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Abstract

This article extends recent developments in penalized likelihood probability density estima-
tion to the estimation of conditional densities. Positivity and unity constraints for a probability
density is enforced through a one-to-one logistic conditional density transform made possible
by term trimming in an ANOVA decomposition of multivariate functions. An asymptotic the-
ory is sketched and the computation with automatic multiple smoothing parameters is noted.
Examples are presented to illustrate possible applications of the technique. The development
constitutes a viable approach to nonparametric estimation of graphical chain models, possibly
with a mixture of continuous and categorical variables.
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1 Introduction

Let (X;,Y;), ¢ = 1,--+,n, be independent observations from a probability density f(z,y) on
a product domain A x Y. Of interest is the estimation of the conditional density f(yl|z) =
f(z,9)/ [y f(z,y) of Y given X, without assuming rigid constraints in the form of parametric
models for f(z,y) or f(y|z). To achieve noise reduction in estimation, however, certain soft con-
straints on f(z,y) or f(y|z) are necessary. The method under study is the penalized likelihood
method pioneered by Good and Gaskins (1971). The formulation follows that of Gu and Qiu (1993),
which evolved from the work of Leonard (1978) and Silverman (1982).

Penalized likelihood method estimates function of interest, say g, by the minimizer of a score



of the form

L(g|data) + AJ(g), (1.1)

where L(g|data), usually a minus log likelihood, measures the goodness-of-fit of g to the data, J(g)
(> 0) measures the roughness of g, and the so-called smoothing parameter A (> 0) controls the
tradeoff. The minimizer of (1.1) is effectively the maximum likelihood estimate subject to a (soft)
constraint J(g) < p for some p < 0. For the constraint to be effective for noise reduction, the null
space of J(g) should have a finite dimension.

Two intrinsic constraints a probability density has to satisfy is that it is nonnegative (positivity)
and that it integrates to one (unity). Assuming f(z,y) > 0 on the domain, the logistic density
transform f = e9/ [e9 (cf. Leonard 1978) takes care of both constraints, but the many-to-one
feature of the transform in usual function spaces is often inconvenient for theoretical analysis and
numerical computation. For the estimation of the joint density f(z,y), Gu and Qiu (1993) propose
a simple surgery on usual function spaces to make the transform one-to-one. For the estimation
of the conditional density f(y|z), further surgery is needed. The idea can most conveniently be
explained in the context of analysis of variance (ANOVA) decomposition of multivariate functions.

An ANOVA decomposition for a bivariate function is expressed as g(z,y) = gp + 9-(z) + g, (v) +
9z4(%,y), where gp is a constant, g, and g, are functions of one variable called the main effects, and
gz, is called the interaction. For the decomposition to be uniquely defined, certain side conditions
have to be enforced on g, gy, and g, ,; for example, one may set [ g = fy Oy = [y 9oy = fy Oy =
0. A general discussion of ANOVA decomposition of multivariate functions can be found in, e.g.,
Gu and Wahba (1992). With a uniquely defined ANOVA decomposition of g(z,y), forcing g5 = 0
makes f(z,y) <> €/ [y y €’ one-to-one, which is the surgery suggested by Gu and Qiu (1993) for
the joint density. In a similar manner, one may set g + g = 0 to make a logistic conditional
density transform f(y|z) & e9(=¥)/ fy €9(z%) one-to-one.

With a one-to-one logistic conditional density transform, one may specialize (1.1) for the esti-
mation of f(y|z) as follows. Writing H = {g: 9(z,9) = 9y(¥) + 9z,(2, ¥)} Where g, and g, satisfy
side conditions required in an ANOVA decomposition, one may estimate f(y|z) by ef (z:9) / fy ed(e)
where g minimizes



in H, where the divisor 2 of A saves notation in later analysis. This procedure can be implemented
via tensor product splines; details are to be found in Section 2.

A large body of literature on nonparametric conditional density estimation exists under the
name of regression, of which most assume parametric models for f(y|z) on the y axis. Of those
do not assume any parametric form, most still operate on certain parameters of f(y|z) such as
conditional mean or conditional percentiles. Similar to a recent work by Stone (1991) who uses
tensor product regression splines in Euclidean spaces, we use tensor product smoothing splines to
estimate the whole conditional density, from which distributional parameters can be readily derived.
A point worth noting is that the domains X and Y in (1.2) are generic, so the method may apply
to problems on arbitrary domains. For example, with a discrete ) one may employ the method to
conduct nonparametric multinomial regression.

