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Abstract

Asymptotic Expansions of posterior distributions are derived for a two dimensional expo-
nential family, which includes Normal, Gamma, Inverse Gamma and Inverse Gaussian distri-
butions. Reparameterization allows us to use a data dependent transformation, convert the
likelihood function to the two dimensional standard normal density, and apply a version of
Stein’s Identity to assess the posterior distributions. An application to repeated likelihood

ratio tests are discussed briefly.
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1 Introduction

There are many design problems where it is necessary to compute the Bayesian risks in order
to see the effect of the design parameters. Those Bayesian risks usually depend on asymptotic
expansions of posterior distributions which are integrated with respect to the marginal distribution
of data. Examples can be found from Woodroofe (1986, 1989).

The question of integrable expansions is of independent interest, as discussed in Woodroofe
(1989), and Bickel and Ghosh (1990), and can be dated from Laplace (1847). In the last two
decades, integrable expansions for posterior distributions became one of the most widely studied
problems in both statistical theory and application. Johnson (1970) is among the first few authors
who investigate pointwise posterior expansions rigorously. More recent papers about general
posterior expansions can be found from Ghosh, Sinha and Joshi (1983), Bickel, Goetze and Van
Zwet (1985), and Bickel and Ghosh (1990) and their references. The main technic they used is
Taylor’s expansion under various regularity conditions.

Another approach, which was introduced by Woodroofe (1992) for one-parametric exponential
family by using a data dependent transformation which allows one to convert the likelihood
function to exact normality and to avoid Taylor’s expansions. The data dependent transformation
has also been used in Woodroofe (1986, 1989), Woodroofe and Hardwick (1990), and Keener and
Woodroofe (1992) for various Bayesian design problems.

Of course, it is important to consider multiparameter problems. However, in some multi-
parameter exponential families, parameters are depending on each other. A typical example is
Multinomial distribution. See Brown (1986). Such dependence makes the problem more difficult.

In this paper, we consider a certain two parameter exponential family of distributions, which
contains Normal, Inverse Gaussian, Gamma and Inverse Gamma distributions. This family was
discussed first by Bar-Lev and Reiser (1982) for constructing UMPU tests, and recently, by
Bose and Boukai (1990) for finding sequential point estimators for one of the parameters with
minimum risk. We take advantage of the special structure of this class of distributions, by
using reparameterization so that the new parameters vary independently. A data dependent
transformation is applied to convert the likelihood function to the two dimensional standard
normal density. A version of Stein’s Identity plays an important role to the posterior distributions
so that the remainder terms can be written as conditional expectations, which will be treated by

the martingale convergence theory.



The symmetric functions of the above data transformation are of special interest to us. We
will show that the generalized log-likelihood ratio statistic is a special case, which has been greatly
attracted to reachers. See Woodroofe (1982), Lalley (1988) and Hu (1988). It turns out that the
second term for a high order expansion is always zero. Therefore the first term is a quite accurate
estimator for the desired quantities.

This paper is divided as follows. Section 2 gives the basic materials we need later. We
first review, for subsequent use, some of the properties of the two parameter exponential family
mentijoned above in Section 2.1, The data dependent transformation is then introduced in Section
2.2. Some useful inequalities are given in Section 2.3 and Stein’s Identity is stated in Section 2.4.

The main results are given in Section 3. Integrable expansions with the fixed sample size are
illustrated in Section 3.1. The second and high order expansions after sequential experimentation
are established in Section 3.2 and 3.3, respectively. Expansions for symmetric functions and their
rescaling are discussed in Section 3.4.

Some applications of our results are stated in section 4. In particular, we apply our result to
approximate sampling distribution of sequential log-likelihood ratio test statistic for the normal

distribution with unknown mean and covariance.

2 Preliminaries

2.1 The Model
Consider a two parameter exponential family of densities on the Borel sets of R, say,

pg(z) = exp{1U1(z) + B2U2(z) — ¥(B)}, B = (B1,52), (1)

with respect to Lebesgue measure. Let A denote the corresponding natural parameter space . It
is well known that for any B € AN° (the interior of A), the random vector U = (Uy(X), Ua(X))

has moments of all orders. In particular,
Eg(U) = V4(B) = (9¢(8)/081,0¢(B)/0B2) = (p1, p2),
Varﬂ(U) = V%/,(ﬂ) = (82¢(ﬂ)/aﬂiaﬂj)ij=1 2
are the mean vector and covariance matrix of U. Throughout this paper, V is used to denote the
gradient.

Let Xi, X2,--- be random variables which are i.i.d. with common density (1) for 8 € N.
Bar-Lev and Reiser (1982) first introduced a subfamily of (1) for constructing UMPU tests. This
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subfamily admits a single ancillary statistic for 3, in the presence of £, (i.e., its distribution
depends only on ;) and characterized by the following two assumptions:
Assumption A: The parameter 8, can be represented as: f§; = —£,G5(p2), where Gh(uz) =
dG2(p2)/dps, for some function Ga.
Assumption B: Uy(z) is 1 — 1 function on the support of (1).

One can introduce a parameterization of the exponential family (1) by means of the mapping
(B1,B2) — (B, p2), where py = IEg(U2(X)). From Theorem 8.4 of Barnddoff-Nielsen (1978),
this mapping is a homeomorphism and (81, 42) € 01 X ©2 = O (i.e., components 8; and uy vary

independently.) For simplicity, we will denote @ = (61,62) = (81, 12)-

Denote
Z = 1
T; = ZUJ'(Xi)’ Tyj = ;Tnjv i=12, (2
=1
— = 1
Yn = Tnl - ’nG2(Tn2), Yn = EYn (3)

The following facts can be found from Bar-Lov and Reiser (1982).
Facts: Under the Assumptions A and B,

1. Gy is infinitely differentiable and GY is not identically constant;
2. the variance of U is given by 51?_51(?’ (> 0);

3. the functions ¥ (f) and p1(B), when expressed by (6y,62), have the following form:

¥(61,02) = ~01[6:,G3(82) — G2(62)] + G1(61),
{#1 = Go(02) + G1(6),

where G1(6:1) is an infinitely differentiable function on ©, for which GY(8;) > 0, for all

6, € 0.

4. The distribution of Y, belongs to the one parameter exponential family with natural pa-

rameter #; and density of the form

pYn(ymol) = Q(yn) exp{ﬂlyn - Hn(ol)}7 6, € Oy,

where

Hn(01) = nG1(01) - G](’nol)



One of immediate consequences of Fact 2 is that either @; C R~ or @; C R*. In this paper,
we follow Assumptions A and B. Without loss of generality, we will assume that ®; C R™. Then
we have
Fact 5. G%(6;) > 0 for all 6; € O, so that G is strictly convex.

