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ABSTRACT
Two reference priors (Berger and Bernardo, 1992a) for the product of means of n normal
distributions with common known variance are developed. One of them induces improper
posterior distribution and therefore is not of much interest. The other one is in a
generalized form of n=2 case and is selected to compare with the uniform prior (the
Jeffreys prior) in posterior inference and some frequentist criterion. The reference prior
will be shown better than the uniform prior in the sense of correct frequentist coverages of
posterior quantiles by numerical computations. The computations were efficiently done by
Gibbs sampling technique for n=3 and n=10. Furthermore, it can be shown that the
reference prior selected is one of the asymptotic optimal frequentist coverage prior
(Tibshirani, 1989) under a transformation of parameter space such that the parameter of

interest and the nuisance parameters are orthogonal (Cox and Reid, 1987).
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1. Introduction

Suppose X.~N(u,1), for i=1,...,n are independent normal random variables with
means >0, and common variance 1. The parameter of interest is O=p 1,1 . When
n=2, 0 can be thought of as the determination of an area based on measurements of length
and width, while for n=3, 0 represents a volume. Note that if X; has known variance 0,.2
for each i, the problem can be reduced to the aforementioned by considering ¥, = X, / 6,

and W; =L,/ o,. Therefore,

0 =TTt b, =TI 0. T k] =(ITi0,)6",
is only a scale transformation between 0 and 6" which has no effect on the discussion of
the reference prior approach.

Berger and Bernardo (1989) tackled the problem with reference prior Bayesian
analysis in which they successfully applied one reference prior on the problem and showed
that the posterior inference using the reference prior is more sensible than that using the
uniform prior. However, the reference priors are more difficult to calculate when n is

large. When n=2, the reference prior obtained by Berger and Bernardo is in the form
n(&) oc w/uf +u2. Several statisticians hence conjectured that the reference prior would

be in the form n(y_)oc 1/2};1 u? when n>2 (in personal communication). Yet, under the

careful investigation, two reference priors will be derived for n>2. The impropriety of the
posterior density by one of them will be discussed. The other one is
n(&) o< [T7, 14/ Ty u7> which s also in a generalized form of the prior in n=2 case while
it is different from the conjectural prior. The derivation of this prior not only depends on
selection of compact subsets (Berger and Bernardo, 1992a,b,c) of the parameters, but also
depends on the limiting procedure of the boundaries of those subsets.

Posterior inferences made by the reference prior and the uniform prior (Jeffreys

prior) will be compared and numerical comparisons made for the frequentist coverage



probabilities of posterior credible sets suggests that the reference prior is preferable than
the uniform prior.

Furthermore, orthogonal reparametrization in which one of the parameter is 6 will
be solved by partial differential equations. Tibshirani's asymptotic optimal frequentist
coverage prior in which, asymptotically, the frequentist coverage probability of a posterior
credible set matches its posterior probability (Tibshirani, 1989), will be derived by this
reparametrization. It turns out that the reference prior which has proper posterior is one
of those asymptotic optimal frequentist coverage priors. This provides the first
multivariate example of Tibshirani's priors in which the orthogonal parameters need to be
solved by partial differential equations. Tibshirani (1989) (also see Stein, 1985)
considered the "distance of the mean of a multivariate normal distribution from the origin"
example in which the natural polar coordinates automatically give one orthogonal
reparametrization.

The paper is organized as follows. Section 2 gives two reference priors derived
based on one selection of the compact subsets. In section 3, the posterior inferences based
on the reference prior which has proper posterior and the uniform prior will be displayed
by graphical comparisons. Section 4 will show that the frequentist coverage probabilities
of posterior credible sets by the reference prior and the uniform prior. The calculations in
both sections 3 and 4 are done by Gibbs sampling technique which is very successful in
dealing with the problem even when n=10. In section 5, the asymptotic optimal
frequentist coverage priors will be discussed. Section 6 includes discussions and
conclusions. In section 7, some necessary proofs for the results or computational results

will be given.