The remainder of the article is organized as follows. Section 2 formally sets up the problem,
conducts preliminary analysis, and presents examples. Section 3 sketches a generic asymptotic
theory and Section 4 notes the computation of estimates with automatic smoothing parameters.
Section 5 illustrates some applications of the method. Section 6 concludes the article with a few

remarks.

2 Penalized Likelihood Estimation

We first tighten up the formulation of (1.2). For (1.2) to be well defined at g = 0, one has to assume a
bounded Y, which presumably covers the observed Y;; with unbounded or unknown natural support
for Y the estimation shall be interpreted as that of conditional distribution of Y'|(Y € J). Penalty
functional J(g) in penalized likelihood estimation is usually taken as a quadratic form with a null
space of dimension smaller than the sample size n. For (1.2) to be sensible for the estimation of
f(ylz), J(g) should annihilate functions of z alone because g(z,y) and g(z,y) + h(z) for any h(z)
leads to identical f(y|z) by the logistic conditional density transform. One may try to minimize
(1.2) over all functions satisfying J(g) < oo, but functions differ by a function of variable z alone
are equivalent to each other, and for theoretical and computational convenience we shall allow
one and only one member of each equivalent class in the estimation. This can be done by forcing

A,9(z,y) = 0, where A, is an “averaging operator” acting on variable y which preserves functions



of z alone; among examples of A, are Ayg = [y,9/ ;1 and Ayg = g(z,%), %0 € V. Now let
H={g:A,9=0,J(g9) < 0o} and J; = {g: Ayg9 = 0,J(g) = 0}. J(g) forms a natural square
(semi) norm in H, and supplemented by a norm in J;, makes H a Hilbert space. Evaluation
appears in the likelihood part of (1.2), and it shall be assumed that evaluation is continuous in H.

Write t = (z,y) and 7 = X X Y. A Hilbert space in which evaluation is continuous is called a re-
producing kernel Hilbert space (RKHS) possessing a reproducing kernel (RK) R(:, ), a nonnegative
definite bivariate function on 7, such that R(¢,-) = R(-,t) € H, Vt € T, and (R(%,-),9(-)) = ¢(?)
(the reproducing property), Vg € H, where (-,-) is the inner product in H. As a matter of fact,
starting from any nonnegative definite function R(-,-) on the domain, one can construct a RKHS
H = span{R(t,-),Vt € T} with an inner product satisfying (R(t,-), R(s,-)) = R(t,s), which has
R(-,-) as its RK. The inner product (hence the norm) and the RK determine each other uniquely.
Details can be found in Aronszajn (1950); see also Wahba (1990, Chapter 1). With J as a square
seminorm, H can be decomposed as H = Hy @ J1, where Hy = {g: g € H,J(g) € (0,00)} is
a RKHS with a square norm J and an associated RK Rj;. Note that the null space norm does
not appear in (1.2). The estimate is determined by the data (X;,Y;) and the model implied by
a basis of Ji, the RK R;, and the smoothing parameter A. J(g) is intuitive for the perception
of smoothness implied by the model, whereas Ry and a basis of J; are the only things needed
for computation. On a product domain such as we have here, it is often easier to first construct
R then to possibly derive explicit form of the associated J(g), than to do things the other way;

examples follow shortly.

Theorem 2.1 Assume that the RK of H is bounded on Y for any fized x € X. If the minimizer §

of (1.2) ezists in J1, then it uniquely ezists in H.

