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Abstract

A common approach to the problem of estimating survival probabilities from
censored data is to construct confidence limits using Kaplan-Meier’s estimator
and Greenwood’s formula via a normal approximation. However, this method
is not satisfactory for small samples and has a drawback that it often produces
intervals that contain values less than zero or greater than one. Thomas and
Grunkemeier (1975) proposed an alternative approach which uses a nonpara-
metric likelihood ratio function to derive interval estimates. Their procedure
always yields confidence limits between 0 and 1, and the resulting intervals were
shown to have better coverage probabilities by some simulation studies. Heuris-
tic arguments have been used in the literature to support this procedure. In this
note we give a rigorous justification for the Thomas and Grunkemeier method.

Keywords and phrases: censoring; Kaplan-Meier’s estimator; nonparametric likelihood
ratio; survival probability.



1 Introduction and Summary

Let Xi,...,X, be n independent positive random variables with a common unknown
survival function S(t) = P(X; > t) and Yj,...,Y, be n independent positive random
variables with a common unknown survival function G(t) = P(Y; > t). Assume that
the X’s and Y’s are independent. A randomly censored data set consists of n i.i.d.
pairs (Z1,61),...,(Zn,6,) where Z; = min{X;,Y;} and §; = I(X; < Y;) fori = 1,...,n.
In the context of survival analysis, X; and Y; usually refer to the life time and censoring
time of the ith individual under study respectively. For example, X and Y may denote
age at death and age at the end of study respectively. An important problem in survival
analysis is to find confidence interval estimates for S(a) (@ > 0 is fixed), the proportion
of subjects in the population whose life time would exceed a, on the basis of randomly
censored observations.

A common approach to this problem is to construct confidence limits using Kaplan-
Meier’s (1958) estimator and “Greenwood’s Formula” via a normal approximation.
Kaplan-Meier’s estimator of the survival function S may be derived by considering the
likelihood function

L(8) = [1[s(2~) - 5(2)] T 5(2) (L)
where the two products are taken over uncensored and censored individuals respec-
tively. Let there be k distinct observed uncensored survival times 0 =Ty < Ty < ... <
Ty < Tip41 = oo. Denote by r; and d; the number of subjects that are at risk and the
number of deaths occurred at time T respectively (ro = n, rg41 =0, and dp = 0). It
was shown by Kaplan and Meier (1958) that a maximizer of the likelihood function
in (1.1) must have support {T3,...,Tx}, and for such S
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where the first equality is from the facts that S(Z;) = S(Tj) for Z; € [T},Tj+1) and
that r; —r;41 — d; is the number of censored observations in the interval [T}, Tj+1), and
the third equality follows from S(Tp) = S(0) = 1 and 744y = 0. Therefore

L(S) = ﬁ 3 (1 — hy)i% (1.2)

where h; =1 — S(1})/S(Tj-1) for j = 1,...,k. It is important to note that S(T}) =
[Tic;(1 — hs), by solving for S(T;), j = 1,...,k, recursively. Kaplan-Meier’s estimator



Sy of S is defined to be a maximizer of (1.2) and is given by

K(t)

S(t)= J[(1 =4;), 0<t<oo, (1.3)
j=1
where ]Azj =d;/rjfor j =1,...,k and K(¢) denotes the number of distinct uncensored

observations on the time interval [0,%]. Kaplan-Meier’s estimator of G is defined in a
symmetric way. It is well known that under mild conditions (see e.g. Theorem 4.2.2 of

Gill (1980))

n2{S,(a) — S(a)} = N(0,{S(a)}?s?) asn — oo,

where

/ S(u)S ——)G u—) (14)

can be consistently estimated by

K(a) d;

' =2

o ri(ri—di)

(We note that 62 may be obtained by replacing S and G with their Kaplan-Meier’s
estimators in (1.4) respectively and the formula in (1.5) is usually referred to as “Green-
wood’s Formula”.) One can therefore construct confidence intervals using

_ n3{Su(a) — S(a)}
2= Ewre (16)

which has a standard normal limiting distribution.