2. The derivations of the reference priors

2.1 Reparametrization

Let
0=T1T.,u. =91/n y Co_'l

Iy so that ' ey L@
o=y, /0™, i=2,3,.,n i, =0"qw,, i=23,..n

The purpose of the reparametrization is to separate the factors of 6 and ®'s in the
calculation for the expected Fisher's information matrix. Define
O =(05...,0,)", p@) =I5, 07, (@) = (@;',...,07)" 2.2)
The Jacobian matrix of the transformation is given by

1/n-1
p(@) -8""p(w)d; (w)

nl/ 1 ’
0™
@ el/nln_l

J(6,m) =

n
where I is the identity matrix of dimension m. Then the expected Fisher's information

matrix can be computed as follows:

1(8,w)=J(8,w)' J(6,w)
(2.3)

=2’_( Pr()+0'e 0 n(@ - p*(@)d, (@) )

n* \0n(@-p*(@)d, (@) 06°%r*(,,+p*(w)d, (w)d (@)

The inverse matrix of /(8,w), which plays an important role in deriving the reference

priors, is given by

0%(p” +did,) 0 [ —=(p” +d!d, )]
1—1 (e’g—)) = 6—2/7: ) 1 n 1 ,
0 [41 ___(p—z +d_;41 )@] In—l __(51_1 Q‘ +Q4;)+_2(p—2 +£i.;41 )QQ‘
n n n
where p and d, are the abbreviations of p(®) and d,(w), respectively. In both matrices

1(0,0) and 7'(0,w), 8 and ® are separated in each element.



2.2 Selection of the compact subsets and the result of the reference priors

We will display the reference priors of the normal product problem using the
algorithm by Berger and Bernardo (1992a). The algorithm is iterative on a sequence of
compact subsets of parameter space. When a limiting procedure is processed, the
compact subsets will eventually turn out to be the whole parameter space. Therefore, it is
possible to have different ways to approach the limits resulting in different reference priors
(Berger and Bernardo, 1992c, Ye, 1992).

In many situations, it does not matter what kinds of subsets to choose from and
what the limiting processes are. However, for a normal product problem, as shown for
n=2 case by Berger and Bernardo (1989), different selections of subsets may yield
different results.

Suppose that we are interested in the group {0,®} in which only 0 is the parameter
of interest and  is treated as a vector of nuisance parameters. For the details of
grouping, readers are referred to Berger and Bernardo (1992a). In this case, we have two
groups 0 and .

The h functions used (Berger and Bernardo, 1992c) in the calculations are:

b, (0,0) =021+ p?d'd,],
2.4)

B (6,0) =0T, 01+, 023, 02)™.

It follows that,

I+, 07230, o7
o,V 1+ T 072 Ty 077 dw

T (W!0) = Iy (@) and

n(0,w) =T, ((_o_le)exp{% E'[loglh, (9,@)”9]}.



where {Q,(G)} is a sequence of compact sets of @ for any positive integer / such that

Q,(0) > R} asltends to «. By these forms, the reference priors can be written as

o 2 A6 . | Bi(®) B[ (6,) 5
(0, ) \/1+1'[co ;zco P—IBA(O) XP{Z}I—IEI:AI(G) Az(eo)]}’ (2.5)

where

A(0)= jn(e)J1+nm So?de, and

i=2

(2.6)

B/ (8)= .[n ®) \/1+ ITw;? Zm_z lOg[e 2/"_21_[0)—2(1 + I-[Cl)_2 }:0.)—2 )- ] dw,

i=2 i=2 i=2
in which 0, is an inner point of the interval (0,0).

The compact subsets for @ are selected using polar coordinates. First, let v, = ;"
for i=2,...,n. Then transform to the polar coordinate transformations (r, 9) for v in which
r is the radius and @ is a vector of angles. Let each coordinate of ¢ range from 1//; to
®/2-1/u, where both /, and 4, do not depend on 0 and tend to e=. Suppose that r is
from 1(0) /I, to u,u(6), where 1(0) and u(0) are two functions of 8 defined in the proof of
Result 2.1 in section 7. After discussion of the relationship between the boundaries
I, and u,, we have the following result.

Result 2.1: Using the transformations described as above, the reference priors could be
determined as follows:
A.For n>2,

(i) as wlog(u,) /1] — 0, the reference prior is given by

n(y_) o< T My S 2 S Q2.7)

(ii) as I'" ' log(l,) /u,— 0, the reference prior is given by
! ! !



E(E) o (H?=1 FLi)Z/’H\/ puIIN 2.8)

(iii) for the other situations, there are no solutions for the reference priors.

