EFFICIENCY AND MINIMAXITY OF BAYES
SEQUENTIAL PROCEDURES IN SIMPLE VERSUS
SIMPLE HYPOTHESIS TESTING FOR A GENERAL

NONREGULAR MODELS

by

Hyun Sook Oh and Anirban DasGupta
Purdue University

Technical Report #93-25

Department of Statistics
Purdue University

May 1993



Efficiency and Minimaxity of Bayes
Sequential Procedures in Simple versus
Simple Hypothesis Testing for a General
Nonregular Models

by
HyuN SooKk OH AND ANIRBAN DaAsGuUPTA
Purdue University

May 17, 1993

1 Introduction

A sequential problem is considered in which independent observations are
taken on a random variable X which is distributed as Uniform(0, 8), where
the parameter 6 > 0 is an unknown constant. Suppose that we want to test

Hy:0=0, against H, :0=0, (1)

where 6; =1 and 6 > 1. Let 7o denote the prior probability for Hy and let ¢
be the constant cost of sampling. It is assumed that the decision loss is 0 —;
loss, i.e., L(6g,a0) = L(61,a,) = 0,L(0,a;) = ; and L(61,a0) = lo. Let n
denote the number of observations ultimately taken. It is assumed that the
overall loss is

L(6:,aj,n) = L(6;,a;) + nc, i=0,1, j=0,1.

The Bayes stopping time is, in general, of the form: Stop either at time 0 or
at the first time n such that

po(7") < p(7")

1



where po(7™) is the posterior Bayes decision risk in the fixed sample size prob-
lem with a sample of size n and data X" and p*(#") is the minimum Bayes risk
that can be attained if at least n+ 1 observations are taken. (The ”decision”
risk does not include the cost of sampling c.) Notice that po(7™) does not
involve the cost ¢ while p*(7™) does. It turns out that the Bayes procedure is
just the immediate Bayes decision with no observation or a SPRT(sequential
probability ratio test) which is of the following form:(Berger(1985))
At stage n(n > 1),

if L, < A, stop sampling and decide ao;

if L, > B, stop sampling and decide ay;

if A< L, < B, take another observation;
here, A < 1 and B > 1 are appropriate stopping boundaries and L is the
likelihood ratio of 8; to 6y at stage n,

I, A6
Lo = T, 7 zal80)”

(For the SPRT, as a nature of Bayes test, see Wald(1947), Wald and Wol-
fowitz (1948), Ferguson(1967) and Berger(1985).) Observe that

L, = Izi<1 ¥i=1,...n)(0)
" Tscawiz,.n(0)
0 ifl< IL(n) < 00
{ 05 fzm <1 (2)

where z(,) is the nth order statistic. So only two things can happen:

a either we get =, > 1 at some stage; then, clearly, we should stop and accept
H, or

b we keep getting zs < 1 and therefore since 6o > 1, by (2) the ratio sooner
or later goes above the fixed bound B and we will reject Ho. Thus Bayes
rules must be one of the following rules:

do : stop and take the optimal action without taking any observations;
dj(J > 1) : necessarily stop before n < J ;if In < J 3z, 2 1, then stop
at stage n and accept Ho, while if Vn < J,z, < 1, then continue sampling
untill the Jth obsevation and accept Hp if z; > 1 and decide H; otherwise.

In section 2, efficiency of the Bayes sequential procedure with respect to
the optimal fixed sample size Bayes procedure is considered. Let rx(C) be
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Bayes sequential risk and let rf (c) be the optimal fixed sample size Bayes
risk. Then it is proved that

F
o O
01y (c) 1=—mp

On the otherhand, for a fixed value of 7o, for the Bayes sequential procedure
and the optimal fixed sample size Bayes procedure to have the same Bayes
risk, i.e., 7 (c) = rF (cF), we prove that the ratio of the sampling costs

satisfies

ll_l"% —-= 1 — mo.
Notice that the two definitions of efficiency are not equivalent. In section
3, the minimax sequential procedure is considered. The minimax sequential
rule is determined among the set of Bayes rules, dy, J > 0. This is justified, as
established in Brown, Cohen and Strawderman(1980). It will be shown that
the minimax sequential risk increases as the sampling cost increases while
for minimax sequential strategy dym, J™ decreases as c increases.