Thomas and Grunkemeier (1975) pointed out that interval estimates obtained
from (1.6) are not satisfactory for small samples and have a drawback that they may
contain values less than zero or greater than one. They proposed an alternative ap-
proach that uses a nonparametric likelihood ratio function to set confidence limits. To
describe the Thomas and Grunkemeier procedure, we restrict our attention to survival
functions that have finite support on T3,...,T}, i.e. S € S,. Foreach p, 0 < p < 1,
define a nonparametric likelihood ratio function

sup{L(5)|S(a) = p and S <« S,,}
(5. (1.7)

where S, is the Kaplan-Meier estimator defined by (1.3) and L is the likelihood function
defined by (1.2). More explicitly,

(1.5)

R(p) =

K(a)
swn{ 11450 - 4| TT -4 = 2}
R(p) = : A = (18)
Ul Tj—dJ



where hAj =dj/rj for j =1,...,k. Thomas and Grunkemeier (1975) suggested that

{p: —2In R(p) < xi(a)} (1.9)

be a confidence set for S(a) of approximate level a, where x?(«) is the (1—a)™ quantile
of the chi-square distribution with one degree of freedom. They further showed that
the set produced by (1.9) is always a closed interval and never include values outside
[0,1]. Their simulation results also indicate that, for small sample sizes, (1.9) has
better coverage probability than that obtained from (1.6). These properties make the
nonparametric likelihood ratio method very appealing.

In their paper, Thomas and Grunkemeier (1975) only used heuristic arguments to
support their procedure. An informal derivation is also given in Section 4.3 of Cox and
Oakes (1984). Since this nonparametric likelihood ratio method has nice properties
and seems to be the one that should be recommended in practice, it is desirable to
have a theoretical justification for it. To our knowledge, there has not been one in the
literature. The purpose of this short note is to provide a rigorous justification for the
Thomas and Grunkemeier (1975) method. We prove the following.

Theorem 1 Assume that S is continuous, 0 < S(a) < 1, and G(a) > 0. Then, for
p=5(a),

—21n R(p) - X2 asn— oo,

where x3 is a random variable having the chi-square distribution with one degree of
freedom.

It is clear from Theorem 1 that the likelihood ratio set given by (1.9) consists of all
values p for which the null hypothesis Hy : S(a) = p is rejected by a likelihood ratio
test at the significance level a. One may also interpret the set given by (1.9) from
another perspective. Define

C(r) = {S(a)|$ < S, and f((i )) >r}. (1.10)

Noticing the fact that R(p) = sup {L(S’)/L(Sn)|5(a) =pand § K Sn}, it is not hard
to see that
p € C(r) if and only if R(p) > r.

Therefore
{p: —2InR(p) < x}(@)}=C(r) for r= exp{ — %Xf(a)}.

If we think of the likelihood ratio L(S,)/L(S) as a “distance” between S, and S, then
C(r) has an intuitive interpretation that it consists of the survival probabilities S(a)
for all distributions that have finite support on the uncensored observations and fall
inside a “neighborhood” of the Kaplan-Meier estimator S,,.

The first rigorous treatment of nonparametric likelihood ratio methods is due to
Owen (1990) and the literature on this topic has grown rapidly in recent years. Owen
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(1990) studied the problem of estimating the expected value of a random vector and
some of its “smooth” functions using an empirical likelihood ratio function under the
classical i.i.d. setting. His results have been further extended to deal with problems
arising from more general models such as linear regression, generalized linear regression,
and projection pursuit. Refer to Owen (1990, 1991, 1992), DiCiccio et al (1991), Hall
(1990), and Kolaczyk (1992) for more discussions on these topics.