Proof: By Theorem 4.1 of Gu and Qiu (1993), it suffices to show that log [y, e9(=) is continuous
and strictly convex in H for any given z. Continuity follows the continuity of evaluation, and
boundedness of RK and Riemann sum approximation of [y, if necessary. Convexity follows Hélder’s
inequality, note that log fj, e9tBh < olog Jy€® + Blog [y e for a,8 > 0, a + B = 1, where the
equality holds only when e? o e* on {z} x , which amounts to g = h in H with A,9=0.0

We now derive loss functions for the assessment of estimation precision. Conditional on z,

the symmetrized Kullback-Leibler between 9/ [;, €9 and e*/ Jy e* is SKL(g, h|z) = po(g — hlz) —



pin(g — hlz) where pg(hlz) = [y, hed/ [y e9. Observing Y|X from e%/ [y, e% and X from f(z),
SKL(g,90) = [y SKL(g, go|z)f(z) appears appropriate for assessing the performance of g as an
estimate of go. A first order Taylor expansion of pg, 1o (h|2) in a at a = 0 gives pgy, (h|z)+av(h, flz)
where (k, flz) = vy (s £12) = tigo(hS12) ~ pgn (Rl2)igy (fl2), and by plugging in b= f = g — go
and a = 1 one obtains a quadratic distance V(g — go) = [y v(9 — golz)f(z) which approximates
SKL(g—go) for g near go, where v(h|z) = v(h, h|z). Asymptotic convergence rates of § in SKL(g, go)
and V(g — go) will be established in Section 3 under certain conditions.

The rest of the section are examples.

Example 2.1 Tensor product linear splines on [0,1]%2. We start with a construction of RKHS on
[0,1]. A possible roughness functional for one dimensional smoothing on [0,1] is 01 G2, which is a
square semi norm in {g : fJ §2 < oo} with a null space {1}. Imposing a side condition, say flg=0
or g(0) = 0, fol §% can be made a square norm in the reduced space and an RK can be derived.
Two commonly used configurations follow. In {g : fol i’ < oo,fo1 g = 0}, the RK associated with
square norm fy §2 is By (z1,22) = k1(21)k1(z2) + ko(|21 — 22|), where k, = B, /v! and B, is the
vth Bernoulli polynomial (cf. Craven and Wahba 1979). In {g : f01 g% < 00,9(0) = 0} the RK
is Ria(%1,72) = min(zy,22). It can be verified that fol Ru(z1,72)dzy = 0 and Rjp(z;,0) = 0.
Ro(z1,22) = 11is an RK for {1}. Ry + R and Ry + Rz generate RKHS with square norms
(Jo 9)% + Jo §° and g2(0) + fy 42, respectively, and they represent one-way ANOVA with different
side conditions. Estimates with J(g) = fol G? are linear splines.

With nonnegative definite functions R” and RY on A and Y, respectively, R((z1, 1), (z2,%2)) =
R*(zy1,22)R¥(y1,¥2) is nonnegative definite on X X ) (cf. Aronszajn 1950). This fact serves
as a convenient device for the construction of RKHSs on product domains. From the marginals
Ro + Ry or Ro + Ryy, one readily obtains RKHSs on [0, 1) with ANOVA decompositions built-in.
For example, R§Ry + R, RY + RS R}, + Ry, R}, generates gy + g + gy + g,y With side conditions
fol gz = f01 gy = fol gz ydz = fol 9z,4dy = 0, and replacing R;; by Rz generates the same expression
but with side conditions g,(0) = g4(0) = ¢24(0,%) = gz4(z,0) = 0. Cutting off gy and g, one
obtains an H for the purpose of (1.2).

Specifically, an RK Ry = 6, R}, + 0, Rf, R}, generates an RKHS H = {g: fI gdy = 0,J(g) < o0}
where J(g) = 07 [0 (f2(dg/dy)dz)?dy + 65 [} [1(8%9/0z8y) dzdy, and replacing R}, by R}, only
changes the side condition in H but not J(g). Similarly, Ry = 6, R}, + 0, R, R}, generates an RKHS



H ={g:9(z,0) = 0,J(g) < 0o} where J(g) = 67" [5(8g/0y)*(0,y)dy+63" [ [3(0%g/8zdy) dzdy,
and replacing R, by R}, only changes the side condition in # but not J(g). Extra smoothing
parameters g (> 0) to be selected by the data are attached to terms of Ry because the scalings
of individual terms are not comparable. There are no clearly separable finite dimensional parts in
gy and g, and one may set J; = {0}. Note that the two J(g) imply slightly different notions of
smoothness due to the different side conditions on the z axis which affects the break-up of g, + g, ,.
The derivations of J(g) are straightforward but tedious, which we omit. The minimizer § of (1.2)