The results of this paper hold also for the general nonregular case in which
independent observations have a common density of the form b(n)k(z)I(z<n)
and (1) is replaced by

Hy:n=mn vs Hi:p=mn

for some 7o > ;. This is easily seen on majing a transformation of the form

Y =1/(mb(X)).

2 Asymptotic Efficiency of Bayes Sequential Proce-
dure with respect to the Optimal Fixed Sample
Size Bayes Procedure

Let r(mo,d;) denote the Bayes risk for the procedure d; is defined in section
1. Since a Bayes sequential rule is dj, for some J > 0, for a given mo, the
Bayes sequential procedure is determined by minimizing r(7o,d;s) over J > 0.



For the procedure d;,J 2> 1, (Berger(1985))

ag = Pyg,(reject Hp)
= P9=g°(:r,'<1,Vi=1,...,J)
1.
= (E(;) ’
a1 = Py=i(accept Hp)

1 — Py=y(reject Hp)
0.

Let N; be a stopping time for the procedure dj,J > 1. Then

J-1
E(NJ]HQ) = ZPHO(N>TL)

n=0
J-1
= Z Pg=go(:v,' <1l,Vi= 1,...,n)

n=0

J-1
= Zean
n=0
1 - 657
1-65"’

Thus, the Bayes sequntial risk for the procedure d;,J > 1, is given by

1-657
1-465!

r(mo,dy) = mo(657 1y + ¢ )+ (1 = mo)ed.
Also, r(mo,do) = min{moly, (1 — mo)lo}. Let f(J) = r(mo,ds),J > 1. Pre-
tending that J is a continuous variable and differentiating with respect to J
gives

bo
6o —1

f(J) = o c—1,)657 log 0o + (1 — mo)c.

Thus f'(J) > 0if I < 65/(6p — 1)c. So J = 0 is the optimal value for
Iy < 0p/(6o—1)c. If Iy > 05/(00—1)c, the second derivative of f(J) is positive,
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so f(J) is strictly convex function in J. Setting f'(J) = 0 and solving gives
the approximate optimal value of J which is

log(mo(l1 — 7oi75;) 108 6o) — log((1 — mo)c)
log 00 )

Let r.,(c) denote the Bayes sequential risk. Thus if I; > FoﬁETc’ since J* is
not an integer value,

reol€) = f(J7)

=-J*

= (057 + cll‘_(;_ )4+ (1 — mo)e", "
:
where
J* = max{0, log(mo(h — =iz )ll:gg::) log((1 - no)c)}.
Andif ) < fETC»

Tro(€) = min{mol1, (1 — mo)lo}.
Now, let us consider the optimal fixed sample size procedure.
If X* = (Xy,...,Xy,) is observed, the Bayes decision rule is to select ag if
ETE;L(6,a0) < E"E;L(0,a,)
1
& (1= mloleyen < Toh () Tyt

Thus the Bayes decision rule is

s =1 ag if 17(.,,,) >1lor (1 - 7l'0)lo S 71'011(1/90)"
™7 1 a; otherwise.

Let r*(n) denote the Bayes decision risk for §7. Then
r™(x) = ETE;L(0,6})
= 7ol Pay=6,(Z(n) < 1 and (1 — mo)lo < mol1(1/60)")
+(1 = mo)lo(Po,=1(z(n) 2 1)
+P01=l(m(n) <1 and (1 - 7!'0)10 > 7('0[1(1/00)”)
(_1_)717x.()l1 ifn> log(moly)—log((1—-mo)lo)

éo log 6o

N { (1 — mo)lo otherwise.
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If we let rf (c) denote the optimal fixed sample size Bayes risk, then

"%, (€) = min(r(m) + n).

