data deep within the region.

Ezample 1. Suppose that X;,X,,...,X, are i.i.d. N(6,1), and that it is desired to test
Hy: 6 = —1 versus H;: 8 =1. Then

i ) 1/2 exp{-1 x; 2
B=:[-[(2 ) pi=s(zi+ 1)} = exp{—2n z},

L (@m) 72 exp{—3(z: — 1)?}
and T becomes:
if B <1 (i.e., £ > 0), reject Hy and report error probability a(B) = (1 + exp{2n £})™!;
if B > 1 (i.e., Z < 0), accept Hy and report error probability 3(B) = (1 + exp{—2n z})~'.

For comparison, the classical Neyman-Pearson test with equal error probabilities utilizes
the same rejection and acceptance regions, but reports the error probabilities (of Type I
and Type II) a = f = 1 — &(y/n), where ® is the standard normal c.df.. When n=4, a
comparison of the reports is given in Table 1. For completeness, we also report the P-value

against Hy, which here is 1 — ®(2(z + 1)).

Table 1. Comparison of Error Probabilities When n = 4

T For Test T For N — P Test P-Value
a(B) B(B) o B
0 0.5 0.5 0.025 0.025 0.025
1/4 0.12 0.88 0.025 0.025 0.0062
1 0.00034 0.99966 0.025 0.025 0.00003

The intuitive attractiveness of a(B) and #(B) is clear. If the data is £ = 0, intuition
suggests that the evidence equally supports Hg: § = —1 and Hy: 6 = 1; a(B) and S(B) so
indicate, while a and 3 (and the P-value) do not. When Z = 1, in contrast, intuition would
suggest overwhelming evidence for H; (note that z = 1 is four standard deviations from
§ = —1); again a(B) and S(B) reflect this. (We delay further discussion of the P-value to
the end of Section 1.4.)



The above succinctly summarizes the major point of the paper: in testing simple
hypotheses the counterintuitive N — P test can be replaced by the much more attractive
Ty, with complete Bayesian, likelihood, and frequentist justification. (Indeed, it will be

argued in Section 3 that T} is actually a better frequentist test than the N — P test.)

1.2 A Bayesianly Motivated Modification

To a Bayesian, T will appear to be somewhat unnatural when ¢ # 1. If, say, ¢ = 3
and B(z) = 2, then T} would be “reject Hy, and report conditional error probability
a(B) =2/3.” The obvious question is “why should Hy be rejected if that action has a 2/3

chance of being wrong?”

This might, of course, be a perfectly rational thing to do if the losses in accepting
and rejecting are asymmetric. Indeed, in Section 2, 7} will be seen to be a true Bayes test
for certain losses. For inference without a specified loss, however, this behavior of 7T} is

unappealing and may seem silly to practitioners.

A useful modification of T, that alleviates this difficulty, is to incorporate a “no

decision” region. To describe this modification, T}, define

r=landa=F;'(1-F(Q1) ifF(1)<1-F(1);
r=F'(1-F(1))anda=1 if Fy(1) >1— Fy(1).

Then,

if B(x) < r, reject Hy and report the conditional error probability a(B) = B/(1 + B);

if r < B(z) < a, make no decision;

if B(z) > a, accept Hyp and report the conditional error probability 3(B) = 1/(1 + B).
An example will be given in Section 2.4, which will indicate that the “no decision” region is
typically rather small. Indeed, T} and T; agree (i.e., the “no decision” region disappears)

whenever

Fo(1) =1- Fy (1), (1.1)

in which case r = @ = 1 in T7. The main situations in which (1.1) is satisfied are situations

of “symmetry”; see Section 3.1 and 4.2 for definition and illustration.
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1.3 Use of T; in Sequential Analysis

In sequential testing, use of Ty (or T}) can greatly simplify the analysis and has

surprising foundational implications. First, an example:

Ezample 2. Consider the scenario of Example 1, but suppose the data is observed sequen-
tially. Letting N denote the (random) stopping time for the experiment, it is still true
that, upon stopping at N = n, B,(z1,...,2,) = exp{—2n Z,}. (Bayes factors do not
depend on the stopping rule.) Condition (1.1) (which guarantees that T} = T) can be
written (noting that B, <1 & z, > 0) P()_(N > 0]§ = —1) = P(Xy < 0] =1). This

will be satisfied by stopping rules that are “symmetric,” such as those of the form
“stop” at the first n for which |Z,| > g(n), (1.2)

where g(n) is any nonnegative function such that the stopping rule is proper (i.e., “stops”

with probability one). The SPRT with equal error probabilities is of this form, with
g(n) x 1/n.
For this situation, the test T} becomes

if , > g(n), stop experimentation, reject Hy, and report the conditional error

probability a(By) = 1/[1 + exp(2n Z,)];

if 7, < —g(n), stop experimentation, accept Hy, and report the conditional error

probability 8(By) = 1/[1 + exp(—2n Z,)].

Observe first that the test T is remarkably easy to implement. There is no need for the
usually difficult computation of unconditional frequentist error probabilities, as is necessary
for the SPRT. Even the choice of g(n) does not necessarily involve such computations; for

instance, the choice
1 1

is attractive, guaranteeing that the reported conditional error probability will not exceed

a*.