In Section 2 we give a proof of Theorem 1. Details on the computation of confidence
limits are reviewed in the last section. One may wonder whether Theorem 1 can be
easily proved by making cosmetic changes in existing works, for example, the proof of
Theorem 1 of Owen (1990). This is not the case. It is seen that calculation of the
likelihood ratio defined in (1.8) involves a constrained optimization problem which can
be solved using the Lagrangian multiplier principle. Because the constraint is different,
it distinguishes this problem from others. As one will see in Section 2, a crucial step
in proving Theorem 1 is to establish the asymptotic rate of a Lagrangian multiplier A,
determined by (2.2). We note that the asymptotic rate of the Lagrangian multiplier
in Owen (1990) is O,(n"/2) (see (2.14) on page 101 of Owen (1990)). In the current
situation, the different nature of constraints leads to a rate of O,(n'/?) (see Lemma 1).
A different derivation is required and it uses the nontrivial weak convergence results
of the Nelson-Aalen estimator for the cumulative hazard function and that of the
Kaplan-Meier estimator. Finally we note that the order of O,(n!/?) occurs in many
situations when one is interested in estimating survival probabilities. See Li (1993) for
a discussion of nonparametric likelihood ratio estimation for randomly truncated data.

2 Proof of Theorem 1

The proof involves several steps. We first show that R(p) is well defined by (1.8) for
0 < p < 1. As a consequence an explicit expression of —21n R(p) is given. Then in
Lemma 1 we obtain the asymptotic rate of the Lagrangian multiplier A, determined
by (2.2). This result is needed in order to make Taylor expansions for —21n R(p).
Finally we derive the asymptotic distribution of —21In R(p) using Taylor expansions
and some weak convergence results related to Kaplan-Meier’s estimator.

To show that R(p) is well defined by (1.8), we begin with a known result on the
following constrained maximization problem:

(P) : maximize f(z) subject to g(x) = b and & € X C R,

where f and g are scalar-valued functions defined on the k-dimensional Euclidean space
R*, X is a subset of R*, and b is a constant.

Proposition 2.1 Suppose that a real number X can be found such that a value maxzi-
mizing f(z) + Ag(x) in X, say &*, satisfies g(*) = b. Then &* is a solution for the
constrained mazimization problem (P).

Proof This is a special case of the first part of Theorem (3.1) of Whittle (1971).



Note that, for 0 < p < 1, R(p) is well defined by (1.8) if the constrained maximiza-
tion problem

k
(P1):  maximize L(S) = [ h?j(l — b))

J=1
subject to constraints
K(a)
[I(0—%))=p and 0<h;<1 for j=1,...,n
i=1

has an unique solution.

Recall that r; is the number of subjects that are at risk at time 7; and d; is the
number of uncensored deaths occurred at time T}, j = 1,...,k. This implies that
ris1 — djy1 S i Sy —dj, j =1,...,k, and maxici<k(@{d; — i} = dr(a) — TK(0)-
Therefore for any A > dg(a) — rk(a), 75+ A > dj for j =1,...,K(a) and

k K(a)
In ( 1A - hj)”"d") +Aln ( T1a- hj)>
Jj=1 =1
K(a) i k .
= In ( II »7(1- hj)(”“)_d’) +In ( I »¥a- hj)r:'—fb‘)
j=1

K(a)+1

is maximized at h(A) = (h1(}X), ..., he(})), where

d; )
rj_—|J-X forj=1,...,K(a)
,.—j' for j = K(a)+1,...,k

h]()\) = (2.1)

are between 0 and 1.

Moreover, if we define g(A) = Hf___(f){l —d;/(r;j+A)}, then g(A) is strictly increasing
in A and has the properties that lim,\_,dK(a)_TK(a) g(A) = 0 and that limy_,. g(A) = 1.
Thus the equation

K(a) d;
1-— >= 2.2
1 (1-5)=» 22)

has an unique solution, say A, on the interval (dx(s) — rk(a), 90)-
So we have proved that h(\,) = (hi(An),..., he(An)) defined by (2.1) and (2.2)

maximizes

k K(a)
In (1‘[ B (1 — h,-)”'"df) +Anln ( I[a- hj)>
7=1 ji=1
and satisfies
K(a)
[T{1-r;X)}=p and 0<hj(\) <l for j=1,...,K(a) (2.3)
7=1



This, together with Proposition 2.1 and the uniqueness of )., implies that (P1) has
an unique solution h(\,) given by (2.1) and (2.2). We also have

K(a) A
—2In R(p) = -2 Y {(rj — dj)In (1 + ==
j=1

) —riln (14 %)} (2.4)

ri —d; b

where ), is uniquely determined by (2.2).