(n = 0 corresponds to making a decision without taking observations so that
(7)) = min{mol1, (1 — mo)lo}.) Let g(n) = (1/60)"moly + nc. Pretending that
n is a continuous variable and differentiating with repect to n gives

g'(n) = —05"nol; log 6y + c.
Setting equal to zero and solving gives

. log(moly log 6p) — log ¢

log 6,

Since the second derivative of g(n) is positive, g(n) is strictly convex in n.
Define ¢ = ]°g(”°l‘)]"::§£(l_"°)l°) for notational convenience.
(i) Suppose that ¢ < 0(& moly < (1 — mo)lo).

Then r*(x) = (1/60)"7oly, so

rf (c) = (1/66)" moly + n"c (4)

unless n* < 0, in which case rf (¢) = mol;.

(ii) Suppose that ¢ > 0(& 7r011°> (1 — mo)lo)-
Ifn* > gq,

rfo(c) ~ min{(1/00)".7roll +n*c,(1 - mo)lo}. (5)
And if n* < g,
rF (¢) = (1 = mo)lb.

o

The asymptotic efficiency of the Bayes sequential procedure with respect
to the optimal fixed sample size Bayes procedure in terms of their risks is
given in the next theorem.

Theorem 1. For a fired prior probability =y, the asymptotic ratio of the
Bayes sequential risk to the optimal fired sample size Bayes risk has the
property d

F
lim 7o (c) = ! .
=07, {c) 1—mg




Proof:
Let mp be fixed and let ¢ > 0 be sufficiently small.
(a) For the Bayes sequential procedure, from (3),

(1 —mo)lie c (1 —mo)c
Ed ~ —(] = ——
T o(c) WO(WO(Il—ﬁr)logeO 1_001( 7(0(11__1__—;?_)))
log(mo(lh — s=5=r) log 6) — log((1 — mo)c)
+(1 — mo)e 0
log 00
~ (1 —mo)e c _ (1 =mo)ec
= 0 o log 00 1-— 061 7!'011 log 90
+1 - 7rO)clog(m)ll log 6p) — log((1 — mo)c)
log 8,
1 (1 —-mo)e
~ logeo(l—ﬂ'o-l-l_oo_l(ﬂologao— 11 )
+(1 — mo)(log moly log 8p1 — 7o — log c))
1- o

= 0O(c) - Toz O cloge

1—7r0

= O clogc)

- log 00

as ¢ — 0.
(b) For the optimal fixed sample size Bayes procedure, since

n* <0 & molilogby < ¢ and
n*<qg& (1-m)h <L
n‘>0&q$00rn‘>q&q>0forsmallc.Also,n'cz'lg—:;iﬁ=o(1)as
¢ — 0, Thus by (4) and (5),

r,f;(c) ~ (1/80)" moly +n*c
c N log(moly log 6p) — log c,

log 6o
c log(moly log 85) — log ¢
log o @ € log 6o




—clogc

]Og 90

as ¢ — 0.

This proves the stated assertion. o
Next, an efficiency will be considered in terms of sampling cost of each pro-
cedure.

Theorem 2. For given ¢ > 0, let ¢ be such that vy, (c) = rf (cF) for a given
wo. Then
F

Iim—=1- To-
c—0 ¢

Proof :
Assume that ¢ is sufficiently small. From the above theorem

1—7!'0

Tr(C) R cloge. (6)

" logfo
Again from the above theorem, since

r,f;(c) _ 1

rro(c)  1—mg

> 1,

rro(c) < 7F (c) for small c. Thus to have them equal, ¢ must be less than c,

implying lim¢_o ¢ = 0. Now, for ¢ small,

F( F)z_cploch

T,ro

logbo (7)

The Theorem now follows from (6) and (7). 0o
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Figure 1: Plots of sequential Bayes risk and the optimal sample size Bayes

risk for 0 — 1 decision loss.
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Figure 2: Plot of % for 0 — 1 decision loss.
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3 Minimax Strategy and the Minimax Risk

We now consider the minimax sequential procedure for the problem. A mini-
max sequential procedure is a procedure which minimizes supy R(6, d) among
all proper sequential procedures. We begin with definitions of the needed
concepts.

Definition 1. A sequential rule §; is R-better than a sequential rule &, if
R(6,61) < R(0,6,) for all § € O, with strict inequality for some 6.