The foundational surprise here is that the reported error probabilities arising from Tj

do not depend on the specific symmetric stopping rule chosen. This is surprising in light
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of the common frequentist opposition to the Stopping Rule Principle (SRP). The SRP
states that final inferences should not depend on the stopping rule used to obtain the data
(cf., Berger and Berry, 1988, or Berger and Wolpert, 1988). The fact that the “optimal”
frequentist procedure, Tj, in the above example, seems to ignore the stopping rule in its

error report is startling. This issue is discussed more fully in Section 4.

1.4 Background on Conditional Testing and P-Values

There is a long history of attempts to modify frequentist theory by utilizing some form
of conditioning. Earlier works are summarized in Kiefer (1977) and Berger and Wolpert
(1988). Kiefer (1977), together with Kiefer (1975, 1976) and Brownie and Kiefer (1977),
formally established the conditional confidence approach; a modification of this approach
is discussed in Section 2.1, and forms the basis of our analysis. We seek, however (for the
problem of testing simple hypotheses), to overcome certain difficulties with the conditional
confidence approach, difficulties discussed in the above works, and by the discussants of

Kiefer (1977).

Perhaps the main difficulty is that there is a plethora of conditional confidence proce-
dures, and choosing among them is a daunting task. Brown (1978) makes a serious effort
in this direction (see Section 3.2), but a general practical prescription seems remote. A
second potentially serious difficulty is that conditional confidence procedures that do not
have a Bayesian basis can remain incoherent and anti-intuitive. In this regard, Birnbaum
(1961) and Barnard (in the discussion of Kiefer, 1977) argue that any effort to develop
intuitively sensible conditional answers, for the testing problem we consider, must be based
on B(z) = fo(z)/f1(z). Even Kiefer (1977) mentioned the appeal of doing so, but felt (as
did Birnbaum) that this was incompatible (in general) with a frequentist interpretation.
The main thrust of this paper is to show that the two are compatible; that one can retain
the coherency and ease of interpretability of B(z), while achieving a conditional frequentist

interpretation for its use.

Although this paper is basically a descendant of Kiefer (1977) (and Birnbaum, 1961),
there has been a considerable subsequent literature on conditional frequentist testing from
the “estimated confidence” perspective. This approach was also proposed in Kiefer (1977)

(although it, also, has earlier roots). The focus of the approach (in testing) is to provide
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an “estimate” of the indicator function: 1 if Hy is true, 0 if Hy is false. Developments

along these lines can be found in Schaafsma, Tolboom, and van der Meulen (1989); Hwang,
Casella, Robert, Wells, and Farrell (1992); and van der Meulen (1992). Chatterjee and
Chattopadhyay (1992) develop a related approach based on a betting interpretation of evi-
dence. Exploration of these new approaches is valuable, but they frequently are susceptible
to the same criticisms that we mentioned earlier in relation to the conditional confidence

approach.

Finally, use of the P-value for testing Hy versus H; should be mentioned. Because
of the intuitive objections to the N — P test that were discussed in Section 1, use of the
P-value has become quite popular. There is, however, no sound justification for using it
in simple versus simple hypothesis testing. It has no Bayesian or likelihood interpretation,
typically differing significantly from, say, T;. Thus, in Table 1 for # = 0, the P-value
is the anti-intuitive 0.025. And it has no true frequentist justification; for instance, the
expected P-value under fy, conditional on rejecting, is only one-half the actual probability
of rejecting under fo, so that “on average over the rejection region” the P-value substan-
tially underestimates the actual Type I error rate. Since Tj is completely justified from
all foundational perspectives and is as “data-adaptive” as the P-value, T3 is clearly to be

preferred.



2. CONDITIONAL FREQUENTIST TESTING

2.1 Basic Elements

The approach we consider here is that formalized by Kiefer (1975, 1976, 1977) and
Brownie and Kiefer (1977), called the conditional confidence approach. (See, also, Brown,

1978, and Berger, 1985a,b.) The idea is to partition the sample space, X, i.e., let

X=X, with X, N Xy = 2,
SES

and then develop frequentist measures conditional on X.

For testing, the usual conditional frequentist measures considered are the conditional

probabilities of Type I and Type II error,
a(s) = Py(Type I error |X,) = Py(rejecting |X,), (2.1)

B(s) = Pi(Type 11 error |X,) = P;(accepting |X). (2.2)

One operates by observing the partition X, in which the data happens to lie, and then
reporting the relevant a(s) or B(s) as the error probability (or, perhaps, reporting both).

It is worth noting that, if one treats s as random under fy and/or f, then
Ey[a(s)] = Eo[Po(Type I error |X,)] = Po(Type I error) = a,
E;[B(s)] = Pi(Type II error) = B,

so the conditional tests can be viewed as simply dividing up the overall probabilities of

(2.3)

Type I and Type II errors among the various partitions.