always uniquely exists in this setup. O

Example 2.2 Tensor product cubic splines on [0,1]2. We again start with a construction on [0, 1].
The most commonly used roughness functional for one dimensional smoothing is fol §%, which is a
square semi norm in {g : fj §% < oo} with a null space of linear polynomials {1,(-)}. Imposing
a pair of side conditions, say fol g = fol g = 0 or g(0) = g(0) = 0, f; §% can be made a square
norm in the reduced space and an RK can be derived. Two commonly used configurations follow.
In {g: fol it < oo,folg = fol_('; = 0}, the RK associated with square norm fol §% is Ry(z1,72) =
ko(z1)ka(z2) — ka(|z1 — 22]) With k, = B, /! scaled Bernoulli polynomials (cf. Craven and Wahba
1979); accompanying RKs Rg = 1 and Rn(z1,22) = (21 — .5)(22 — .5) generate {1} and {(- - .5)}
with square norms ( fol g)? and ( fol _(})2, respectively, and the tensor sum of the three subspaces forms
an RKHS. In {g: f§ §% < 00,9(0) = §(0) = 0} the RK is Reo(z1,%2) = [3(z1 — u)4(22 — u)pdu
where ()4 = max(0, -); accompanying RKs Ry = 1 and Ryq(z1,22) = 2122 generate {1} and {(-)}
with square norms ¢g2(0) and §2%(0), respectively, and the tensor sum of the three subspaces forms
another RKHS with a different norm. R+ (Rr1 + Rc) and Rg + (Rx2 + R2) represent one-way
ANOVA with different side conditions. Estimates with J(g) = 01 §? are cubic splines.

Using marginals Ro+ (Rr1 + Rc1) or Ro+ (Rr2 + R.3), one can paste up RKHSs on [0, 1]2 with
up to nine tensor sum subspaces. For example, 0o o RS RY + (0,0 RZ, RY + 0.0 RZ, RY) + (60, RERY, +
00,c RE Ry )+ (O By Ry +0r,c RE B +0en Ry By +0c, R RE ), 0 > 0, generates go+gz+9y+ 9o,y
with side conditions fol gz = fol gy = f01 gz ydz = fol 9z,4dy = 0, and replacing Ry1+ R by Rro+Re2
yields different side conditions g(0) = g4(0) = g2,4(0,¥) = gz,4(z,0) = 0. A 65 = 0 eliminates the
corresponding subspace from the space. The square norm in a pasted RKHS with an RK 3°;05Rp
is 30 OEIJp, where Jg is the slqua.re norm in the space generated by Rg.

For the purpose of (1.2), one should set 6y = 0r0 = 0.0 = 0 and use a penalty of the form
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J(9) = Tpefomcyx{mc} OEIJﬁ. Following common practice, one may put the polynomials into J;
by setting fox = Orx = 00 in J(g), and in turn Ry, and R,, will not appear in the expression
of the RK Ry in H © J,. Different configurations on the z axis still imply different notions of
smoothness. Furthermore, different configurations on the y margin, which now differ not only
in ANOVA side conditions but also in other aspects, also imply different notions of smoothness.
We omit explicit expressions of Jg, which may be found, e.g., in Gu and Wahba (1992) under
slightly different notations. Under setup with a null space J, = {(y — .5),(z — .5)(y — .5)},
the minimizer § of (1.2) uniquely exists whenever the maximum likelihood estimate of the form
g(z,y) = Pr(y — .5) + Pa2(z — .5)(y — .5) exists.

We note that marginal configurations are independent of each other. For example, one may