Fact 6. Both G| and GY are positive. Therefore G is strictly convex and monotonically increas-
ing.

The Normal, Inverse Gaussian, Gamma, Inverse Gamma distributions are special cases in (1)
satisfying Assumptions A and B. See Table 1. Any monotone functions of these random variables
satisfy these two Assurﬁptions, too. For details, see Bar-Lov and Reiser (1982).

For the parameter @, (1) becomes

pa(z) = exp{01U(z) — 6:G5(62)Us(z) — 4(0)}, (4)

where (@) is given by Fact 3. It is easy to verify that the Kullback-Leibler number is

I{w;0) = 9(61,02) — P(wi,w2) — (Ga(w2)+G(w1), wz)(leg(‘il):ché(az))

= Li(w,01) — 1 h(ws,6;), w,0€ 0, (5)

where
Li(wi,6) = G1(61) — Gi(wy) — Gi(w1)(6; — wi), wi,b; €0y, (6)
Ig(&)z', 02) = G2(w2) — G2(02) - ’2(02)((.02 - 02), w2,02 € 02. (7)

Note that I;(w;, ;) > 0 and the equality holds iff w; = ;. Therefore I(w, @) > 0 and the equality
holds iff w = 0.

Derivatives of I; and I; are needed in the subsequential sections. For wy,8; € O1, I1 jo(w1, 6) =
=G{(w1)(1 — w1), Il,:"l"i(wl,gl) = —=GY(w1), Li01(w1,0:) = 1(61) = G1(w1), and I p2(w1,61) =
G1(61), where Iy ji(w1,0:1) = 07K I (wy,0,)/8w]06% for j,k = 0,1,---. Similarly, I10(ws,0;) =

2(w2) = G3(02), L2,20(w2,02) = G3(w2), T211(w2,02) = ~G5(62), To01(w2,02) = G5(82)(6; — wa),
I 02(wo, bz) = G”2”(02)(02 —wy)+ G’2’(02) and I3 03(w2,8;) = Gi2V(g2)(92 - wz) + 2G'2"(92)-

2.2 Data Dependent Transformation
The log-likelihood function of @ = (6y,62) given X1,---, X, is

Ln(ﬂ) 01Tn1 - 01G’2(02)Tn2 — m/)(ﬂ)

01Yn el 01 [G’2(02)Tn2 - ’nGg(Tng)] + n01 [02G12(92) - G2(02)] - nGl(Bl),
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for 8 € O,n > 1, where T,; are given by (2), and let 0, = (énl,énz) denote the maximum
likelihood estimators of @. It is easy to show that under the above assumptions, bn2 = Ty and

that 6,1 satisfies the equation:
1(0n1) = V. (8)
Then one can verify
Ln(0) = Ln(0,) = —nI(81,0) = —nIy(8n1, 61) + 181 15(8,2, 65). (9)

The data dependent transformation mentioned above is

an) _ \/2nI1(én1, 01) sign(01 - énl)

an \/—2n01I2(én2, 02) sign(02 bt éng)

Z=2Z,= ( (10)

Note that Zy(Zn2) is increasing in 6:(6;), since 80Z,1/86y = /n|l1 01|/v/21 > 0 (8Z,2/08; =
vV—=n01|1201|/+/2I; > 0) and the likelihood function is exactly normal in Z,. Also,

det (M)z det (8ZM/801 0 ) >0
0(61,62) * 0Zp2/00,
Thus, 8 — Z is one-to-one and onto.

Now let us consider a Bayesian model in which the prior density of @ = (6;,6;) is ¢ and
X1, X2, -+ are conditionally i.i.d. with common density pg(z) given & € ©. We will denote
the probability and expectation in the Bayesian model by IP¢ and IE¢; denote the conditional
probability and expectation given @ by Py and EEg, respectively; and denote the conditional
expectation given X, X,,---, X, by ]Efl For simplicity, @ will be treated as either a random
variable or its observation. Define

Ti(wr, 0) = V2w, 0k) 1,2.

IIk,01(wk,9k)|’ -

Then the conditional density of Z,, given X1, X5,---, X, is

(11)

PP 1
(a(2) o6 €(8)J (B, 0u2; 01, 6,) exp{ - 5 227 i, (2), (12)
where
1
J(wi,w2;0y,02) = \/—_—01-']1(601,91)«72(&)2,92), Wk, 0k € Ok, k=1,2. (13)



The partial derivatives of Jj are also needed: for wg, 8 € O and wy # 6k, k = 1,2,

1 .
Jeo1(wk,0k) = _—\/2—7;{1 - Ik_ong}Slgn(ok - wk); (14)
7 _ | Ik 01 1 2 )
k02w, 0k) = —{_2Ik Jro1 + _—\/QTk[Ik,OSJk + 2Ik,onka,o1]}SlgIl(0k - Wg)- (15)

The value of J; and its partial derivatives on the diagonal may be obtained from L’Hospital’s

G (w llG'" w 2
rule as Jip(wk,wi) = m, k=1,2,J101(w1,w1) = —3—01,(5,%)13)5,J1,02(M,w1) = WG;'J(“(T)%? -

r&%,h,m(wz,wz) = —%ﬁ%; and J; g3(we,we) = ;2;?%:(:;22 - ;Z%Z,S?/)z .
2.3 Inequalities
Define
A, ={Y,.€G'(0,)} and B, = {T,; € 0,}. (16)

Lemma 2.1 Forall # € ©® and m =2,3--.,

Pg(Ay and b,y > wr,3n>m) < exp{—ml(w, )}, if wi >0,

Pg(An and by <wy,3n > m) < exp{—mli(wi,b0)+G1(mb)—G1(mw)}, if w;<b;.
Proof. See Appendix. 0O
Lemma 2.2 Forall # € © and m =2,3,---,

Pg(B,, and b > we,3n > m)

IN

exp{mbyI;(w,,02)}, if wo>0;,

Pg(B,, and brg < we,3n > m)

IA

exp{mb, I;(w2,02)}, if wy<bs.