To obtain the limiting distribution of —21In R(p), we shall need to make Taylor
expansions for the expressions in (2.4). This requires the knowledge of the asymptotic
behavior of A,. The following lemma establishes the asymptotic rate of A, as n — oo.

Lemma 1 If the assumptions of Theorem 1 hold, then A, = O,(n'/?) as n — co.

Proof We first state some asymptotic results related to Kaplan-Meier’s estimator,
which will be needed later in the proof. Recall that the cumulative hazard function of
X is defined to be A(t) = — [7{S(s—)}"'dS(s), t > 0, and that A = —In S when S
is continuous. A can be estimated by the Nelson-Aalen estimator (see e.g. page 92 of
Fleming and Harrington (1991)) that can be written as

K@) 4.
Aut)=> 2.
j=1 T
Under the assumptions of Theorem 1 (see e.g. Theorem 4.2.2 of Gill (1980))
ni{4n(a) - (~Inp)} 5 N(0,0%) (2:5)
and

n3{S.(a) — p} - N(0,{S(a)}?¢?),

where o2 is defined by (1.4). Furthermore, the 62 defined in (1.5) converges to o in
probability. An application of §-method also gives

n?{ln S,(a) — lnp} —* N(0,0?). (2.6)

Now we derive the asymptotic rate of A,. Recall that for each sample realization
An is the unique solution of (2.2) on the interval (dk(q) — 'k (a), 0). We shall obtain an
upper bound for A, under each of the two possible cases dx(q) — rk(s) < An < 0 and
An 2 0 separately. (Note that we shall only have the latter case if dg(y) — rx(s) = 0.)

If dx(a) — TK(e) < An < 0, then |A,| < rg) < nand 0 < d;/(r; + An) < 1 for
1 =1,...,K(a) since dx(a) — TK(a) = MaXi<j<k(a){d; — rj}. Because

—In(l—z)>z for0<z<]1,



we have

This implies that

If A, >0, then

In (1

v

An| <

K(a)

j=1

K(a) d;

d:
_Zln(l—er:An)

Ko 4
> ()
K(a)

> (9)(

Jj=1 T.’i

Z Tj+/\n

r
Tj “J|)‘n|)

n—nl )

nl

)

An(a)(n — [ An] .

n{—Inp— A.(a)}

—Inp

d;

d
r; '*'J)‘n)

d;\ = d;
i + An _>_1n( __J)—I__J-’

(2.7)

since In(1 — z) 4+ z is decreasing on the interval (0,1) and d;/(r; + A,) < d;/r; for

J=1,...,K(a). Thus

lnp

which implies that

v

) +In Sa(a) + An(a)

) +1n S(a) + An(a),

d.
In(1-— J
‘; o ( ’I"j + An)
K(a) ;
- +1n
; { T + An
K@) 4 r
_ ] j
; (TJ)(T +|An|) +1n Sa(a) + An(a)
K 4. n
_ hat 2 Y B
_An(a)(n+ ol
| < n{ln S,.(a) — ln p}

An(a) +1nSy(a) —Inp’

Therefore, A, = O,(n'/?) follows from (2.5)-(2.8).
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Now we proceed to prove Theorem 1.