It should be remarked that Kiefer worked in terms of “conditional confidence,” which
is 1-“conditional error.” Also, although Kiefer stopped short of explicitly recommending a
particular conditional frequentist procedure for simple versus simple hypothesis testing, he
(as well as Brown, 1978) seemed to favor the procedure arising from requiring a(s) = (s)
for all s, with {X,: s € S} chosen to be as fine a partition as possible, subject to this
constraint. See Kiefer (1977, expressions (3.12)—(3.14)) for development of this procedure.
Although this “equal probability continuum” partition has some attractive properties, it
can be shown to yield counterintuitive results in many nonsymmetric situations; hence our

preference for T} and T7.



2.2 The General Conditional Test for Simple Hypotheses

The tests T; and T, described in Section 1, can be usefully generalized. Consider the

test Ty, , defined as follows for 0 < £ < co and 0 < p < co: define
rep =4£p and ap, = F;'(1—pFi(6p)) if Fo(lp) <1- pFi(lp); (2-4)
rep = Ffl(%[l — Fo(¢p)])) and ay, =£p if Fy(fp) 21— pFi(fp); (2.5)
then, the generalization of T} is given by
if B(z) < ry,p, reject Hy and report the conditional error probability a,(B) = B/(p + B);
if rpp < B(x) < ay,p, make no decision;
if B(z) > as,,, accept Hy and report the conditional error probability 8,(B) = p/(p + B).

The motivation for considering this test is again Bayesian. Indeed, suppose it is desired
to test Hy: fo versus Hy: fi, with mp and m; being the prior probabilities of Hy and H;,
respectively (1 = 1 —), and where the loss is assumed to be 0 for a correct decision and

£; for an incorrect decision when H; is true. Then, defining
p=m[my and £=4{1/4y,
the optimal Bayes test, Ty ,, can be written
if B < £p, reject and report posterior risk £ya,(B);
if B > £p, accept and report posterior risk £15,(B).

This is the test T, ,, except for the presence in T, of the “no decision” region (r¢,,,ae,p).
(Clearly, multiplying a,(B) by £, and 8,(B) by £, converts the conditional error proba-
bilities in T, to conditional risks.) The “no decision” region is the price that must be
paid to obtain a conditional frequentist interpretation for the optimal Bayes test. This

interpretation is developed in the following section.

A strict frequentist can also use T} , effectively. Suppose a frequentist was planning
to use the unconditional N — P test with critical value ¢ and error probabilities & = Fy(c)

and § =1 — Fi(c). This can be replaced by Ty« ,«, with

f=(1—a)/(1—f) and € =c/p"
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This test is the generalization of T;. It is straightforward to verify that Ty . still has ¢
as a critical value, and it does not have a “no decision” region. But instead of reporting
the unconditional a and 3, one now reports the conditional error probabilities a,+(B)
and f,+(B). Note that the choice of £* and p* is here just viewed as formalism; their

interpretation in terms of losses and priors is not necessary.

While we feel that use of T+ ,« is considerably better than use of the N — P test, some
of us hesitate to recommend its general use in practice because of the intuitive concerns
raised in Section 1.2 and prefer to allow a “no decision” region. This can clearly be left to

the personal taste of the practitioner, however.

2.3 Conditional Frequentist Interpretation of T,

Define
¥(s) = Fy Y(1 — pFy(s)) for 0 < s<rpp. (2.6)

Note that a¢,, = ¥(re,p). Define, for 0 < s <1y,
Xs = {z € X: B(z) = s or B(z) = ¢(s)},
and let Xp = {z € X: rg, < B(z) < a¢,p}. Then {X,: s € [0,ry,]} is a partition of X.

Under a “symmetry” condition to be defined in Section 3.1, this partition turns out
to be a “maximal ancillary” partition. An ancillary partition is a partition in which,
for each s, X, has the same probability (or density) under fy as under f;. The term
“maximal” means that no finer partition, among partitions based on the sufficient statistic
B(X), can be ancillary. In the nonsymmetric case, the above partition is not ancillary
and hence has no clear intrinsic justification; rather, it is extrinsically justified by yielding
error probabilities that are equal to the intuitively attractive and foundationally secure

posterior probabilities.

Theorem 1. For the test Ty , and the above partition, if s > 0 then
a(s) = Po(rejecting Ho|X,) = ap(B) = B/(p + B);

B(s) = Pi(accepting Ho|X;s) = B,(B) = p/(p + B).

Proof. Let f¥(-) denote the density of the (sufficient) statistic B(X) under f;, ¢ = 1,2. We
first show that

f5(b) = bfi'(b). (2.7)

9



To see this, observe that
b
| 5y = RoBx) <)
0

= / fo(z)dz
{z: B(z)<b)

-/ B(a)fi()ds
{z: B(=)<b)
b

= [Cusiwa,

the last step following from the change of variables y = B(x). Differentiating both sides
with respect to b establishes (2.7). Calculus also yields

Ly(s) = —p ()] F3 (). 29)

Applying first (2.8) and then (2.7) thus yields
a(s) = Po(rejecting|X,)

— BE/EE) + BBy

O HORTIHO!

= B/[B + p],
concluding the proof for a(s). The proof for A(s) is similar. O
2.4 Discussion of Ty,

As promised, the test T , simultaneously has a Bayesian and a frequentist justification,
with the decision and the reported risk (loss x error probability) being the same under
either paradigm. Of course, the interpretation of the risk (or error probability) will differ
for Bayesians and frequentists, but this will be irrelevant to practice. Indeed, those who
see merit in both the Bayesian and frequentist philosophies might be especially pleased in

the dual interpretation of the reported risk.