Proof. See Appendix. 0

For further analysis, we need an additional assumption on the function Gy for the rest of the
paper.
Assumption C: sgg)lle’l(x) = v(6;) < oo.

z

Note that Assumgtilon C holds for the normal, inverse Gamma, Gamma and inverse Gamma
distributions. As it is shown by Woodroofe (1977) the left tail behavior of the underlying dis-
tribution function is crucial in various risk’s assessments and posterior distributions associated
with sequential design. Basically, Assumption C controls the left tail behavior of the underlying

distribution function and a similar condition has been used by Bose and Boukai (1989).
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Lemma 2.3 Foranyz >0,m=2,3,---,0 € O,
1P,,(s1>1p I(0,,0)I4,5, > z) < [e™®) 4 4] exp{—@ }.
n>m
Proof. For any fixed 8 = (6,,6;) € 6,
]P,(s1>1p 1(0,,0)I4,8, >z)

= TPg(sup [[1(6n1,61) — 01 12(0r2,02)| 14, B, > )

T
-26, )

N T "
< TPy(sup [1(0n1,01)14, > 5) + Py (sup I2(0n2,62)IB, >
n>m n>m
If G is bounded, the assertion holds. Otherwise,
—Il(wl,ﬂl) + Gl(mﬂl) - Gl(mwl)

= —[G1(61) — G1(mb1)] + G1(w1) — G1(mwy) + G (w1)(61 — wi1)
= (m—1)6:Gy(6]) — (m — D)wnG1(wi) + 0:1G1(w1) — w1 G (w1),

(17)

(18)

for some 67 € [m#;,60:] and wi € [mw;,w]. Since G} is positive and strictly increasing, (m —
1)6:G1(67) < 0, Gi(w1)81 < 0, and 0 < —(m — Vw1 G4(w]) < —(m — DwyG4(w1). Thus The
right hand side of (18) is bounded by —mw;G}(w1) < my(6,) for all w; < 6, by assumption C,

Therefore, the right hand side of (17) is bounded by
™) exp{—(i;li} + 3exp{—T2£}.
This completes the proof from Lemmas 4.1 and 4.2 and the monotonicity of I;.
Lemma 2.4 Foranyz>1,0€0,n=1,2,---
Po(max | ZellLas, 2 2) < [ + 4](1 + log, n) eXP{—%z},

where log, denote logarithm to the base two.

Proof. For each k£ > 1, there is a unique m > 1 for which 2™~! < k < 2™. Moreover, if AxB;

occurs and [[Zk|| > & > 1 for some k € [2™~1,2™], then I(8k,8) > 22/2™*! for some k > 2™1,

Let M, be the least integer which exceeds log, n. Then for all # € © and n > 1,

]Pg(Ilgla.X”Zk”IA,‘Bk >z) <
sn m=1
Mrn
< Y Po{ArBiand | Zu]| 2 2,3 k > 271}
m=1
22
< [e™®) 4 4M, exp{—z-}.

7

My
> Po{AxBy and ||Zi|| 2 2,3 k € 271,27}



The last inequality follows from Lemma 2.3 and the fact that G;(-) is monotonically increasing

on O;. 0

For a fixed £, let W¥ denote the class of all functions W : © x ©® — R for which
/ sup [W (B, 0)|La,5, dIP < oo, (19)
n>m
for some m = 2,3,---. Observe that W¢ is a linear space which contains all constant functions.

Lemma 2.5 Assume that £ is a density on ©® with a compact support, and w is a real function

on © such that |w|€ is integrable. For any fixed mg, define
W(w; 0) = w(8) exp{mol(w,0)}, w,0€ 0.
Then W € WE,

Proof. The conclusion is true if mg < 0. For mg > 0, choose an integer m > 4(mq + 1),

IN

/:1;2 W(0.,,0)¢(8)dIP¢ /:1)13 exp{mof(én,0)}|w(0)|§(0)d1P5

IA

/9 /0oo lPa(suP exp{mof (0r,0)}> s)ds |w(8)[¢(0)d0
/{/ Po[Sﬂp 1(6,,0) > & )]d + 10} [w(0)|¢(0)do
/{[ mv(01)+4]/w m og(s)]d + 10} [w(0)(0)a0
RGN 10}1w(0)|e(0)do.

Since 7(6;) is bounded on the compact support of (), there is a constant C > 0 such that

IN

IA

/ sup W(bn, O)K(O)IP¢ < C /. lo@)le@)as,

which is finite by assumptions. 0

2.4 Stein’s Identity

Let H denote the collection of measurable functions A : R?> — IR of polynomial growth; let

={heH: supzelelh(z)V(l + |=1|P + |22|P) < 1}, H, = {h : h/c € H,, for some ¢ > 0}.
Thus H = Up>oH,. Let ||2|| be the Euclidean norm of a vector z. If |h(z)| < ¢(1 + || z||P) for some
0<c<oo,thenh€'ﬂp.



let ®; and ® denote one and two dimensional standard normal distributions, respectively; let

¢1 and ¢ denote one and two dimensional standard normal densities, respectively; and let

dh

S Bz,

o) = [ e m)(a)da,

T

el [ {@h ) - Shyo ()i
[f1(z2)] ! /zw{h(zl,yz) — ®%(21)}b1(y2)dy2

Vi(z) (Vi (2), V5 (2)) =
For example, for z = (z1,22) € R? if h(z) = 2z, then V*(z) = (1,0), if h(z) = 2, then
V*(2) = (0,1), and if h(z) = 2? + 22, then V"(2) = 2. Note that V}*, as a function on R?, is a
constant in its last variable. The transformation from % to V" is a linear operator from H, into

H, X H, and satisfies

oVh = /]Rzzh(z)tI)(dz), (20)
vy = L0 0 Ve
B(VoVh) = 2/]R2 (2z122 z%_l)h( )8(dz). (21)

Here and in the following, VoV is the composition of V with itself.

Lemma 2.6 Given any nonnegative integer p, there is a constant C, so that
VA2 < Co(1 + 121 + |2/P), ¥ 2 € R?,

for all h € H,,.

Proof. The assertion for p = 0 is proved by Stein (1986). For p > 1, the proof is similar and
simpler. 0O

The following result is similar to one by Stein (1987) or Woodroofe (1989, 1992), in which T
denotes a finite signed measure of the form dI' = fd®, where f is an integrable function with

respect to ® on R?; and Th = fle hdI', when h € H and the integral exits.

Stein’s Identity Let p be a nonnegative integer. Assume that dT" = fd®, where f is absolutely
continuous on every compact subset of R?. Denote that \7f = (fio(2), foi(2)), where fik(z) =
o742 f(z). If

as]0zf
/]Rz(lhl’” + [22/°)[l fro(2)] + [ f10(2)[]@(d2) < 0, (22)
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then
Th—T1.8h= /]R2 VR fI78(dz), YV heH,.