Definition 2. A class C of sequential rules is said to be complete if, for any
sequential rule é not in C, there is a sequential rule 8’ € C which is R-better

than 6.

It is shown in Brown, Cohen, and Strawderman(1980). that for simple ver-
sus simple testing problems the Bayes sequential rules form a complete class.
Since a Bayes rule is represented by d; for some J > 0, the minimax sequen-
tial procedure can be considered only among the procedures dj,J > 0. Let
Tm(c) denote the minimax risk. Then

rm(c) = inf sup R(6,d) = inf sup R(0,d;).
d ¢ s ¢

Let us recall from the previous section that the Bayes risk for the procedure
d;,J>1,is

1-6;7
7‘(7l’o,dJ) = 7(0(06"11 + cl — 0%1 ) + (1 - 7l'0)CJ.
Since for J > 1
7 1657
Sl;pR(g,dJ) = max{@o L +C'i—_07,c]}

= max r(mo)

and

sup R(0,do) = maz{lo, 1},
6
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the minimax sequential risk is

— 657

rm(c) = mm{r}lzlil(max{{ﬂ h+ c =g

cJ}),max{lo, 1 }}.

The following lemma gives that for all small ¢ we will need more than 1
observation under the alternative as the minimax sequential strategy.

Lemma 1. Let djm() denote the minimaz sequential strategy. Then J™(c)
is at least 1 for 0 < ¢ < 1(6p — 1)/6s.

Proof :

Let g1(z) = 65" + c:%z“;:- and let go(z) = ¢z for z > 0. Since the first
derivative of g;(z) is positivte if ¢ < 11(0o — 1)/6o, g1 is decreasing function
with g1(0) = l;. Thus g;(z) meets with g,(z) exactly once and the crossing
point will minimize max{g:(z), g2(z)}. Let z™(c) be the crossing point for a
given c. Solving the equation g;(z) = g2(z) gives that

[1(6,— 1)

c= ) . (8)
0o — 05 (6o + z™(c)(1 — bo))
Let
hi(z) = 6o — 05(6o + z(1 — 6,)). (9)
Then
hi(z) >0 z>1+ 1 — 1 (10)
! 90 -1 log 00.
Since
1 1
0<1-i-00_1 _10390<1

and h;(0) = h1(1) = 0, hy(z) < 0 for 0 £ z < 1. It follows that this con-
tradicts (8), since c is necessarially positive. Hence 2™(c) > 1 and therefore
Jm(C)Zl for0<c$ll(90—1)/00. O

Theorem 3. For the minimaz sequential strategy dym(y), J™(c) is monoton-
ically decreasing in c.
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PROOF :
Let 0 < ¢; < ¢; < [1(6o — 1)/8o and let z; = z™(c1) and 2, = z™(c2).

c1 — ¢; < 0 implies by virtue of (8),
(60 — 1)(65" (6o + 21(1 = 6o)) — 057 (60 + z2(1 — 6o)))
(60 — 65 (80 + z1(1 — 60)))(60 — 857 (60 + z2(1 — 6o)))

Again, let hy(z) = 8o — 65(00 + z(1 — 6o)). Then, from (10), h,(z) is strictly
increasing for x > 1. But hy(1) = 0. Thus A;(z) > 0 for all £ > 1. Hence

(11) &
901‘1(00 + .’131(1 - 00)) < 001‘2(00 + 1‘2(1 - 90) (12)

Let ho(z) = 03(60 + z(1 — 6o)). Then

ha(z) = 65((1 = o) + (6o + z(1 — o)) log o)
< 0;(1 - 90 + logﬂg) < 0.

< 0. (11)

i.e., ho(z) is decreasing in z. Thus
(12) = T > I,

Also, by Lemma 1, z, > 1.
Suppose n < Zp(c2) < Tm(c1) < n + 1 for some integer n > 1. Then

J™er) = {" if g1(n) < g2(n +1)

n+1 otherwise

- if L < (325 ~ (55 —n)fs)
n + 1 0therw1se
and
m _Jn if gn) < g2({n+1)
J™(e2) = { n+ 1 otherwise
_ I if < Hahs - (55 —n)6%)
n+ otherwxse
Since

1, 6 1 .
1fer <1/es < 3 (g = (grmy ~ W),
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J™¢)) =n=J"(c2) = n.