Strict frequentists might complain that, in operation, Ty , does not provide all needed
information. Frequentist dogma asserts that one cannot, say, only look at the Type I error
probability when rejecting, but must also look at Type II error. In the conditional frequen-

tist setting, this dogma would imply that both a(s) and B(s) must be reported, whether
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one rejects or accepts. The given procedure, Ty ,, only provides a(s) upon rejection, and

B(s) upon acceptance.

There are several possible replies to this concern. First of all, the map (2.6) is available
and could be used to compute the other error probability if really desired. In practice,
however, we suspect that this will not be done, primarily because it is almost impossible
to see how one should, say, use $(s) upon rejecting. Second, it can be argued that the
source of the frequentist dogma concerning the reporting of both error probabilities lies in
an attempt to intuitively compensate for not conditioning; such compensation is clearly
not needed for T ,. Finally, in the very important “symmetric” situation of Sections 3.1

and 4.2, we will see that a(s) = §(s) for all s, so that the issue does not then arise.

The major potential thorn in the use of Ty , is the presence of the “no decision” region
(re,p5ae,p). In a sense, this is the region over which one cannot force agreement between
Bayesians and frequentists. If this region is too large, then the utility of the test T} , is
reduced (although, recall that a frequentist who is less concerned about agreement with

Bayesians can just use T} or T+ 4, neither of which has a “no decision” region).

An encouraging fact is that it can be shown, in general, that, for any £ or any p, a
solution in the other variable can be found to
Te,p = ag,p = £p, (2.9)

in which case the “no decision” region is empty. It can also be shown that the solutions
to (2.9) in £ and p are inversely related. To investigate how large the “no decision” region

can be, consider the following example.

Ezample 8. Suppose Xy, ...,X, arei.i.d. exponential, with density f(z;|0) = 6! exp{—z;/6}
for z; > 0, and that it is desired to test Hy: 6 = 6y versus Hy: 0 = 6;, where 6y < 6.
Defining v = 6y/6; , it is immediate that

B =y""exp{—n(1 —7)z/6,},

which is monotonically decreasing in . Note that 0 < B < y~". Also, computation yields,

for the CDF of B under H;,

Fi(b) =1~ T(n, 17501, (2.10)
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1

where I'(n,t) = (1/T'(n)) f; y" ! exp{—y}dy is the incomplete Gamma function.

Consider, first, the effect of £, the loss ratio £;/¢y. For the special case n =1,
Fy(b) = (b7)/0"" and Fy(b) = (by)"/* 7.

From these and (2.4) and (2.5), r¢,, and ag¢, can be explicitly obtained. When p = 1
and v = % for instance (say, when testing Ho: 8 = 1 versus Hy: § = 2 with equal prior

probabilities),
rey = min{f,2(1 — £/2)?} and ap; = max{¢,2(1 — £/2)"/?}

if 0 < £ <2 when £ > 2, ry; = 0 and ag; = 2. (Note that the range of B here is
0 < B < 2.) These are plotted in Figure 1(a).

3 3
2 2 a
a
.24 1.258
r r
l l
0 1.24 2 3 0 1.258 2 3
(a)n=1 (b) n =00

Figure 1. The “no decision” region, as a function of ¢, for testing Hy: 6 = 1 versus

Hy: 6 = 2 under equal prior probabilities.

From Figure 1(a), it is apparent that £ can have a dramatic effect. First of all, unless
0 < £ < 2, the “no decision” region is the entire space. And for £ small or near 2, the “no
decision” region is most of the space. Note that, at £ = VB —1221.24, the “no decision”
region is empty. The resulting test, T7.24,1 is thus the test T; defined in Section 1.1, and
could beneficially be used by a frequentist instead of the minimax test (which has critical

value B = 1.24).
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Turning to large n, three cases can be distinguished. Technical details are given in

the Appendix.

Case 1. p>1: Then, as n — oo, ag, = £p and

rep = exp{(1= 7™ ~log I+ (1~ 7 zamp-y Vi + 5 (Faoprty ~ D}A+0(D)), (211)

where z, denotes the a® quantile of the standard normal distribution. Note that (1 —
7~1 —logv) < 0 (recall that 0 < v < 1), so that r; , decreases to zero exponentially fast

as n — 0.

Case 2. p < 1: Then, as n — oo, r¢,, = £p and

atp = exp{(y— 1 —log )+ (v~ Dlepvi + 5(2 ~ DA +oV).  (212)

Note that (y —1 —logy) > 0 (for 0 < v < 1), so that a, increases to co exponentially

fast as n — oo.
Case $A. p=1, £> —(1 + g(7)): Here
9(7) = (1 —7)(log7)/(1 — v+ 7vlog). (2.13)
Then, as n — 00, ag1 =¥, and
req = L—£/(1 + g(7))]* D + o(2). (2.14)

If v = 1/2, then the condition on £ is £ > 1.258, and ry; = (1.679)£(~1-258), Note that, if
£ = 1.258, then the “no decision” region is (asymptotically) empty.