Proof. See Appendix. 0

3 Asymptotic Expansions

3.1 Basic Consequences
If A, N B, occurs, then the posterior distribution, T', say, of Z,, given X;,---, X,, is of the form
dl'y, = f,d®, where

Fu(2) = €at(0)J(80,0)Is,(2), z€RZ, (23)

where 0 < ¢, = ¢p(Xq,-++,Xpn) < 00, S, denotes the range of Z,,, and z and @ are related by

(10).
Let =¢ denote the class of all absolutely continuous densities with compact support in ©;
Let AC denote the collections of all absolutely continuous functions on ©; for @ > 1, define two

subclasses of Zg by

=S {eez, / {|§1°| + lf‘” “1e(8)d0 < 0 }, (24)

E3 {f € Z1 : &10,ém1 € AC, / {l&ol + Ifnl + IEOZI }E(O)da < 00 }, (25)

{
I

where £4(8) = ZT£(0). Let £(0) = £(8)/v/=Fr, then %% = &% for k = 0,1,2,-- If
1 1

€ € Ey, then [go(|€10/€|* + 1€01/€]*)€(0)d0 < oo, and if € € =, then Jo(|€20/€1% + |E11/E1* +
|§~02/§|a)£(0)d0 < 00. For w,0 € O, define

K¢ (w,0)\" K (w,0) K (0,0
Ki(w,o) = ( 21( )) and Kg(w,o) = ( Zvll( ) 2,12( ))
K1,2(“” 0) Kz,lz(“” 0) Kz,zz(“’v 0)
where
KE _ 610
i1(w,0) = _f—Jl + J1,01,
I(E _ 601
12w, 0) = ?Jz + J2,01,
3
Kiu(w,()) = %—0-71 + ?0J1J1 o1+ 102+ Jions
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K%,n(‘*’,o) = %Jﬂz + %th o1+ %-ﬁ o1d2 + J1,01J2,01,
I(E _ 602 3501
322w, 0) = ?Jz + TJsz o1+ JaJ2,02 + J2 o1-
In particular,
f0 1 GY'(61)
K¢ (0,00 = - ,
N AR GO
3 1 2G'(8,)
K§,(0,0) = -2 2
R e DY
¢ _ 520 1 flo Gm 5[G;"]2 _ Gilv
K2,11(0’ 0) - { G” [Gll]z 12[Glll]3 4[Gil]2 ?
Ko - B L _fo_26¢ & Gy soyay
S & \Jeiey  €3/aeyr & s/iorpey  AGIGEP
Kg 22(0 0) — 602 1 501 G’” 5[G,2”]2 3G12V

£Gy E1GHR T 3GIP  AGhT
Lemma 3.1 Suppose that £ € = for some a > 1, and A, B, occurs, then f, is absolutely

continuous with
Vfa(z) = % fu(2)KS(0,,0), z€R?, (26)

and if £ € = for some a > 1, and A, B, occurs, then f, is twice continuously differentiable for

which,
V2fu(z) = = fn(z)K (0.,0), z€ R (27)
Proof. It follows from assumptions immediately. 0

Lemma 3.2 Let @ > 1. If £ € Z¢, then |K},|* + |Kf,|* € We; if £ € E5, then |KE | +
|K15,12|a + |Kf,22|a € We.

Proof. See Appendix. 0O
Theorem 3.1 Suppose that £ € =¢ for some o > 1. There is m > 2 such that for all A € H,
1 .
£ — - mé 13 h T
EL{R(Za)} = @h+ =L { K80, 0)VA(Z0)]"}, (28)

a.s. (]Pf) on A, B, for all n > m. Suppose that { € = for some @ > 1. Then there is m > 2 such
that for all h € H,

1 o 1 R
3 — - hymé 3 T, 2 13 € h
Ef {h(Zn)} = Bh + —=(2VMEL{K{(0,,0))" + ~tr{ES{K5(Bn, 0)[VoVH(Za)]}},  (29)
a.s. (IPf) on A, B, for all n > m, for some m > 2.
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Proof. If £ € 2, |K$ | +|K¢,|® € WE from Lemma 3.2. Let m > 2 be defined by (19). If
1 11 1,1

n > m and A, B, occurs, then for all 0 < p < o0,
0 "
VA o2 + 122 5 ()| 8(d) = EEL(Zmal + |Zeal?) KE 100, )1,

which is finite w.p. 1 for all 0 < p < oo by Holder’s Inequality. Similarly, it is finite w.p. 1 for all
0<p<xif 5‘2—1 fa(2) is replaced by 8%2 fa(2) . Now the first assertion is established by Stein’s
Identity. For the second, it is sufficient to verify that for any 0 < p < oo,

o2
ﬁ/mzﬂzll” + |z2|P)|32iazj fn(z)lé(dz)IA,,Bn < oo, a.e.,

which is valid from Holder’s Inequality and the second assertion of Lemma 3.2. 0

For further discussion, we need the concept of nearly dominated. Let Y;,Y3,--- denote a
sequence of random variables adaptive to a family of o-algebras, 77, F, - - -, on a probability space
(X, F,IP); Let T denote the collection of all finite stopping time t with respect to Fy, Fa,- - -.
Y1,Ys,--- is said to be nearly dominated iff {Y; : ¢ € 7} is uniformly integrable. Observe that
then sup;cr IE(Y;) < oo and sup,cr Y| < 00, w.p.1. If Wy, Wy, - - - are random variables for which
]E{supteq- IWt|}< oo, then Y,, = IE(W,|F,),n > 1 is nearly dominated.

Alsoif 1 < @, 8 < o0 are conjugate values and if [W,|*,n > 1 and |Y,|%,n > 1 are both nearly
dominated, then so is {W,Y,},>1. In the following, we will use F,, = o{X;,Xs,---, X, },n =
1,2,---and P = IPS.

Lemma 3.3 Let 1<p<oo;iffe€ E’f“, then
S8 SUD /LI [h(Z)] — B{Ta,m,, 12
are nearly dominated for some m > 2.
Proof. Let m be in (19) for W = |K1§’1|7’+1 + |Kfy2|p+1. If h € Hyp, then for n > m,
V[ EL[h(Zn)] - @4
2

= D EL{KT (00, 0)VA(Z0)}
1=1

IA

2 . 1 P
S {EENKS (00, )P} {EE[VA(Z,)IF 117, a.c. on AnB,
=1

by Theorem 3.1 and Hélder’s Inequality. Let C;(p) denote positive constants depending only on

p. From Lemma 2.6,
pt1
V)% < Cup){L+ 21" + 2P}, VheH,

12



Thus
sup /|4 [h(Z0)] - ®hlLa,B,
n>m
2 . 1 P
< Ca(p) Yo {BEIKS (0, )P} {BLIL + 1201+ + | ZnalP )} 7 145, e
j=1

Let g,(2) = 1+ |21|P for p > 1. Then V{**'(z) < C3(p)gp(2) < Ca(p)gp+1(2) and Vi%+(2) = 0.
Therefore -

VA p41(Zn)] - gpia] < Cs(p)}{BEIKS (B, OP T} {E gy (Z0)/F ),

Using an inequality: if 0 < b,¢ < 00,1 < p < o0 and 0 < = < b+ cz?/(P*D) then z < pb + cPtL.
1
NOW, let b= ¢9P+17 c= %‘?{Eg[l‘[{f,l(ona0)]p+1]}p+1 » T = ]Ei[gp.i_l(Zn)]%, then

C .
S (l9p41(Zn)] < Pb + P+ = pBgpys + (<222 j}f)) "B (1K 4 (0., 0)P]). (30)
Similarly, let §,(z) = 1 + |22|?. Then
B (15p41(Z) < 2o + (X2 S 1S (81, 0)P1T). (31)
nligp njl = p \/ﬁ n 1,2\¥n>
Now the assertion follows from (30)—(31). 1

Corollary 3.1 If1 <p< oo and |Kf,j|7’+1 € Gt j=1,2, then
ey VAIEL W Zo)| 4,8, 72 m,

are nearly dominated for some m > 2.