Proof of Theorem 1
We first show that

4 -
)\n=( -——) InS,(a) —Inp+ O,(n72)). 2.9
iz ri(ri —dj) (@) o) (29)

By the Glivenko-Cantelli Theorem, r; = Yiv, I[(Z; > T;) = Op(n) uniformly in
j=1,... .k

Since S is continuous, the probability that there is no tie among Xi,..., X, is 1.
Thus d;j = O,(1) uniformly in j = 1,...,k.

Observe that K(a) = Yr, I(Z; < a,6; = 1) with probability 1. Thus K(a) = O,(n)
by the Law of Large Numbers.

Hence, \,/r; = Op(n~'/?) and d;/r; = O,(1/n) uniformly in j = 1,..., %, and

K(a)
Inp = Zln(l—— i)‘n)

- zm{l—(‘-’-)( jg}
An

K(a) d
= Zln{l——(l—r—+0p( ))}
K(a) d:  d:)\, 1
= Z:ln{l—r—;-i- J? +0,,(ﬁ)}
K(a) K(a) 9%2 +0,(%)
= 1 1——— In(l+4+—+——7F—
Yoln(1-2)+ Y I (1+ Z )
K(a) —%—‘FOP(F) 3
= InS,(a)+ Z { _—1T+Op(n_2)}
Kl g .

= InS,(a) — A —
@) ; ri(rj — dj)
where in the third step we have used the fact that 1/(1+2z)=1-z+0(2?) asz — 0
and the sixth equality follows from the facts that {%—’;ﬂ + 0,(35)}/(1 - %) = 0,(n=%/?)
J
and that In(1 + z) = —z + O(z?) as £ — 0. This implies (2.9) immediately.
Because \,/(r; —d;) = Op(n"/?) and \,/r; = Op(n~*/?) uniformly in j = 1,..., k,
and In(l + z) = z — 2?/2 4+ O(2®) as z — 0, we have

K(a) hy A
—2InR(p) = _22{ : 1n(1+rj_”dj)—7‘j1n(1+r—;)}
I\(a. A 1 An 2 3
B _212—;[ {Tj—dj—i(rj_dj) ¥ Ol 2)}



K(a) d; _1
R SR

7=1 ri\r

where the last step is obtained by replacing A, with the expression in (2.9). This,
together with (2.6) and the consistency of 42, implies that

—21n R(p) _’Xl

3 Computation of Confidence Limits

We give a brief review on the calculation of confidence limits set by (1.9). (Also see
Appendix B of Thomas and Grunkemeier (1975) whose notations are slightly different
from ours.) In the following discussion we shall consider —21n R as a function of A:

A A
) -mm(14+ )

on the interval [dg(a) — rK(a),00). It is also useful to note that dx() — rx@) < 0 is

equivalent to S,(a) = Hﬁf)(l —dj[r;) > 0 since di(s) — k() = MaXi<j<k(a)1d; — 75}

I dg(a) —TK(a) < 0,1.e. Sp(a) > 0, then it is easy to check that —21n R(}) is strictly
decreasing on the interval (dk(s) — Tk(a),0] and increasing on [0,00). In addition,
—2In R()) — 400 as A — +00, —2In R(A) — 400 as A\ dk(a) — Tk (a), and In R(0) =

0. Therefore, the equation

K(a)
—2In R(A ——22{ : ln(1+

T

—2In R(A\) = x3(1 — @), (a > 0)

has exactly one solution on each of the intervals (dk(s) — rx(a),0) and (0,00), say AL
and Ay, and

{*: —2InR(\) < xi(1 — &)} N [dr(e) = rK(e) o0) = [Az, Mv].
If dx(a) — Tk (a) = 0, i.e. Sp(a) = 0, then,
{hs —2In RO < (1 — &)} N [dge) — iy 00) = [z, Mo
where A\, = 0 and Ay is the unique solution of the equation
—2In R(A) = x3(1 — @), (a>0)

on the interval (0, co).



In both cases, confidence limits for p = S(a) are set by

K(a)

d.
— 1— Y% )
PL Jl;Il ( r; + AL
and
K(a) dj
=11 (1- )
pu J]';‘[l ( i + Au
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