Case $B. p=1,£ < —(1+ g(y)): Then rg; = £ and, as n — oo,
ag1 = £[—£/(1+g(y)]7# P/ 0H) 4 o(1). (2.15)

If v = 1/2, then ap; = (1.510)£(~7%%). For the “objective” choice £ = 1, note that this
asymptotic “no decision” region of (1,1.510) is quite close to the corresponding region
(1,/2) when n = 1, seemingly indicating a stability of the “no decision” region with

respect to sample size (in this case).
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Discussion of Ezample 3: When p # 1, (2.11) and (2.12) show that the “no decision”
region grows enormously as n — oo. Furthermore, it can be shown in Cases 1 and 2,

respectively, that, as n — oo,
Py, (“no decision”) — 1 — p~!, Py (“no decision”) — 1 — p.

Hence the “no decision” region is even nonnegligible probabilistically.

The story is very different when p = 1. Then (2.14) and (2.15) show that 1 and as;
stay bounded. Indeed, as shown in Figure 1(b) for the case v = 1/2, the “no decision”
region for n = oo is remarkably similar to that for n = 1, unless £ is extreme. And the
probabilities of the “no decision” region under 6y and 6, go to zero exponentially fast as

n — o0.

While generalization from a single example is hazardous, we expect the above pattern
to hold for other distributions. Thus, for large n and p # 1, the “no decision” region
might be too large to make T}, , attractive. But for p = 1 (which, of course, is the natural
“balanced” or “noninformative” assumption) we expect the “no decision” region to be

small, even for large sample sizes.

From a theoretical perspective, there are various oddities here. Perhaps the most
interesting is that the loss ratio, £, and prior odds ratio, p, have very different effects, in
contrast to usual Bayesian reasoning. Selecting p = 1 seems to be important, while £ =1

has no special effect.
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3. SYMMETRY AND OPTIMALITY

3.1 Likelihood Ratio Symmetry

A particularly attractive situation arises when the following is satisfied:

LRS Property: The testing problem is said to possess likelihood ratio symmeiry if
fo(X)/ f1(X) has the same distribution under fy as f1(X)/fo(X) has under f;.

Ezample 4. If X = (X4,...,X,) arises from a coordinatewise symmetric location density
f(z)|60) = g(|lz1 —6,...,|zn — 0]), and it is desired to test Hy: 8 = 8y versus H;: 6 = 6,
then it is straightforward to show that the LRS Property holds.

One benefit from the LRS Property is indicated in the following lemma.

Lemma 1. If the LRS Property holds, then Fo(1) = 1 — Fy(1); hence the “no-decision”
region for the test TY* in Section 1.2 i3 empty and a = r = 1. (Clearly, Ty is then equivalent
to Tl)

Proof. Clearly
Fo(b) =P (B<b)=Pi(1/B<Lb) =P (1/6<B)=1-F(1/b).

Setting b = 1 yields the result. O

Thus, under the LRS Property, the Bayesian (with p = 1 and £ = 1) and the condi-
tional frequentist using T} always report identical numbers. This was noticed by Kiefer
(1977), who seemed quite happy with T} in this case, in part because it also then corre-

sponds with his “equal probability continuum” procedure (see Section 2.1).
3.2 Optimality

Consider the general conditional frequentist testing scenario defined in Section 2.1.
Any partition {X,s: s € S} of X corresponds to a possible conditional frequentist test, T'.
A natural question to ask (from a frequentist perspective) is whether an optimal T (i.e.,

optimal partition) exists.

Brown (1978) studied this problem, and proposed the following approach for simple

versus simple hypothesis testing. Let h(-) be a nondecreasing, convex function (e.g., h(v) =
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v?), and define the B-utility of a conditional frequentist test T' to be the pair (Ur(0), Ur(1)),

where
Ur(i) = Eg; [h(1 — max{ar(s), Br(s)})],
with ar(s) and Br(s) being the conditional error probabilities defined in (2.1) and (2.2).

It is desirable to have the Ur(¢) large, because of the following two points:

(i) Since h is nondecreasing, reducing both conditional error probabilities (clearly desir-

able) will cause the Ur(z) to increase;

(ii) Since h is convex, making the conditional error probabilities more variable in s will
cause the Ur(7) to increase; variability in ar(s) and Br(s) is desirable, because it

allows for reflection of varying evidentiary strength for different data.

As an illustration of this last point, the following lemma shows that, under the LRS
Property, the conditional frequentist test T is superior to the classical Neyman-Pearson

test with equal error probabilities.

Lemma 2. Suppose the LRS Property holds, and let Ty denote the classical Neyman-
Pearson test with rejection region {B < 1}. Then

Ur,(?) > Ur,(3), ¢:=0,1,
with strict inequality if h i3 strictly conves.

Proof. The LRS Property implies that at,(B) = fr,(B), and art, = f1,. Thus Jensen’s

inequality yields
Ur, (i) = Ef[h(1 - a1,(B))]

> h(1 - Eflar,(B))
= h(l — art,) (using (2.3))
= UTo(i)a

with strict inequality if A is strictly convex. O

It is, furthermore, clear that the same reasoning applies to any other symmetric con-

ditional frequentist test, i.e., any test for which each X is defined as
Xs={z € X: B(z) € A, or 1/B(z) € A,},
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for some set A;. If ar(-) for such a test differs from ar,(-) with positive probability and
h is strictly convex, then Ur, (3) > Ur(¢).