well use cubic spline on one margin and linear spline on the other. O

Example 2.3 Tensor product splines on X x {1,---,K}. Both domains X and ) are generic in
(1.2). In particular, the response domain )’ can be taken as a discrete set, say {1,---, K}, and the
method can be used to conduct regression with multinomial responses. When K = 2, one has yet
another approach to logistic regression. For the the method to apply, one needs to construct an
RKHS on the marginal domain {1,---, K} with an ANOVA decomposition built in, to cut off the
constant, and to take tensor product of what is left with an RKHS on the covariate domain X'.
An function on {1,---, K'} is simply a K-vector and an RK a K x K nonnegative definite matrix.
The integral [, may be taken as summation over the domain. Smoothing on a discrete domain is
better known as shrinking, and different choices of J, or equivalently Rj, imply the shrinking of
different features of vector in estimation. For example, the “length” penalty J(g) = g% g shrinks
g towards o, whereas the “variance” penalty J(g) = gT(I — 11T/K)g shrinks g towards {1},
where we use boldface letters for the K-vectors. The RK corresponding to the square norm J(g) =
gT(I-11T/K)g in {1}* is R, = (I—11T /K), which generates vectors satisfying the side condition
17g = 0. Actually, it can be shown that the RK corresponding to a quadratic square norm g7 Ag
in the column space of A is A*, the Moore-Penrose inverse of 4; see, e.g., Gu and Wahba (1992).
Following the same procedure as used in previous examples, one can easily construct tensor
product RKHS on X X {1,:-+, K} by taking product of R, with RK’s on X. For example, with
X = [0,1], one may use Ry = 0-R7; Ry + 0.R%L Ry and J1 = {R.(j, -)};-rf___l1 for (1.2), where for

example 8, < oo implies the shrinking of the “variance” of slopes on the z axis for different y



values. If K is small, one may allow 6, = oo to put the linear term(s) into J; .

Obviously, R, is not the only nonnegative definite matrix which generates {1}*, and 1Tg = 0is
not the only choice for the side condition in an ANOVA decomposition on {1,---, K'}. For example,
with ordinal categories one may choose to use an RK corresponding to J(g) = Ef{ 9(G+1)—g(5))?

in {1}, which shrinks the differences between adjacent categories. O

3 Asymptotic Theory

Assume go € ‘H and the maximum likelihood estimate exists in J; so § exists. We shall establish
the asymptotic convergence rates of § and those of a computable approximation. The theory runs
parallel to that of Gu and Qiu (1993), and to avoid too much overlap with that article, we shall
only present a sketch here. Details can easily be filled in following the lines of Gu and Qiu (1993).

Assuming f(z) > 0 on X, V(g) = [y v(g|z)f(z) defines a square norm in H C {g: A,9 = 0}
interpretable under the stochastic structure. J(g) defines the notion of smoothness. A characteri-
zation of the models implied by (1.2) is via an eigenvalue analysis of J with respect to V. A bilinear
form B is said to be completely continuous with respect to another bilinear form A, if for any € > 0,
there exist finite number of linear functionals Iy, - -, I, such that I;(y) =0, j = 1,---, k, implies
that B(7n) < €A(n) (cf. Weinberger 1974, Section 3.3).

Assumption A.l. V is completely continuous with respect to J.

Under A.1, it can be shown that there exist ¢, € H and 0 < p, T o0, ¥ = 1,2,.-+, such that
V(¢y,¢u) = 6, and J(¢y,9,) = pu6yu, Where §,, is the Kronecker delta and V(:,-) and J(-,-)
are the (semi) inner products associated with V(g) and J(g) (cf. Gu and Qiu 1993, Section 5).
Since J(g) = Y, 92p, and p, T 0o, A.1 implies that the term AJ(g) in (1.2) for any fixed X restricts
the model space to an effectively finite dimension in terms of the V norm, which is necessary for
noise reduction, and that the effective model space dimension can be expanded by letting A — 0

as n — 0. The rate of growth of p, quantifies the notion of smoothness implied by J(g).
Assumption A.2. p, = ¢, V", where r > 1, ¢, € (f1,02), and 0 < B; < B2 < oo.

For Examples 2.1 and 2.2, A.1 and A.2 are both satisfied, with » = 2 — € and » = 4 — € for linear

and cubic splines, respectively, where € > 0 is positive but arbitrary; for Example 2.3, we note that



the r in a tensor product RKHS with a mixture of discrete and continuous margins is determined
by that in the partial product space of all the continuous margins. See, e.g., Utreras (1981) and
Gu (1992b) for relevant technical details.

Denote by Py(g) the expression in (1.2). Define Qx(g) = —(1/n) Xi1 {9(X:, Y3) — 1, (91 X3)} +
(1/2)V(g — go0) + (A/2)J(g), the quadratic approximation of Py(g) at go. Let g, be the minimizer
of @x(g) in H, which exists similar to §. When go € H, it can be shown that (V + AJ)(g1 — g0) =
Op(n~2A~Y/" + )) under A.1 and A.2 as A — 0 and nAY/" — oo (cf. Gu and Qiu 1993, Section 5).