B. For n=2, the reference prior is given by

(T ITRTI Ty 2.9)

as long as both I, and u, tend to o .

Proof: See section 7. O
The prior in (2.9) is the same as the prior used in Berger and Bernardo (1989) and

the prior in (2.7) is in a generalized form of (2.9). In next section, the prior of (2.8) will

be proven to result in an improper posterior. Therefore it is not recommended for general

use.

3. Posterior distributions

3.1 Conditions for proper posteriors

Consider a prior with the form

r(p) < (M) (S )’ 3.1)

where h and s are nonnegative numbers. Notice that the priors given by (2.7), (2.8) and

the uniform prior are special situations of (3.1). The likelihood function of U can be

expressed by

()« exp[—%(z— W' (x- g)]. (32)

Therefore, using the prior with form (3.1), the posterior distribution of U is given by

n(uldata) o< (T, 1,) (S )’ eXP[—%(z— W' - g)]. (3.3)



A. When Ipl— oo, the density in (3.3) is always integrable because of the exponential

factors.

B. If, for some k, u;# 0 for j#k, then

A
(H?:l H; )s(zfl:l “i—z)h = (“i/h—z +py _Zp'i—z) I My
jrk Jek

which is integrable for i, at 0 when s—2h>-1. If s—2h>—11is true, then

(M) (Smawr?)” = (S M)
which is always integrable in any finite compact region of p. Therefore, to assure a
proper posterior for the prior (3.1), the necessary and sufficient condition should be
s—2h>-1.
For the prior in (2.7) and (2.9) as well as the uniform prior, s—2h=0>—1, so the
posteriors are proper. While for the prior given by (2.8), s—2A=2/n-2 <-1 when n>2.

Therefore, the prior (2.8) yields improper posterior.

3.2 Marginal posterior distribution for 6

Consider the reparametrization (2.1), the likelihood of (0,®) becomes

1(0,@) e exp{—%A@)[e”" ~B(z,0)/ A@)] +%BZ (x,0)/ A(@)},

where
- A(@) =P () +9'®, and B(x,0) = x,p(®) + X, 0. (3.4
In (3.4), ® and p(®w) are defined in (2.2).

Under the transformation (2.1), the prior (3.1) becomes

n(6,m) = 8 " p(@)C* (w), (3.5)



where C(®) = p(@)+d;(w)d,(®) and d,(w) is also defined in (2.2). Hence, the

posterior density of (0,®) using the prior (3.5) is given by

oc @ 5=2h1n h n__B(@) B* ()
(0,0l data) =< 6 " p(@)C (@)¢(JA(9)_)9 _—J@JCXP(z A(@))’

where ¢(x) is the density function of N(0,1) at x. The following theorem can be easily

proven.

Theorem 3.1: When prior (3.5) is used, the marginal posterior density of O =,---l_ is

given by

2
0 s—2h/nJ'0 J‘o p(m)ch (O))q) (M@l/n BA((QOZ) )CXP( B (Q) )d_@_

2A(w)

2
6 e s p@C (@0 (J@e"" -rox )exp( 2 (@))d@

2A(w)

n(6ldata) =

Furthermore, the marginal posterior cumulative density function of © can be expressed

by
F(6,) = P(0 <6,ldata) = 1-2:_(3;)),
where
H, (x)=[Jp (“))Ch(m)e’(p( ) A(( ))) s-2nn (X, D)AQ,
and

w B(w)
h,(x,0) = [707¢| JA(@)8"" - )de (3.6)
s <|>( JA()
The function 4,(x,®) in (3.6) can be determined further by the probability density

function ¢(x) and cumulative distribution function ®(x) of N(0,1) distribution. Notice

that after transforming s =0 " in (3.6),

1
h, (%, 9) = nq (150 (X "),



where ¢, (x,@) = |”s”0(/A(@)s — B(@)/ JA(@))ds can be evaluated by the following

theorem.