Being “best” among all symmetric conditional tests is quite compelling, but Brown
(1978) also establishes two optimality properties of T; (under the LRS Property) among all
conditional frequentist tests. First, he shows that T is the unique test that is U-admaissible
for all h; thus, for any other test, T*, one can find a nondecreasing convex h and another

test T** such that Ure«(¢) > Ur+(2), with strict inequality for s = 0 or 1.

The second global property that Brown establishes is that T} is the unique test that

is totally mazimin, i.e., for which
min{Ur, (0),Ur, (1)} = Slq{Pmin{UT(O), Ur(1)}

holds for all nondecreasing convex h. (Brown’s uniqueness result applies because, here,

B(X) is assumed to have a nonatomic distribution.)

Brown further suggests that, among monotone procedures, Tj is probably strictly op-
timal (i.e., minimizes both Ur(0) and Ur(1)). These optimality results are all particularly
compelling because of the great generality allowed in choice of . The bottom line is that,
using reasonable frequentist criteria alone, T} appears to be best, in a variety of ways,
among all valid (conditional) frequentist tests, at least when the LRS Property holds. It
does not seem to be possible to establish such strong optimality of T} if the LRS Property

does not hold, but T} undoubtedly remains admissible and reasonable even then.
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4. SEQUENTIAL TESTS

4.1 The General Conditional Sequential Test

Suppose X = (X1, X3,...)is a sequential sample and that it is desired to test Hp: X ~
fo versus Hy: X ~ f;. By this we mean that, for i = 0,1, f; = {fi1, fi2,...} with
X =(Xy,...,X,) having density f; ,(z(™) for n > 1. Define

By = fo,n(z™)/f1,n(z™); (4.1)
let N denote the stopping time of the sequential experiment (a proper stopping rule being

assumed); and let Fj(-) be the c.d.f. of By under f;,i =0,1.

The situation is slightly more complicated than that discussed previously in the paper,

because Fj; is typically not invertible. Usually, however, the following is satisfied:

Condition S: The stopping rule is such that By ¢ (R, A), where R < 1 < A; the rejection
and acceptance regions are {By < R}, {Bn > A}, respectively; and, for ¢ = 0,1, F;(b) is
invertible for b ¢ (R, A), with F;(R) = F;(A).

Ezample 5. The Sequential Probability Ratio Test: The famous Wald SPRT is defined by
if Bn, < R, stop sampling, reject Hy, and report error probability & = Py(By < R);
if B, > A, stop sampling, accept Hy, and report error probability 8 = P,(By > A).

It is immediate that By ¢ (R, A), and that the rejection and acceptance regions are as
stated in Condition S. (Note that stopping and rejecting or accepting when {B, < R}
or {B, > A} is considerably stronger than the Condition S assumption {By < R} and
{BN > A}; the former actually states that one stops and rejects or accepts upon crossing
R or A, while the latter only states that, if one happens to stop and has crossed R or A,

then one must reject or accept, respectively). It is virtually always the case that R< 1< A

for the SPRT.

Under Condition S, the appropriate generalization of T} in Section 1.2 is defined as

is Ty but with B(z) replaced by By and r and a defined by

r=R and a=F;1(1-Fi(A) if F(R)<1-F(A);
r=F'(1-Fy(R)) and a=A if Fy(R) > 1— Fi(A).
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It is straightforward to show that the conditional frequentist interpretation of this test is
still valid. Note, however, that this generalized T} does not specify the stopping rule; it

merely gives the conclusion to report, upon stopping.

There are two difficulties with Ty. First, computing Fy ! or Fj ! can be quite chal-
lenging in sequential settings. Second, it is somewhat troubling if the “no decision” region
(r,a) is larger than the initial (R, A), since the latter is often, in a sense, constructed to

be the desired “no decision” region.

These difficulties disappear and, indeed, turn into a delightful advantage if the stop-

ping rule is chosen so that

Fo(R) = 1 — Fi(A). (4.2)

This is equivalent to the condition that the classical sequential test is constructed to have

equal error probabilities, @« = . Then the conditional frequentist test can be written:

if By < R, reject Hy and report the conditional error probability a(By) = Bn/(1+ Bn);

if By > A, accept Hy and report the conditional error probability 8(Bx) = 1/(1 + By).
(4.3)

This is the analogue of the test T} defined in Section 1.1. Again note, however, that this

does not specify when to stop, just what to do upon stopping.

It is of considerable interest that the conditional error probabilities are available ex-
plicitly here, while classical (unconditional) error probabilities are typically very hard to
compute. Even for the SPRT, computation of & and § usually requires difficult analysis
of the “overshoot,” the amount by which By overshoots R or A (cf., Siegmund, 1985).
The conditional error probabilities are not only trivially computable, but, interestingly,
incorporate the overshoot into the error statement; the more the overshoot, the less the

stated error.