A few technical assumptions follow.

Assumption A.3. For g in a convex set By around go containing § and g,

Jey, e2 € (0,00) such that ¢yv(h|z) < vy(h|z) < cav(hlz), Vz € X.

It is easy to show that ug(g — h|z) — pr(g — h|Z) = Vagt(—a)n(g — hlz) for some a € [0,1], 50 A.3
implies the equivalence of v(g — h|z) and SKL(g, h|z), and hence of V(g — k) and SKL(g, h), for
g, he Bo.

Assumption A.4. Jez < oo such that [, v¥(¢,]z)f(z) < c5, V0.

Assumption A.5. dcq < oo such that
fx[”(¢V¢u|"’) + {1go (v Pulz) — fx Hgo (¢,,¢,‘|a:)f(:c)}2]f(a:) < eq, Yy, 1.

A uniform bound on the fourth moments of ¢,(X,Y) is sufficient for A.4 and A.5 to hold.

Theorem 3.1 Assume go € H. Under A.1 - A.4, as X = 0 and nA%™ — oo, (V 4 AJ)(§ — go) ~
SKL(§,go) = Op(n~1A1/7 4 ).

A sketch of the proof follows. Let Ay x(a) = Pi(g + ah) and By i(a) = @a(g + ah). Equating
Aj5-0.(0) = By, 5-5,(0) = 0, A.3 and A4 lead to (c1V + M) — g1) = (V + ANY3(G — g1)(V +
AT)Y?(g; — g0)Op(1). The theorem then follows (V 4 AJ)(g1 — go) = Op(n~1A~17 4 X).

The space H is in general infinite dimensional and § not computable. An important part
of the theory is to justify a computable approximation of § in a finite dimensional space. Let
H, = J. ® span{Rj(X;,-),4=1,---,n} with Ry the RK in H & J;. The minimizer §, of (1.2) in

H, is an estimate to use in practice.



Theorem 3.2 Modify A.3 to also include §,, and g, in the convez set By, where g, is the projection
of § in H,. Under A.1 - A.5, as A = 0 and aX¥™ — o0, (V + AJ)(§n — 90) ~ SKL(dn,g0) =
Op(n~ 1AV 1 A).

The proof of Theorem 3.2 goes as follows. First, it can be shown that V(k) = o,(AJ(R)),
Vh € HOH,. This, A;;_,,(0) = 0, and Theorem 3.1 then yield V(§— g) = 0p(rn~2A~Y/7 4+ 1) and
M (§ — gz) = Op(n~*]A~Y" + X). Equating Aj, 5,-4.(0) = Az5.-5(0) = 0, it can further be shown
that (V + AJ)(Gn — gn) = Op(n~2 A~/ 4 X). The theorem then follows.

4 Computation

Write & = Rj((X;,Y;), ) and J = {¢,}M,. A function in H, has an expression g = Yo+
M

=1ty = &Tc + ¢Td, where ¢ and ¢ are vectors of functions and ¢ and d are vectors of

coefficients. Fixing smoothing parameters, §, can be calculated via minimizing
1 1& A
- ;1T(Qc + Sd) + p Elog/yexp{{?c + o¥fd} + EcTQc (4.1)
1=1

with respect to ¢ and d, where Q is n X n with (3, j)th entry &(X;,Y;) = Ry((X:, X5),(X;,Y5)), S is
nXM with (i, v)th entry ¢,(X;, Y;), €; is nx1 with jth entry £;(X;,y), and ¢; is M x1 with vth entry
#,(Xi,y). Substituting the empirical distribution for f(z), we write p,(h) = (1/n) X i; py(h|X5)
and Vg(h, f) = (1/n) Xieq v4(k, f|1X;). From an estimate § = ¢Té + ¢Td, the one-step Newton

update for minimizing (4.1) can be shown to satisfy

Vee +2Q Veo | [ e | _ [ Qr/n—pet Ve, (4.2)

Voe Voo )\ @ ST1/n— py+ Ve,
where pe = p5(€), py = p5(9), Ve = Val€:€7), Ve = Va6, 07), Vo = Va(9,87), Ve =
Vi(€,5), and Vg, = Vs(,9)-

With varying smoothing parameters, (4.2) defines a class of estimates, and one may try to
choose a better performing one from the class as the update. A performance-oriented iteration
with automatic multiple smoothing parameters has been implemented in Gu (1993b), where its
applications to joint density estimation and covariate dependent hazard estimation are illustrated.