3.2 The Second Order Expansions

Let t = t5,a > 1 denote an increasing family of stopping times, with respect to F,, = o(Xy,- -+, X5,).

We will assume that
]Pa{AtBt} = 1, Ya 2 1,0 S 0. (32)

Let £ be a member in Z5t! (p > 1). Observe that IE¢|A(Z,)P < oo for any For h € H,and a > 1,

by Corollary 3.1. For the next theorem, let

Ro(€, h) = Va{Ef[h(Z,)] - ®h - f(w")mf[pw)lf (0,0)]"}. (33)

13



Theorem 3.2 Let £ € 2! for some p > 1, and let ¢t = ¢, are stopping time satisfyin
1 p g g

a

= — p?(@), in IP¢ — probability, as a — oo, (34)
and
aan(’loaq]Pg{ta <na}=0,39>0,q> % (35)
Then

. ¢ [ ess sup
a]LIl;lo E heHp

Ro(&,h)[}=0.

Proof. Denote Cy,C3,- - positive constants, and C;(p), Ca(p), - - - positive constants depending
only on p. Then,

eSSSUPRa ,h dIPE < C / 1 Z.1P A deP§
fo, SRR WP < CUIVE [ (14120 +12aP)

2
+ 0 [ Y aO)IKE (0, 0)laPe.
{tSﬂa}j=1

The second integral — 0 as @ — oo by assumptions (32)—(35). For the first, let 7 and ¢ be in (35).

IN

va (1 +[Zal? + |Zt2|P)d195
J{t<na}

wva [ (1+]ZdP)dpe
vaf,  (1+1zr)

IN

i 8%
€ aé p B
Cav/alPé(t < na)] "B {max(1+ 1 Z4l7) " }*.  (36)
Since G is bounded on the compact support of £, it follows from Lemma 2.4 that
2
z
Pf(lggglIZkIlIAkBk 2 @) < Cs(1+logyn)exp{——-}, 2 > 1,.

The right most factor is then of order (loga)?, and (36) is of order /aa=9/*(loga)? = o(1). For

the integral over {t > na}, we may write

4
Ro(&,h) = Z Ra,;(&,h),
ij=1
where

Ra,l(g, h)

o { [KSG0,0) - K5(0,0)][Vh(z0)] ),
Raa(eh) = \[SEE{ [K50,0) — WK (0,00 [vA(20] ),
\/gms{mf [K5(0,0)|E}[v"(2,) - ov*] '},

eV E{[|/5 - p(0)] [K5(0.0)] ).

14
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ess sup p

It is convenient to write Rﬁj = e i,

a,5(&s P)[(t>nqa}- By Holder’s Inequality and Lemma 2.6,

E4(RE,) = 047(717'0 S (0,0) - 5,000 Y5 (B (1 12+ 12y F ]
=1

By Corollary 3.1, the right factor in the summand is bounded. The first fact in the summand is
not more than {]EE supn2nn|Kf,j(én, 0)-— Kf,j(O, 0)' +1};i-T , which approaches zero as a — o0, by
the dominated and convergence theorems. Proving lim,_,q, ]Ee(R#z) — 0 is similar. By Lemma
3.3 and Holder Inequality, Ra 3, @ > 1, is uniformly integrable. It is clear that Ra 3 — 0, w.p.l. as
a > 1. Therefore, lim,_, o, IE¢ (R 3) = 0. It follows from (34) and (35) that |\/a/t— p(8)|I{s54q) <
|v/a/t — p(8)| — 0 in probability as a — oo and that |valt— p(0)| I s5na} < 1/+/T+ p(8), which is
essentially bounded. Therefore, IES(R¥,) < Cs(p) Yk, EX(|K1,(0,0)|v/aft — p(0)|Iiisnay) — O

as a — 00, by dominated convergence theorem. 0

For the corollaries below, suppose that t,,a > 1, satisfying (34), and for every compact

O C O, there is an n = 7(Oy), for which

lim af /e Py(t, < n)d0 = 0, for some g > l 37
0

a—00 2

Condition (37) implies (35) for every £ with compact support. Assume further that p is absolutely

continuous on all compact subsets of ©. Let

kia(8) = 1) 1 2%, 1P(0)V=01]
VT RGP T fare,)  pOVE
k1a(8) = ——2 () 1 5500

SIGIEBIP | [aye,) PO
;= [ ra@p06@)ds, j=1,2

Corollary 3.2 Ifp>land £€Z HPH , then

Jim B {02 ValBS(h(Z0)] - 8 - —=(@VH(E 1 7 [}= 0 (38)
and
Jim, sup ValBX{A(Z)] - @h - T (@V)(E |0 (39)

Proof. We only prove (39). The proof for the other is similar. In view of the definition of R,,

the term on the left hand side of (39) may be written as the absolute value of the sum of
= E*{Ra(&, )} and IT = SVHE[p(0)K((6,0)] - (RS, A5 )Y7,

15



for all £ € ””H, and h € Hp,(a > 1). It is clear from Theorem 1 that I, — 0 as ¢ — oo uniformly
in h € H,. However,

E¢{p(0) K% ,(0,0)} = /,,(o){ 1 G1(61)

m;'m’

By the assumptions on &,

Ll p(0)&10(9) £(0)do, = /91 601 [p(o)\/_ol 1 £(0)do,

V/GY(61)E(0) \/Gi(61) V=0

GY'(61) 1 25[e(0)vV=61]
o\ttt ~ T v SO

Thus, E*{p(0)K{ 1(8,0)} = [g #1,1(0)p(0)£(0)d0 = &5, . Similarly, EE{p(8) K} ,(0,0)} = &% ,. It
turns out that I7 = 0. This completes the proof. 0

3.3 Higher Order Expansions

In this subsection, ¢ = #,,a > 1 denote stopping times for which (32), (34) and (37) hold for some

g > 1; and

5a(61) = a(B{A(Z0)] - @h - — (@WK (0,0)] - cer{8(VeV )E][A(0)K5(0,0)]}),
for h € H, and £ € =8, (p > 2).