4.2 Symmetric Sequential Tests

In Section 4.1, it was assumed that stopping is governed by a stopping rule separate

from T7. In this section we explore the extent to which that assumption can be relaxed.
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We will consider the situation in which X3, X5,... arise as i.i.d. observations from
fo(zi) or fi(zi), with Y; = fo(X;)/ f1(X;) having the LRS property (i.e., the distribution
of Y; under fy is the same as that of 1/Y; under f;). We also assume that the stopping

rule 7 = {71, 72,...} depends only on Y;,Y,... and is symmetric in the sense that
i(Y1,...,Y;)=7n(1/1,...,1/Y)) (44)

for all : > 1. (As usual, 7; gives the probability, typically zero or one, of stopping sampling
upon observing Y3, ...,Y;. More general stopping rules involving other chance mechanisms
could be allowed, so long as they are “noninformative” — see Berger and Wolpert, 1988,

for definition — but the generality here suffices to make the basic point.)

Ezample 6. A common class of symmetric stopping rules is given by

1 (i.e., stop) if | 3 log¥i| > g(n)

Ta(Y1,...,Yn) = =1
0 (i.e., continue) if | 3 logY;| < g(n),

=1

where g(n) is any arbitrary function for which 7 is a proper stopping rule (i.e., is guar-
anteed to eventually result in “stop”). The SPRT with symmetric boundaries, 4 = R™!,
corresponds to g(n) = log A.

For this symmetric situation, it is straightforward to verify that (4.2) holds, so that
(4.3) defines T7; note that it is not even necessary here to explicitly calculate the quantities
in (4.2). That (4.3) defines a valid conditional frequentist test, in this situation, was
already recognized by Kiefer (1977). Finally, note that if 7 is restricted to be as above
(i.e., depends only on the Bayes factors B, = iﬁlyi)’ then Brown (1978) applies and
shows that T} in (4.3) defines the “optimal” conditional frequentist test. To understand

the practical ramifications of this situation, consider the following example.

Ezample 7. A sequential experiment is conducted involving i.i.d. M (6,1) data for testing
Hy: 8 = 0 versus Hy: 6 = 1 under a symmetric stopping rule (or at least a rule for
which & = ). Supose the report states that sampling stopped after 20 observations, with
Zyo = 0.7. One can then “replace” whatever sequential test was used by T} in (4.3).
Computing

Byo = T [£(z:10)/ f(zil1)] = exp{~20(z20 - %)} — 0.018,
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it follows that your conclusion should be to reject Hy, with associated conditional error
probability a(Bag) = Bao/(1 + Bzo) = 0.018. This will be a “better” conclusion than
that reached in the study (unless they also used T7*). Note that you do not need to
explicitly know the stopping rule used in order to perform the optimal analysis. This is
quite attractive in practice because, all too often, the exact stopping rule is incompletely
specified and, perhaps, even incompletely known to the experimenters! For instance, if
the experimenters had not prespecified the stopping rule, but simply monitored the data
stream and stopped when they wished, analysis with T}* would still be possible (under the

weak assumption of symmetry).

The ramifications for sequential testing of simple hypotheses are profound. First, it
appears to be possible to avoid the typically difficult classical computations involving the
stopping rule. Second, and more importantly, it seems that pre-experimental analysis can
be avoided; one can simply start collecting data and stop whenever one desires, as long as
Ty is then employed. This last fact strongly refutes the usual frequentist argument against
the Stopping Rule Principle, the argument which asserts that allowing one to monitor the

data stream and arbitrarily stop allows a “biasing” of the result.

It is interesting to consider why the stopping rule “disappears” here. If we were to
actually compute the conditioning partitions, X, corresponding to 77", we would indeed
need to know the stopping rule. But since we will choose the partitions which guarantee

a(B,) and §(By) as the conditional error probabilities, there is no need to actually compute
the X,.

6. CONCLUSIONS AND GENERALIZATION

For the simple versus simple testing problem, we feel that the procedures proposed
in this paper should become standard statistical practice. They are easy to understand,
interpret, and use (the sequential versions, for instance, often being much easier than, say,
the SPRT); they are correct from Bayesian and likelihood perspectives; and they are valid

(and often optimal) frequentist procedures.

A second conclusion from the paper is foundational: frequentist theory, itself, seems
to suggest that optimal conditional frequentist procedures will ignore the stopping rule in

sequential experimentation. At the very least, the classical argument against the Stopping
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Rule Principle is dramatically weakened by the results here.

While the testing of simple hypotheses is often considered as a “practical” approxima-
tion in sequential settings, it is admittedly very specialized. From a Bayesian perspective,
however, any problem of testing Ho: X has density fo(z|6) versus Hy: X has density
f1(z|61), where 6y and/or 6; are unknown, can be reduced to simple versus simple testing:

the Bayes factor of Hy to H; is
B(z) = mo(z)/ma(z)
= [ foCeléyma(as)/ [ fulelorym(aer),

where m; is the prior distribution of 8;, i = 0,1, so that a Bayesian is implicitly testing
Ho: X has density mg versus Hqi: X has density my. As the latter test is simple versus
simple, T and/or T} can be applied. The key question, however, is whether or not these
tests can be given a satisfactory (conditional) frequentist interpretation in the original

problem.