The algorithm is directly applicable to conditional density estimation, with performance measured
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by estimated proxies of V(g — go) or SKL(g, go). Motivation, intuition, and technical details can
be found in Gu (1993a, b).

5 Applications

In this section, we illustrate some applications of the technique in data analysis.

5.1 Penny thickness data: Known discontinuity

The data are thickness in mils of a sample of 90 U.S. Lincoln pennies listed in Scott (1992, Appendix
B.4). Two pennies from each year between 1945 to 1989 were measured. I mapped A’ X )Y =
[1944.5,1989.5] x [49, 61] onto [0, 1]2, and used the tensor product cubic spline of Example 2.2 with
side conditions [y gs = [y 9y = [y 9oy = Jy goy, With Ry = 0o, RY + 0 RERY + 0. -RL R, +
0..R%RY, and Ji = {(y — .5),(z — .5)(y — .5)}. The performance-oriented iteration effectively
shrank the terms 0, .RZ,RY, and 0..R% RY,. The automatic estimate of f(y|z) is sketched in
the left frame of Figure 5.1, where the solid line marks the conditional medians, the dashed lines
the conditional quartiles, and the horizontal dotted lines the conditional 5th and 95th percentiles.
The data are superimposed as circles, with the z coordinate slightly perturbed to unmask a few
overlaps. The estimate is under the assumption of smoothness of log conditional density on both
axes, despite the apparent abrupt downward shift of thickness from 1974 to 1975. A vertical dotted
line is superimposed to mark the break.

A usual approach to regression with known breaks is to add jumps at breaks, known as the
partial spline technique (cf. Wahba 1990). We shall try an adaptation here for conditional density
estimation. To keep symmetry between the two sides of the break, the marginal RKHS on the z
axis is to be generated by Ror+ Rou+ Br1+ Rc1, where Rot = I, e1)](z,er) 2a0d Rou = Iy cv)![z,e)
generate window functions {I;er;} and {Ij;cp)}, Tespectively, with L = [0,2/3] and U = (2/3,1].
An ANOVA decomposition is no longer available in this construction, but we do not really need
one on the z axis. Taking tensor product with R,y + R on the y axis, we have a configuration
with Ry = 01 RS RY, + 0, RS, RY, + 0 RZ RY, + 0. R% RY, + 0. RZ RY, and J1 = {Ijper)(v -
5), Iev)(y — -5), ( — .5)(y - .5)}. The performance-oriented iteration effectively shrank the terms

OrcRZ RY, 0. R% RY,, and 0. R% RY,. The automatic estimate with a break built-in this way is
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Figure 5.1: Penny Thickness Data. Left: continuous model; right: model with break. Solid lines
are conditional medians, dashed lines quartiles, and dotted lines 5th and 95th percentiles. Circles
are data and vertical dotted line position of the break.

sketched in the right frame of Figure 5.1 in a manner similar to the left frame.
The two configurations took about 80 and 90 cpu minutes to compute, respectively, on an

IBM-RS6000.

5.2 Heart disease data: Logistic and multinomial regression

The data were collected by Dr. Robert Detrano at Cleveland Clinic Foundation on 303 patients,
and taken from the UCI Repository of Machine Learning Databases (cf. Murphy and Aha 1992).
There are 76 entries in the covariate list, of which only 13 were ever used by machine learning
researchers. The response is diagnosis of heart disease. After preliminary analysis, I chose to model
diagnosis on 3 (derived) variables: chest pain type (X;), maximum heart rate achieved (X3), and
ST depression induced by exercise relative to rest (X3). X has four categories of typical angina,
atypical angina, non-anginal pain, and asymptomatic; I lumped together the first three (call them
symptomatic) which seem to have similar disease rates as much lower than that associated with
asymptomatic chest pain. X, is covered by [60,210]. After a transform log;o(z + 1) to make it more

evenly scattered, X3 is covered by [0,.86]. There are five diagnostic categories, 0 for no disease,
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Figure 5.2: Heart Disease Data. Left: disease rates with symptomatic chest pain; right: disease
rates with asymptomatic chest pain. Solid lines are estimates from logistic model and dotted lines
estimates from multinomial model. Circles are healthy patients and stars disease patients.

and 1 through 4 for angiographic disease status. I shall present two parallel analyses, one with
disease status aggregated and one with them separate as in the original data. The former is logistic
regression and the latter is multinomial regression.