Theorem 3.3 As a¢ — o0,

lim IES

a—o00

h)|}= 0.
Proof. Since ¢ > 1, on the analogy of the proof of Theorem 3.2,

€ss su
/{tS"IG} hEprlsa(f,h)ld]PE — 0, asa— oo.

To estimate the integral over {t > na}, it is convenient to decompose

Sa(&, h)

Sur B {[K5(6.,0) - K50,0)] [Vovh(z)}

2r B5{ [K500,0) - ESLK(0,0)]] [Vovh(z,)}

+ +

%t'r Ef [K5(0,0)|Ef [V ov(2,) - oV*|

o [pvovMEH{[\/2 - o0)] [K5(0,0)]}

+ Va2 eV [Ki0,0) - Ki0,0)]
o Y.,
i=1

+

16



The analyses of §,,1—S,,4 are similar to these of R, 1—HRg4 4 in Theorem 3.2. For S, s, it is
sufficient to prove
L% a § }|1E5 [K (0,,0) - K¢ (0,0)”d]P£ -0, asa— o0, j=1,2. (40)
>na
Let O, denote the compact support of &; let Oy = [011,010] X [02r,02u] denote a compact
rectangle, for which ©; C 00 C ¢ C O. define D; = {t > na,éﬂ ¢ [010,61v]} and Dy = {t >
na, by € (611,610} First,

va [ \[HIES [K5a000) - 5 ,(0,0)]japt
i

< 2\/7EE{:u11’)a i 1(0n,0)| }”“ xIP¢ (9n1 ¢ [61r,010],3 n > na) P

which approaches zero as a — oo by Lemmas 3.2 and 2.3. Since Kf’l(w,0) does not depend on

wy, we may write K ,(8,,8) = K} ,(6,1,0) and K} ,(0,8) = K% ,(61,0). Let

V{1 (0n1,0) - K§,(61,0)} = I + 1T,

where
I, = a{K (0n,0) - K, (6, o)}-——Z”1 9 (w1, 0)
n 1,1\Ynl, 1,1 9 /—G”(9 )aw 11 ’ W1=én1
I, = Zut 0 Kﬁl(wlvo) b1’
w1 =bn1

VeLE

Let C;(j > 1) be constants. By the Mean Value Theorem, we can see I; — 0 as a — oo, and
|} < C1|Zu|,w.p.1. on D, for all a > 1.
So
/D2 IES(L)|dPE < /D2 1| = 0 as a — co.

From Theorem 3.1, and the continuity of K7 1(w,#) and GY(6,),

9 E(Zn1)
ES(TL)|dPE = / K (w0, 0)] . —nt) | e
Jo, M1 R N T

IA

02/ |1E§(an)|‘ﬂpg

= / \/_|K1 100, 0)| ¢

1
c / L dP¢ - 0,
3 D, V1t -

17

IN



as a — o0o. Therefore, (40) holds for j = 1. The proof for j = 2 is similar. 0O

For the Corollary below, assume that p(-) is twice absolutely continuous; and let

W[pz‘/ —0] gy Ep*V=a] | sqrr Gl

K,Z,ll( ) = 2\/_01 Guz 2\/—01 12G”3 - 4G"2’
K2,12(0) = 801802 L + G335 l0*V=01] GY' 35, 1P*V=81] 19GY'GY
| VOIGE VT e\ fGiaEry=a 6\/arayey=a SIGIGHFT
9% 2 .
362 P G G
K2,22(0) = =2 2 2

77 3GP TGy
By = [y xas(®)r(0)E0)d0.

Corollary 3.3 Ifp>2and ¢ "p'H, and for every compact O C O,

Jlim va [ [Eg(y/$) - n(@)]d0 =0, (41)
then
f -f
m sup a|lES Il - — V! T oVh 2 .
Jim, sup ofEX[A(2)] - @h fcpv (R”) t{@(VV)(Kgn Km) —0. (42)
E 5
2,11 2

Proof. First as in the proof of Corollary 3.2, IEg [p2(0)K£(0 0)]— ( { ) By the

definition of R,, the term on left hand side of (42) is no more than the absolute value of the

sum of I, = E¢{Sy,0(¢, h)} and 1, = ya{IE¢ N [K5(0.0)] —Vh(" E )} From Theorem 3.3,
1,2

lim sup |I,| = 0. However, hm sup |11,] = 0 by (41). 0O

a—00 heMyp heH,

3.4 Asymptotic Expansions by Rescaling.

ForzeR%,0¢cO,t=1t,,and a> 1, let
Foo(z) = Pg(Z: < 2),

and define the following two signed measures by

o{')h = ®h+ 7(»:1 1(0), 51,2(8))(BVY',
3Dh = oh+ ——(n“(a),nl 20 @Vhy + 1 t {(Hz,uw) K2,12(0)) <I>(Vth)}.
o Ja K2,12(0)  #2,22(0)

Then <I>t(11‘),h and <I>((12‘),h give a second order and a high order approximations to F, g, respectively.

18



Corollary 3.4 Under the conditions of Theorem 3.2,

lim sup
a-—o0 hE'H1

/e ValF, gh — 30} he(0)d8|= 0.
Furthermore, under the conditions of Theorem 3.2 and Corollary 3.3,

lim sup
e heH,

/e alF, o — 8h16(0)d0]= 0.

Proof. The results here are restatements of Corollary 3.2 and 3.3. 0O

One of significant features of the transformation (10) is that the correction terms in the

asymptotic expression may be described by rescaling. Define

300 = (2= A2 10a(0),m1a0)),

for z€¢ R%2,0 € ©,and a > 1.

. =p+1
Theorem 3.4 Let p > 1 be an integer. For all £ € :’2’+ ,
lim su a/ F, gh — @) 1] (0)d8]= 0.
a—’°°he'lgp\/-| e[ ok — 8Cyhle(0)ds|
Proof. The proof is similar and simpler than the proof of the next theorem. 0

In repeated significance tests, the log-likelihood ratio test statistic for testing Ho : 8 = 8, is
versus Hy : @ # 0y is

An(80) = L(0,) — Lo(80) = nI(8,,0,),

by (9). Many important quantities are associated with A,(@), which equals to 1(Z2, + Z2%,) by
(9) and (10). See Woodroofe (1982, Chapter 8). Then any function of A,(@) is symmetric about

both Z,; and Z,3. Generally, define a subset of symmetric functions in H, by
H; = {h € Hp : h(Z],Zz) = h(-—Zl,Zz) = h(zl, —22) = h(—zl, —22), v (21,22) € ]R,2}

Note that for any h € Hj, ®V* = 0, ®h is the approximation for both E$[h(Z;)] and E¢[h(Z,)]
of the second order accuracy for any £ € E’l"H, h € My, and any stopping times satisfying (34)
and (37). Furthermore, it is also possible to have a high order rescaled expansion. Assume that
k2,11(0) > 0,7 = 1,2. Define

o) = 8(z- 22 fran(0), raald))

for z€ R?,0 € ©, and a > 1.