If Hy is simple (i.e., 6y is absent or, equivalently, assumes a specific value), then the
answer is — yes! The conditional type I error probability is precisely the posterior prob-
ability of Ho (assuming equal prior probabilities of the hypotheses), while the conditional
type II error probability (which for Ty or T} is, of course, the posterior probability of H;),
has an interpretation as a (posterior) expected frequentist type II error. Clarification and
discussion of this idea will be presented elsewhere, but the preliminary indication is that
Bayesian and frequentist testing may be generally compatible; the severe conflicts that
have, in the past, been observed between the two are, perhaps, simply due to use of an

inferior frequentist test, namely the unconditional test.

It is of interest that the “better” conditional frequentist tests will (in the cdmposite
hypothesis case) depend on the prior distributions assigned to the unknown parameters
of the composite hypotheses. Robust Bayesian theory can perhaps provide conditional
frequentist tests that are guaranteed to be better than the unconditional tests, but the
preliminary indication for composite hypotheses is that some utilization of prior informa-
tion will be necessary in defining good (conditional) frequentist tests. Note, however, that
this use of prior information will probably be no more severe than is the customary use of

prior information in selecting power levels for unconditional frequentist testing,.
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APPENDIX: TECHNICAL DETAILS FOR EXAMPLE 3
Lemma 3. For the incomplete Gamma function I'(n,t), the following hold:

(i) If c# 1, then as n — oo

In,on +d+o(1)) = 16,my(@) + (e~ Z2EE =D 1401 (A1)
(i) If, as n — oo, .
L(nsta) =&+ o( =) (A2)
for 0 < ¢ < 1, then .
ta =n+2¢ev/n+ g(zf —1)+ o(1). (A3)

Proof. First consider ¢ > 1 in part (i). A valid expansion of I'(n, ) is

(n;1)+(n—lzgn—2)+_“].

1
I"(n,t) =1- 'm—)t(n_l)c—t[]. +

Setting t, = cn + d + o(1), it is straightforward to show that

(n-1) (n—-1)n—-2) 1 1 _c
I+ = t2, LR Rand b e
Approximating I'(n) by Stirling’s formula then yields
(cn + d+ o(1))n—1 e—(cn+d+o(1))c
I'(n,t,)=1- 1)).
(n, ) e—nn(n—1/2)\/2_7r(c _ 1) (1 + O( ))
Clearly
n—1
(Cn + dn'i‘:)l(]-)) — cn—l(l + d‘|'c:t(1) )n—l — cn—led/c(l + 0(1)),

from which the result follows. The proof of part (i) for ¢ < 1 is similar, but now uses the

expansion
oo

T(n,t) =e™* ) tF/kL

k=n

Details are omitted.
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To prove part (ii), we use the fact that I'(n,t) = F(2¢|2n), where F(:|v) is the c.d.f.

of the chi-squared distribution with v degrees of freedom. Thus (A2) can be rewritten
F(2ta]2n) = £ + O(%) =t
But, as n — oo, the £&* quantile of the chi-squared (2n) distribution is
Xg,. =2n+ 2, Van + g(zgn —1)+o(1)
= 2n + z¢Vdn + —g-(zg ~ 1) +o(1).
This directly yields (A3). O

From (2.10), observe that
Fo(8p) =1—-T(n,con + do), Fi(€p) =1—T(n,c1n +dy), (A4)

where
—logy , _ —log(¢p)

(1—7) (1-7)
Since 0 < 4 < 1, it can be shown that ¢ > 1 and 0 < ¢; < 1. It is then immediate, from

(A1) and the fact that cexp{1l — ¢} < 1 for ¢ # 1, that

, €1 = 7Co, d1 = vdy. (A5)

Fo(tp) = o(—\/%) and Fi(fp) =1— o(%). (A6)

Verification of (2.11) and (2.12):

Consider, first, the case p > 1. It is clear from (A6) that Fy(€p) > 1 — pFy(£p) for
large n. Hence (see (2.5)), a¢,p = £p and

Filreg) = 511= Fotp)] = 5 +o(72).

This can be rewritten as

vlog(re,p) 1 1
F(n,ean ————*)=1— -4 o(—=).
(e =220y o TR
Hence, (A3) yields
log(re, 1
cn — 7(?(7),)) =n+ z(l—l/p)\/ﬁ-l_ 5(2(21__1/”) - 1) + 0(1).
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Solving for rg , yields (2.11). The derivation of (2.12) for p < 1 is similar. O

Verification of (2.14) and (2.15):

Since p = 1, the inequality defining applicability of (2.4) or (2.5) is Fo(£) > 1 — Fy(¥).
Using (A1), (A4), and (A5), this condition will be satisfied as n — oo only if £ > —(14+g(v))
(see (2.13)). From (2.5), we then know that a¢; = £ and Fy(re;1) = 1 — Fy(£), which can
be rewritten, using (2.10) and (A4), as

T(n, cin — 22881y _ pen com + do). (A7)
(1-=7)
The solution to this equation is given in (2.14). To show this, note that then

log(re,1) = log(£[~£/(1 + g(v)I*") + (1),

so that (Al) can be applied to both sides of (A7); algebra then verifies their equality.

If£ < —(1+49(¥)), (2.4) applies. Thus rg; = £, and an argument similar to that above
verifies (2.15).
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