Theorem 3.2: If p is a nonnegative integer, then

q,(x,®) =V (x, 03)¢(\/A(0)) ——*)m (@[1 ‘D(W i((“’) )]

where ¢ and @ are density and cumulative density of N(0,1) distribution, and \y ,(x,)

and I;p (w) are given by

¥, =[x"" + B@V, (0)+(p-D¥,,(0)]/ A@)

(3.7)
iy =[B@h, + (p=Dh,, |/ A@)
(3.7) starts at o (x) =0, ¥, (x) =1/ A(@) and hy =1/ JA(®), h = B(w)/ A¥*(®).
Proof: By induction. O

By Theorem 3.1 and 3.2, the marginal posterior cumulative distribution function of
0 is 1 subtracted by a division of two n-1 dimensional integrals. In general, it is difficult to
evaluate multidimensional integrals when the dimension is large. Gibbs sampling method

is going to be used to overcome this difficulty in the next subsection and section 4.

3.3 Use of Gibbs sampling to evaluate the marginal posterior distribution for 6

In this section, the reference prior (2.7) and the uniform prior for p will be

considered and the marginal posterior distribution of 0 will be evaluated by Gibbs
sampling simulation (Gelfand and Smith, 1990). By the likelihood function (3.2) and the

prior with form (3.1), the conditional posterior distribution of u; given p,, where

B = (K5 sy 5Hipgseees )L, ), 1S given by

10



(W, 1, data) e u:(“-i_z + 2 u;z)h exPl:“‘;‘(ui —x,.)z:l, for p; >0. (3.8)

For the prior (2.7), in which s=1 and h=1/2, (3.8) becomes

(i data) o< (14423 u )" exp[—-;—(u,- —-x,.)z:|, forp, >0, (3.9)

while for the uniform prior, in which s=0 and h=0, (3.8) is the truncated normal

distribution with the density

(W, L_; ,data) = exp[——;—(u‘. - x,.)z], forp, > 0. (3.10)

To simulate the random variates with densities (3.9) and (3.10), rejection methods

will be described by the following details.

L. Simulation of X with density f (x) o< (14 x*U)"? exp[—(x- V)?/ 2] for x>0 and U>0.

Step 1. Consider two regions of u:

() V<—JU: ¥ (du, —JU){V* -2log(u,) <14 VU, accept x = V+V?-2log(y,),
where u, and u, are two U(0,1) random variates and d = max{\/ﬁ =1/ V}.

(i) V>-JU: Let p=(vJ17—1+\/(1+th7‘)2+4U)/(2Jﬁ) and g=p-V.
Generate x from N(p,1). If uz S(1+xJL_I) exp(1—gx—1/t), where t = max{ﬁ/q,l}

and u, is a U(0,1) variate, then accept x.

Step 2. Simulate u, from U0,1). If u, < (1+x°U)" /(14 xJ/U ) for x being derived in

Step 1, then accept x.
II. Simulation of X with density f (x) e< exp[—(x -V)?/ 2] for x>0.

Again, consider two separated regions:

(i) V 2-1/4: Generate x from N(V,1). If x>0, then accept x.

11



(ii) V <-1/4, Generate u, and u, from U(0,1). If u, < exp[—(log(ul) — 1/2)2]/u1, then
accept x =log(y,)/ (2V).

Discussion of these rejection rules will be given in section 7.

3.4 Numerical calculations

Using the Gibbs sampling methods described in section 3.3, we are able to deal
with the normal mean product problem for large n. In this section, marginal posterior
distributions of 6 for n=3 and n=10 will be calculated for selected x values. Denote 7,
as the reference prior given in (2.7) and w, as the uniform prior.

(Insert Figure 1 and Figure 2 here.)

Figure 1 shows four graphs of the simulated marginal posterior densities of 0 for
the reference prior and the uniform prior when n=3. When X =(10,10,10), both
distributions are very close. Hence for large values of x's, both priors provide the similar
posterior information about 8. However, when data values are small, the posteriors by
uniform prior show the considerable skewness in the information about 6. In section 4,
the frequentist coverage probabilities of the posterior credible sets by ®, will be shown
closer to its posterior probabilities than those by ©,. Hence, the posterior inference by &,
is inadequate to the parameter O and the estimation of the standard error could be
inappropriate.

Figure 2 displays several posterior densities for n=10. The similar conclusions as
for the n=3 can be made in this situation.

Each curve in Figure 1 and 2 is drawn by smoothed Kernel density estimations (see
Gelfand and Smith, 1990) for the 30,000 simulated marginal posterior points. For n=10,
three out of four graphs are rescaled because the natures of the problem; the vertical

values are enlarged by factor 10° and the horizontal values are reduced by the factor 107°.