19



Theorem 3.5 Forall £ € 5’2’“,

Hm sup a

(4 —
/6 [Fa,oh - Qa’;h] §(0)d0|_ 0.
Proof. First, we can write

a /e [Fugh - 34)h]€(8)d0 = 5, + S,

where
S1 = ]Eg[hZ]—‘ﬁh—-—1 2~€ 2 _1)h(2)®(d }
1 = af (Zy) % j2=1 ”2,jj/ 2(zj - 1)h(2)®(d2)},
Sy = —/ {‘I>(4)h-<1>h i2 2(0 -'0/ 2 _ 1D)h(2)®(d } 6)do
2 ea' a,f 2 ;=1:p( )H’2,.1]( ) m2(zj ) (Z) ( Z) 6( ) .

For any h € H;, [r2 zh(2)®(dz) = (0,0) and [re 21220(2)®(dz) = 0. It follows from (20) and
(21) that
21

®V" = (0,0) and <I>(Vth)=% ez ( . \

) h(z)®(dz), he H.

Note that for any h € H, the term I, in the proof of Corollary 3.3 is 0. By the same argument

of Corollary 3.3 that alirrgo sup |S1] = 0. By Taylor’s expansions, the integrand in S, is
T heH}

a|/};£2 {¢(Z - %’062[\/52,11(0), \/52,22(0)])—45(2)}];(2)(12
2
-%(GQ ; K2,4i(0) /IRz(zJ2 ~ 1)h(2)¢(2)dz]

< 72 o o (1) PO 0] 0]

where ||z* — z|| < Bﬁ\/%l\/ﬁzyu(O) + K2,22(0). The right hand side of (43) is independent of h € M,

p?

83
Wﬂz )

(1 + lZl |p + lZzlp)dZ, (43)

approaches zero as a — oo, for each 0, and is bounded by a constant multiple of 1 + Q(@). Here
Q(6) depends only on 1 + ||[Vp(0)]| + ||V2p(8)|l, which is bounded on the compact support of .

So Ry — 0 uniformly in h € H;, by the dominated convergence theorem. O

4 An Example

One application of Theorem 3.5 is to approximate the sampling distribution of the log-likelihood

ratio test statistics mentioned earlier. Consider the problem, in which X;, X5,--- are i.i.d.

20



N(p,0?), where both —0o < g < o0 and 0 < 02 < 0o are unknown, and
n
t = t, = min(bza, inf{n > ba: ZX? —n—nlog(62) > 2a}),
i=1
where 0 < b; < bz < oo are two prespecified numbers, 62 = 1 P 1(X; — X5)?, and X, =

15 X;. Then

n =1

1< .
2A; = || Z4)|% = = Z(X,- —w)? +tlog(c?) —t - tlog(s2),

i=1
on Yt 1(X;— X¢)? > 0. From Table 1,0 = (—52z, ). Theorem 8.3 of Woodroofe (1982) implies
that
by i p2(0) < 1/bs,
o= ), i1k < p0) < 1/b,
b, if p%(0) > 1/by,

in IPg-Probability, as a — 0o, where

p*(0) = 1(8,(~0.5,0)) = G1(6;) — G1(-0.5) — G4(~0.5)(6; + 0.5) — 6,62
= %{# +1 + log(o?) — 1}.

o2

Let hy(2z) = I zjp<2v), for z € IR2. Then Theorem 3.5 suggested the approximation
Po(A; < u) ~ )by ~ 6(u; a,0),
where

6(u;a,0) = ®h, + 2_1a_ Z,F(o)nz,jj(o) /Rz(z? — 1)h(2)®(d=).

It is easy to verify that p?(8)k;,11(8) = L:,'i + 50%(0), p*(0)k2,22(0) = -0, = 315, Also,
Qhy =P(x3 < 2u) = 1-e™ and fp2(2? - 1)h(2)®(d2) = —u e7¥, for j = 1,2 and u > 0, where
X3 is a chi-square random variable with 2 degrees of freedom. Therefore,

u

—-u 2
etrp+15 11,
L el e > 0.

0(u;a,0)=1—e* -

Figure 1 shows Monte Carlo estimates of IPg(A; < u) for a = 8, by = 0.5, b, = 50, against u in
[0,10] for various combinations (u,o?) = (0.5,1.25),(0.5,0.8),(1,1.25) and (1,0.8), together with
directed x% approximation ®h, = 1 — e~*,(u > 0), and the corrected approximation 6(u;a,0)
given by (44). The x2-approximation seriously overestimates the probabilities. The corrected term

in (44) is always negative and the corrected approximations are closer to Monte Carlo estimates

in all cases as showed in Figure 1.
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4.1 A Remark

The results of this paper can be generalized to some multivariate density functions. For simplicity,
we discuss the bivariate case only.

Case 1. Assume that the two components of a bivariate random vector are independent, and each
of them follows an one-parameter exponential family.

Case 2. Assume that (X,Y) is a bivariate random vector, whose density function with respect to

Lebesgue measure on IR? has the form

Ps1,5)(2,y) = exp{Us(z,9)B1 + Ur(z,y)B2 — ¥(B1, B2)}.

Note that the Bi-variate Gamma distribution given in Mihram and Hultquist (1967) is a special
case in Case 2.

Under analogous assumptions for the bivariate case, the main results developed in this paper

would be valid.