Thus J™(¢;) = J™(c2). Suppose that n <z, and m < z, where n > m > 0.
Then obviously J™(c;) > J™(c2). Hence J™(c) is monotone decreasing of c
f0<c<L 11(00 - 1)/90

NOW, if e _>_ 11(00 - 1)/00,

—z 1-65°

gl(l‘) = 90 11 + CT_—_O(:;—I
is increasing in z. Thus max{gi(z),cz} is minimized at z = 0. Hence
J™(c) = 0if ¢ 2 1;(8o — 1)/6o. This proves J™(c) is monotone decreasing for
all c. D

Next, it will be shown that the minimax sequential risk rm(c) is monotonely
decreasing in c.

Theorem 4. The minimaz risk
rm(c) = mJin max (7o, ds)
o

is monolone increasing in c.

Proof :

(a) Assume that 0 < ¢ < l;(6o — 1)/fo. Let 0 < 1 < c2 < L(6o— 1)/60
be given. Let J; = J™(a1),J2 = J™(cz). Then by the above theorem,
Ji > J;>1. And

=Ji

rm(c,-) = max{%‘]‘ll + C{l ,C,'J,'}, 1= 1,2

0
1-1/6
(i) Suppose that J; = Jz.; Then obviously rn(c;) < rm(c2)-

(i) Suppose that Jy = J; + n for some n > 1. rp(a) =al,

_ J1-1
adi < LP' 4 c——=L"—(by the definition of Ji)
1-1/6o
1 -6y
< LOF + c;—— (since g:i(z) is decreasing in z)
1-1/6,
1-— 6

< 1106]2 + co (Cl < Cz)

1-1/6,
S Tm(62).
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—-— _J] 3 . .
Ifro(a)= 1105']‘ + clll—_‘iﬂ/a—o, then since ¢;(z) is decresing of z and ¢; < ¢,

_J 1— 65"
rm(c1) = Lo, '+01le/—00
— -2

< 1105"’+c21 %

1—1/6
S Tm(c2)-

(b) Assume that ¢ > I;(6 —1)/6,. Then J™(c) = 0 from the above theorem
Thus

rm(c) = max{ly, 1 }.

Since rm(c) < I for 0 < ¢ < l;(8p — 1)/60, r(c) is monotone increasing in ¢

D
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Figure 3: Plot of Minimax risk and the sampling cost when 6, = 2 for 0 — 1
decision loss.

16



4 Acknowledgement

We are thankful to Herman Rubin for a number of helpful diserssions.

References

[1] ArRrow, K. J., BLACKWELL, D. and GIRSHICK, M. A. (1949). Bayes
and minimax solutions of sequential decision problems. Econometrica
17 213-244.

[2] BERGER, J. (1985). Statistical Decision Theory and Bayesian Analysis.
Springer-Verlag, New York. (2nd Edition)

[3] BrowN, L. D., COHEN, A. and STRAWDERMAN, W. E. (1980). Com-
plete classes for sequential tests of Hypotheses. Ann. Statist. 8 377-398.

[4] BRowN, L. D., COHEN, A. and STRAWDERMAN, W. E. (1979). Mono-
tonicity of Bayes Sequential Tests. Ann. Statist. 7 1222-1230.

[5] CHERNOFF, H.(1972) Sequential Analysis and Optimal Design. SIAM,
Philadelphia.

[6] FERGUSON, T. S. (1967) Mathematical Statistics: A Decision-Theoretic
Approach. Academic Press, New York.

[7] SOBEL, M.(1953) An Essentially Complete Class of Decision Functions
for Certain Standard Sequential Problems. Ann. Math. Statist. 24 319-
337.

[8] WALD, A. (1947). Sequential Analysis. New York, Wiley.
[9] WALD, A. (1950). Statistical Decision Functions. John Wiley and Sons.

[10] WALD, A. and WOLFOWITZ, J. (1948) Optimum charater of the se-
quential probability ratio test. Ann. Math. Statist. 19 326-339.

17