12



4. Frequentist coverage probability for the posterior quantile

It has been argued by many authors (cf. Berger and Bernardo, 1989, Efron, 1987,
Ghosh and Mukerjee, 1992, Stein, 1985, Welch and Peers, 1963, Ye, 1993 and Ye and
Berger, 1991) that a good noninformative prior should have good frequentist properties.
One of these properties is that the frequentist coverage probability of a (1-o)™ posterior
quantile should be close to 1-c.. In this section, this property will be investigated
numerically in the light of small sample situation for the prior (2.7) as well as the regular

uniform prior for L. Again, Gibbs sampling method described in section 3 will be used.

The computation of Table 1 and 2 is based on the following algorithm for any

fixed true b = (Hygs-.->Hp) and any predetermined probability value o.. Here we choose

o as 0.05 and 0.95.

Step 1. Simulate x from NH(EO,I,,).

Step 2. Using the Gibbs sampling method given in subsection 3.3 to simulate posterior
random vector | |x. Repeat the simulation m, times and check the proportion p of which
TLp, <0,, where 6, =TI~ ;. This p is the estimation of the marginal posterior
probability of 0 for the interval (0,6,).

The combination of both steps above is called a cycle. Repeat the cycle m, times
and compute the proportion & of p<a in these replications. This 6 is the estimated
frequentist coverage probability of the o posterior quantile. Table 1 and 2 below show
the estimated frequentist coverage probabilities of 0.05(0.95) posterior quantiles for
various true values of W's by the reference prior (2.7) and the uniform prior when n=3 and
n=10.

Table 1. Frequentist coverage probabilities for 0.05(0.95) posterior quantiles (n=3)

13



Y, 14,11 1,2,3) (1,5,10) (2,2,2) (3,3.3) (5,5,5) |(10,10,10)
.1 .064(1.00) | .033(.995) | .059(.997) | .031(.994) | .037(.972) | .047(.957) | .054(.951)
. 1 .017(.998) | .018(.980) | .042(.995) | .012(.944) | .020(.919) | .028(.925) | .039(.936)

Table 2. Frequentist coverage probabilities for 0.05(0.95) posterior quantiles (n=10)

K, | (1,2,34,5,67.89,10) (1,2,3,4,5,6,6,6.6.6) (3,5,5,5,5.5,5.5,5,5)

T .041(.995) .040(.995) .038(.961)

T .012(.948) .009(.939) 011(.859)

B 1(55,5,5,5,6,7,8.9,10) | (5,5.5,5,5,10,10,10,10,10) (10,10,10,10,10,10,10,10,10,10)
T 045(.955) .043(.954) 048(.951)

T 015(.882) 018(.890) 027(914)

For the calculations of the entries in both tables, m, is 20,000 and m, is 10,000.
The maximum standard error of Step 2 described above is 0.0035 and the maximum
standard error of estimating & is 0.005.

From Table 1 and 2, clearly the reference prior is better than uniform prior in most
of the situations. Therefore, the reference prior with the form (2.7) is more appealing.

When each coordinate of ) is large, the frequentist coverage results by m_are almost

close to the desired levels. It is not surprised that the posterior quantiles show poor
frequentist coverages when the components of K, are small because the positive
constraints we have on the posterior means.
5. Orthogonal parametrization

Inspired by the work of Stein (1985), Tibshirani (1989) developed a method for
calculating noninformative priors which satisfy the asymptotic optimal frequentist
coverage property. The prior has such property will have, approximately, 1-o frequentist
coverage over its 1-o posterior credible region when sample size gets large. However, the
method depends heavily on the orthogonal parametrization, namely the off-diagonal matrix

of the expected Fisher information matrix is zero for the parameter of interest and the

14



nuisance parameters (Cox and Reid, 1987). The orthogonal parametrization depends on
solutions of partial differential equations (cf. Berger and Roberts, 1992) and is not always
solvable.