Appendix

Proof of Lemma 2.1. If A, occurs and 6,1 > w; > 6; for some n > 2 then Y, > Gi(w) for

the same n. Expanding G2(T2) about u., we get

?n=%zn:vi_§nzvn_§m (45)

where
Vi = Ui(Xi) = Go(p2)Ua(X;) + [Ga(p2)pe — Galpz)], (46)
€n = (Tn2 - l‘Z)zGIZ’(Tn)/2v (47)

and 7, is some intermediate point satisfying |r, — ps| < [Tn2 — p2|. Clearly, £, > 0 so that

Pg(A, and b,y > wi,In>m) = Pg(sup Y, > Gj(w))
n>m

]Pa(f:‘;’l;(vn - fn) > Gll(wl))

Py(sup V, > Gj(w1)).
n>m

IA

Let b = m(w; — 61). By Assumption A, the moment generating function of V; is given by

My, (s) = exp{G1(s + 61) — G1(61)}, s+ 6, € ©,. (48)
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Then by the submartingale inequality (to the reverse submartingale exp(bV,),n > m),
Pg(sup Va2 Gi(w1)) < exp{-~bG}(w1)}Eg{exp(bV )}
n>m
= exp{m{Gs(B: + =) — Gy(81)] - bGh(wn)}
m 1
= exp{-mli(w1,61)},
which implies the first assertion of the Lemma. For the second, note that 4 = m(w; —6;) < 0 and
Pg(A, and b1 <wi,In > m) = ]Pg[inf Y.<G (wl)]
< ]Pg{sup exp(bY ,,) > exp[b G (wl)]} (49)
It follows from Fact 4 that the moment generating function of Y,, is given by

Eg{exp(sY,)} exp{H,(s+ 61) — H,(61)}

exp{n[Gi(s + 61) — G1(61)] — [G1(n(s + 61)) — G1(n61)]}, (50)

for s+6; € ©,. Since G3(-) is positive, Gy(-) is convex and {Y ,}.>m is a reverse supermartingale.
Therefore {exp(bY »)}n>m is a reverse submartingale. It follows from the reverse submartingale

inequality to the sequence {exp(bY,)}n>m that

IPg{sup exp(tY,) > exp[b Gi(w1)]}

< exp{=bG} (1) E{exp(47m)}
= exp{mlGi(0: + ) ~ Ga(B)] - [Ga(m( 2 +0,)) - Ga(m8y)] - bGi 1)}
= exp{-mli(w1,61) — [Gi(mw:1) — G1(mb1)]}.
Now the second assertion is established. O

Proof of Lemma 2.2. Note that the moment generating function of Us(X4) is

Eg{exp[sUs(X1)]} = exp{1(61,0) — 1(61,62)}
= exp{01[G2(02) - G2(02) + 92G (02) - 92G (02)]}, (51)
where 65 is the unique solution of GY (92) = Gy(02) — s/01. For wy >0, let b = —mb;[Gh(w2) —

2(62)]. Then b > 0 from the monotonicity of Gj(+). It follows from the submartingale inequality
(to the reverse submartingale {exp(bTn2)}n>m) and (51) that

Pg(B, and b2 > wy,In > m) = IPy(sup Tra > wy)
n2m
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exp{—b wz}]Eo{eXP(;%Tm)}

exp{61[G2(82) ~ Ga(62) + 62G(8:) — B2G(8)] — buwp},

where 6 is the unique solution of G%(6;) = G%(63) — b/m#b;. From the definition of ¢ and the

monotonicity of G5H(+), 0y = w,. The first assertion then is established by simple algebra. The
2

second assertion can be established similarly.

O

Proof of Stein’s Identity. For any h € H,, Lemma 2.6 implies that th € Hp, and (| [P +

|221P)[| f10(2)| + | fro(2)|] is integrable with respect to & from (22). Thus
/Ooo /_:{/jo [22(0) - ‘I’h]‘f_%”?dyl}fw(Z)%e‘%"g dzydz
= /Ooo /_ : /021 fro(2)dz1[®%(y1) — Bh)d(y1, 22)dyrd2,
/Ooo /_ o; [£(z1,22) = £(0, 22)] [8(22) — Bh] §(2)dz1d;

and
/_ Ooo f_ Z{ / jo[ﬁ(yl) — dhle~ 34 dyl} fm(z)%e‘%zg dzydzs
= = [ [ b - amlethan ) () meHEdna,
- /_Ooo /_ Z [f(21,22) = f(0, 2)][®}(21) — Bh](2)dz1d2s;
We then have
S V@ fo(2)8(2)dz = [ [84() - 8] f(2)a(2)d.
Similarly, we get
/0 ~ /_ °; VE(2) for(2)(2)dzadig = /0 > /_ Z[f(z)  fon O[h(z) — B (a2,
and
[ @@ s@andz = [ [ 1)~ 161, 0() - Sh(en)lo()dnden,
which implies that
e @ fn(2)8(2)dz = [ [(z) - @)l (2)(2)ds.

The desired result follows from (52) and (53).
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Proof of Lemma 3.2 We will denote Cy,Cy, - - positive constants. If { € Z¢, let ©¢ denote the
compact support of {, and let ©¢ denote another compact set for which @, C 83 C 8 C O, where
6] is the interior of @9. We will treat J; and J2 01 as functions of (w, #) which are independent

of (w1,6). Since G is strictly convex and twice differentiable on 82,

J2 < Cl and J2,012 < Cl, on 90 X 95;

i SCz and

1
VI V12,01

Thus, on (8 — @0) X 8, J» < 252 < 2C3, and | |3 = ANzeat GGl < ¢y,

< Cz, on (9 - 90) X 95.

which imply that

1 + | I2,02| J 2
A VL

|J2,01] < < Cy+ CyCsl,, on (0 — Bg) x O,

Since ©; is bounded,
Jy < C4(]. + I2) < Cs(l + I - 01]2) < 05(1 +I), and J2'01 < 05(1 + I), on O x 66,

which implies that on © x O,

’%erﬁ CGIE%leaexp{aI} and |J2,01|a§ Ceexp{al}.

It follows from Lemma 2.5 that |£g1/6J2]* € WE and |J201|* € WE. Therefore |Kfv2|°‘ € WE.
The proof of |K f,ll" € W¢ is similar. This assure the first assertion. The second assertion can be

proved similarly. 0O
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Table 1: Examples of a Certain Two Parameter Exponential Family of Distributions

Name Normal Inverse Gaussian Gamma Inverse Gamma
density | oo™ | | [Ere o avan | goant o L—
Ui () 2 1 ~ log(z) ~ log(a)
Us(z) z z z %
Br = 6 T -£ —a —a
no| & -4 -5 5
02 = p2 Iz u © I
N R™ xR R~ x (R-U{0}) R™ xR~ R™ xR~
@ R™ xR R-xR*t R™ xR* R™ x R*
G1(61) | —3log(—26,) —1 log(~261) 61 + 6y log(—61) + log[T'(—64)]
Ga(6s) 2 i log(62) log(62)
Y, E(Xi _X.)? i=1Xiz~ _ 7% glog())(( ”) ;bg(}(l—i) - log(;l; ; —)-%)

where X,, = *

. €3

n Lei=1




p =05, o2 = 1.25, p*(0) = 0.1116 p=0.5, o2 = 0.80, p%(6) = 0.1697
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Figure 1: Simulations of IPg(A; < u) and approximations for @ = 8