The 2 axis now has three dimensions, one binary and two continuous. After mapping [60,210] x
[0, .86] onto [0, 1], one may use the tensor product cubic spline of Example 2.2 on the product
domain of the two continuous covariates. To incorporate the binary covariate one may take the
tensor product of 11T + R, with RK’s on the (product) continuous domain, but since a simple
constant shift may suffice in the context, I chose to cut off all but one product term which involves
RZ1, that of R, with constant, RZ*R3?Rg, or effectively RZ1 itself; this is the same as using
the partial spline technique to add a term. The RKs on the covariate domain is thus taken as
1+ R+ RE+RZ+ R+ RG + R R+ R R+ R R + R R . On the y axis one may simply
use R, as the RK. Taking tensor product of RKHSs on A" and ), we shall use Ry = 0,oR73RY +
Oco R BY+00,n RS RY 400, RE Ry +0r x RAR By + 007 R R RY + 0 R R R +0:,. R R RY,
with eight smoothing parameters, and J; = {RY(4,-), RZ3(1,-)RY(4,-) 5{;11 with dimension 2(K—-1),

where K is 2 or 5, the number of diagnostic categories. Note that RJ® and RY are different when
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Figure 5.3: Heart Disease Data, Multinomial Model. Frames (a) — (d) contour estimated propor-

tions of disease status 1 — 4 for patients with asymptomatic chest pain. Stars are patients in the
particular disease status and circles rest of the patients.
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K = 5 but I choose not to introduce further notation to distinguish them.

For both the logistic and the multinomial models, the performance oriented iteration effectively
shrank all but two penalized terms, leaving only g r,00c # 0. The estimated disease rates are
contoured in Figure 5.2, where the solid lines are from the logistic model and dotted lines aggregated
from the multinomial model. Data are superimposed as circles (no disease) or stars (disease). It can
be seen that the estimates from the two models agree well in data-dense area. Estimated individual
proportions of the four disease categories from the multinomial model are similarly contoured for
patients with asymptomatic chest pain in the four frames of Figure 5.3, where for each category
the superimposed stars are patients in the corresponding status and the circles rest of the patients.

The logistic and multinomial estimates took about 112 and 165 cpu minutes to compute, re-

spectively, on an IBM-RS6000.

6 Discussion

Research on graphical models, or density estimation with various conditional independence struc-
tures, has been rather active in recent literature, with much of the recent results focusing on the
derivation of parametric distribution families for mixtures of continuous and discrete random vari-
ables; see, e.g., Wermuth and Lauritzen (1990) and Whittaker (1990) and references therein. With
generic domains A and ) in (1.2), the technique presented in this article seems to pose a viable ap-
proach to nonparametric estimation of graphical models, particularly the so-called graphical chain
models, a sequence of conditional distributions, possibly with a mixture of continuous and discrete
variables. It is relatively straightforward to fit models with known independence structures, pro-
vided an automatic smoothing parameter selection is successful. It appears much more difficult,
however, to infer independence structures from the data in a nonparametric analysis. The compu-
tational availability of nonparametric graphical models fulfills the prerequisite for research in this
direction.

When K = 2 in Example 2.3, it is easy to verify that the estimation via (1.2) using R, on the
y axis is equivalent to that via the standard penalized likelihood logistic regression procedure as
studied by O’Sullivan, Yandell, and Raynor (1986), among others, of course with the same RKHS

configuration on the z axis. The smoothing parameter selection as implemented in the algorithms
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of Gu (1993a, b), however, is similar to but technically different from that of Gu (1992a) designed
for a computation scheme in which the penalized likelihood problem is solved via a sequence of
penalized weighted least squares problems. Simulation study is yet to be conducted to compare

the two methods for smoothing parameter selection in logistic regression.
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