The frequentist coverages of the 0.05 and 0.95 posterior quantiles by the reference
prior (2.7) have been shown for small samples numerically in section 4. It is also
interesting to know what kinds of priors will be obtained by Tibshirani's method for the

normal mean product problem.
Let 0=k, and § =§&(u) for i=2,..n. Denote &/ =0&(W)/ou; and
Mg = I1,:1 ;. The Jacobian matrix of this transformation is

Ty Mo = Mw
008 | & & - &

—_— 5.1
o(W) : : 5-1)
& & - &
Therefore, the inverse of the expected Fisher information matrix can be written as
] 90,6)20.8)) (Zrmi, ¢
r'eg=|—-= = | =| R =) (5.2
: [a@ ][ a@) ( ¢ !

where ¢ = (Z;;m(j)ﬁﬁ,...,Z;;ln(j,f,f;)’ and A is an (n-1)x(n-1) non-singular matrix. Only
¢ =0 is the condition so that 6 and § are orthogonal. Hence, we have n-1 homogeneous

linear partial differential equations of first order. Any smooth function with form

(i —p2,i < )) could be a solution of the equations. For instance, one could take

2.2
v=tiZl o g
2

4

as the new transformations. Then O and v are orthogonal and its Jacobian (5.1) can be

rewritten as

15



11(1) T1(2) o Tl(,.)
a(e’é)_ Ky =, - 0
o | i i 5
b0 o,

and its determinant is nf,.) . The expected Fisher information matrix, by (5.2), is

-1

DA P 0 0

0 2 + 2 e 2

I(e’é) — : l‘l’l : u’z u;l
0 iH T T

Using Tibshirani's method (see also, Berger, 1992), a noninformative prior which

has the form

n -1/2
(®,8) = g&)(Tmm)
will achieve the asymptotic optimal frequentist coverage property where g(V)>0 is

arbitrary. Transforming back to the original parameter space [, one can derive

* n 172 n n =
T (Y) o< g(é(&))(zm Tl%i)) oe g(_&_(E))(H;:] u.-)\/ Tk (5.3)
Note that the prior (2.7) is a special case of (5.3) for g=1 so it should attain the asymptotic

optimal frequentist coverage property.

6. Discussion

It is not easy to compute the reference priors for several normal mean product
problem. Also, it can lead to several solutions with different limiting processes when the
dimension of the parameter space is higher than 2. Furthermore, some priors obtained can
lead to improper posterior distributions. Therefore, careful examination of the prior

should be made in the reference prior Bayesian analysis.

16



However, the derived result is very encouraging because it has the simple form and
it also has a good frequentist property comparing to the ad hoc priors such as uniform
prior.

Though the posterior inferences need to deal with n-1 dimensional integrations, it
is quite successful to use the Gibbs sampling technique to overcome this difficulty. For a
comparison, we also calculated the frequentist coverage probabilities of the 0.05(0.95)
posterior quantiles for n=3 by Monte Carlo sampling method. The results are very close
to the result shown in Table 1. Yet, it consumed much more time than Gibbs sampling
method. Therefore, when n is large, the computational difficulty of multidimensional
integrations for this particular problem can be successfully resolved by Gibbs sampling
technique.

Finally, it has been shown in many examples that the reference prior and
Tibshirani's asymptotic optimal frequentist coverage prior are the same except a function
of nuisance parameters. However, Berger and Robert (1992) showed that it is not the
case for the distance of the multivariate normal mean to the origin with the presence of a
non-identity covariance matrix when n=2. Though it is unclear thus far what is the
intrinsic relationship between these two approaches, we provided one multivariate
example which shows that these two methods give the same priors except a function of

nuisance parameters.

7. Necessary proofs
A. Proof of Result 2.1
Define

Bi©)= Jo oy T+ T2 0, 2107 log| [T, 07 (1+ T 0 £1,07) | d. (1)

17



The object here is to evaluate the function A,(0) in (2.6) and B,(6) above. Let
v, = co‘.'1 for i=2,...,n and transform v to the polar coordinates (r, 9) where r is the radius

and the components of @ are angles. The expression of A,(0) shows

u /el/n

A®) =], F(@g " (@)de | "1+ 22" dz = AQ)T,(1,9), (7.2)

o'/ /1,
where f (@) =IJ1/r"* and g(@) =[H{‘=2u,-(r,_(g)]/r2(""”. Here J is the Jacobian of the
transformation. The range for each coordinate of ¢ is [1/],,%/2-1/u,]. The compact
interval [1(8)/1,,uu(8)] is chosen for the radius r such that () =6""/g(¢)"" and
w(0)=1/g(¢)""0"". Similarly,

u,/9""
B,(8)= A (Q)T,(1,8)+A (Q) | 21+ 22 log[ 220 (14 22) ' 1dz a3
: o1, . .

=A(QT,1,0)+A (QT,(,9)
Both integrals for T, and 7, can be integrated in three regions for z, namely, I: (8""/1,,€);
II: (e,e™); and III: (¢™*,u,/0""). The integrals in II are bounded functions of €. In the
following context, denote K(€) as an arbitrary bounded function of €. Even in a same
equation, K(€)'s are not necessarily to be the same.
(a) For the region I:

I

zn——l)el—'”"-I-K(e)’

71+ 2 dz = [l 2 dz+K(e) =

and
[ V142 log[ 2200 (14 22) ™ 1dz = 2(n— 1) o 2" log(2)dz + K(e)

_ 21;'—1
- el—l/n

[log(8)/n—1log(l,) +1/ (n—-1)]+K(e)

(b) For the region III:
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[Tz dz =" dz + K(g) = é% +K(g),

and
[z N1+ 22" log[ 2 (14 22) " 1dz
=2(n—1)["*" log(z)dz —2n[*" "log(z)dz + K(€).
2 1
= _5‘-’7“1 log(u,)—;z-log(é)) -1[+K(¢g)
Therefore,

n—1
L

u
1,(1,6) = Gl;" + Do + K(g), and
20 2u,
1,1,0)= -ém[log(e) /n—log(l,)+1/(n— 1)]— E (log(y,) +1og(8)/ n) + K(€)

(i) Asu,log(u,)/l}" = 0whenl— eo,

7‘1(139) __)elln—l and T2(l96) _Tz(l’eo) - 2(”"‘1)
T,(1,6,) T,(,6 ) T,(1,8,)

log(©). (7.4)

(i) As I’ log(l,)/u, —» 0 when ] — o,

L1O) T,(8,) , 2, .. (7.5)
n

L6 -0 and
7‘1(1’90) Tl(la6 ) 711(1,90)

Note that other than the above situations, the limits can not be determined so that there is
no exact expression for the reference prior.
Using (7.1), (7.2), (7.3), (7.4), (7.5) and (2.6), the priors for (0,®) are

() Asu,log(u,)/ 1™ = 0whenl— oo,

(8, 0) o< 8"\ [1+ 1, 0,2 %, »; , and

(i) As I/ log(l,)/u, = 0 when [ — oo,
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1(0,0) o< 8" |1+ T, 0] T}y 07

The Jacobian of the transformation of (2.1) back to [ is 1J(0,0)™ = p™ () = 6""u;".

Notice that 41+ IT%,0;> ()T ©; (W) =y Siik;” . Therefore, the claimed result

follows. O
B. Discussion of the rejection rules in section 3.3
L f(x)e (14 x°U)"* exp(—(x—V)* / 2) for x>0 and U>0.

Step 2 of the algorithm is to use a rejection method to generate a variate from
g(x)o<(1+x«/—(7 )cxp(—(x—V)Z/ 2) for x>0. The maximum of the ratio f(x)/g(x)
when x e (0,0) is ratio of the normalization constants of the two densities. Therefore,
when a U(0,1) random number u, < f (x)/g(x) where x is from g(x), then we should
accept x.

For part (i) of step 1, let g(x)e (x—=V)exp[—(x—V)*/2]. Then
g(x)/ g (x)e< Jﬁ+(1+VJﬁ)/(x—V) which is monotone for x and the maximum of
g(x)/ g,(x) would be proportional to max{«/-(j ,—1/ V}. Here, all the proportions mean
that we are only ignoring the ratio of the normalization constants between the two density
functions g(x) and g,(x). The algorithm follows the regular rejection method after the
maximum of g(x)/ g, (x) has been decided. Part (ii) can be discussed similarly.

IL f(x)e<exp[—(x—V)*/2] for x>0.

When V >—1/4, we just use the truncated normal simulation. However, when V

is far away from 0 to the negative side, the density is exponential like. So, for V<-1/4, the

exponential density g,(x)=2Vexp(-2Vx) is used and the ordinary rejection method

follows.
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Figure 1. Simulated marginal posterior densities for 8 when n=3
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Figure 2. Marginal posterior densities of 0 for various x values when n=10
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