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Abstract

We consider probability models for the estimation of normal means that allow
for some of the means to be equal. These probability models, which are called
product partition models, specify prior probabilities for a random partition.
The posterior probability of the partition given the observations has the same
form. The resulting estimate of the means, the product estimate, is obtained
by conditioning on the partition and summing over all possible partitions. The
large number of computations involved leads to the use of Markov sampling
to compute the product estimate. We compare the product estimate to other
estimates of normal means both in a simulation study and in the prediction

of batting averages.

KEY WORDS: Partition; Product estimate; Clustered means; Markov sam-

pling.



1. INTRODUCTION

In this article, we will consider the normal means problem: X;|p; ~
N(pi 1), i =1,...,n. We are interested in estimating the means. We will do
this using product partition models. These partition the objects {1,...,n}
into several sets; within each set, the u;’s are equal. We specify a prior
probability distribution for a random partition p and update this distribu-
tion into a posterior distribution of the same form. Let X = (Xi,...,X,)
and g = (g1,...,4s). We obtain the product estimate by conditioning on
the partition and summing over all possible partitions. We will use Markov
sampling to compute the product estimate.

Other approaches to estimating normal means include Stein estimation and
its generalisations, parametric and nonparametric empirical Bayes estimation
and maximum likelihood estimation (Efron and Morris 1972, 1973, 1975; Es-
cobar 1992; George 1986a,b; James and Stein 1961; Laird 1978; Stein 1956).

In Section 2, product partition models are described in general. The need
for Markov sampling is discussed in Section 3. In Section 4, we describe
product partition models for the specific case of the normal means problem.
In Section 5, we discuss the method we use to compute the product estimate
- Markov sampling. We describe the general technique of Markov sampling as
well as the computations involved in applying the technique to our problem.
In Section 6, the product estimate is compared to the maximum likelihood
estimate, an empirical Bayes estimate and a nonparametric mixture estimate
in a simulation study. We consider a range of different settings of parameters.
The product estimate has mean square error comparable to the best of the
other estimates in many of the settings and is superior for a wide variety of

settings. Finally, in Section 7, we use the above estimates to predict batting



averages.

2. PRODUCT PARTITION MODELS

Hartigan (1990) has developed a method for constructing probability mod-
els by means of random partitions. Given a set of objects So = {1,2,...,n},
a partition p = {Si, Sa,..., Sk} is defined by the property that §;N.S; = § for
i # j and U;S; = Sp. The partition p has probability

P(p={51,5,...,5}) = K [[ (S) (1)

where ¢(S) > 0 is a cohesion defined for each S C So and K is chosen so that
the probabilities sum to one over all possible partitions p. Notice that the

cohesions are not uniquely determined: the probabilities

k
P(p={51,52....5}) = K*T[ (), (2)
=1

where ¢*(S) = (I ai)c(S) for arbitrary positive a; and K™ is chosen so that
the probabilitie;e:um to one over all possible partitions p, define the same
random partitions. We will use this later to simplify some calculations.

For each object i, there is an observation X;. Let Xg denote the vec-
tor of observations for : € S and let ps(Xs) be the conditional density for
the observations in a set S, given that S € p. Given the random partition
p = {S1,5s,...,S5:}, the observations Xs,, Xs,,...,Xs, are independent with
density .

p(Xlp = {S1,5...,5}) = IIIPS‘(XS')' (3)
Definitions (1) and (3) uniquely determine the joint distribution of X and p,

and the marginal density of X.



The posterior probability of p given the observations is

k
P(p = {Slss2a~°'aSk}IX) = (I"/V(X)) HC(Si)pS.‘(AYS.')a

=1

where v(X) is the marginal density of X. This is also a product partition model
with cohesions ¢(S)ps(Xs), which will be called posterior cohesions. Thus,
product partition models have computational advantages similar to those for

conjugate priors in traditional Bayes theory. For some applications of product

partition models, see Hartigan (1990) and Barry and Hartigan (1992, 1993).

3. ENUMERATION OF PARTITIONS

For a fixed subset S of Sg, the probability that it is a set in the random
partition p is called the relevance of S, denoted by r(S). The relevance of S

may be computed from the cohesions using the function

where the summation is over all partitions of S into subsets Sy,...,S5,. To
compute A, the following recursion may be used: choose a particular object
¢ € S and sum over all T C S that contain 2
AS)= Y. dT)MS-T).
{Tli€T}
The relevance of S can be written as

c(S)A(So — S5)

r8) =" (4)

The relevances are useful because when computing the product estimate,
we can condition on the set and sum over all possible sets instead of condi-

tioning on the partition and summing over all possible partitions. So we will
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need the posterior relevances of all subsets of So instead of the posterior prob-
abilities of all possible partitions. The number of partitions of n objects into

k sets is a Stirling number of the second kind:

[k" _ (]1‘) (k—1)"+ (g) (k=2)"+...(=1)F! (Lfl)] /KL,

The number of possible partitions of n objects increases at a rate faster than
exponential and slower than factorial. For example, when n = 10, the number
of possible partitions is equal to 112,519. The number of possible sets of n
objects is equal to 2" — 1, which is much smaller than the number of possible
partitions.

Although we have reduced the calculations considerably, we still need to
compute the relevances of the 2" — 1 sets to compute the product estimate.
This is not feasible in practice (except for small sample sizes). Instead, we will
use Markov sampling to compute an approximation to the product estimate
(see Section 5). We will, however, use the relevances to check the accuracy of

the approximation for small sample sizes.

4. CLUSTERED MEANS

We will focus on the following normal means problem using product par-
tition models: X;|p; ~ N(pi,1), ¢ = 1,...,n. For notational convenience
(when n < 10), we will denote, for example, the partition {{2}, {1,4}, {3}}, by
(2)(14)(3). Let u° be the common mean for the y;'s with i € S: p; = p%, 1 € S.
So if p = (6)(253)(14), we have pg = p®, ps = ps = pz = p®3 and
pr = pg = p. Let fs(u®) be the conditional density of w5, given that
S € p. The conditional density of X, given that S € p can be written

ps(Xs) = /ps(XsI/tS, S € p) fs(p®)dp®. (5)

4



From conditional independence, ps(Xs|u®, S € p) is a product of normal
densities. Let IP denote expectation. The posterior distribution of p; given X
depends only on values for the member of the partition to which it belongs:
o= P(ui|X)= Y IP(p®|S € p, Xs)r(S[X),
{SlieSs}

where r(S|X) is the posterior relevance of S. That is, the estimate of y; is
a weighted average of the estimates based on the sets S that include ¢, the
weights being given by the posterior probabilities of these sets given the obser-
vations. The estimate of u, (fi1,...,fin), will be called the product estimate.
There are three components in the problem:
(a) Prior cohesions.
Let ¢(S) = (ns — 1)!/m(s=Y where ns is the number of objects in the set
S and m a parameter which we will need to estimate. The relevance of S is
equal to m B(ns,n + m —ng). Large values of m encourage small sets.
(b) Distribution of the data.
We have X;|u; ~ N(pi,1),i = 1,...,n. Therefore ps(Xs|p®,S € p) =
Tlies (2m) 7% exp(—(Xi — p5)*/2).
(c) Prior for parameters.
Let u5 ~ N(po,00%/ns), where o and 62 are parameters which we will need to
estimate. Then fs(p¥) = (715/2#03)1/2 exp(—ns (45 — po)?/202). The prior
distribution for x5 is chosen so that the parameter value for small sets varies
more from the overall mean than the parameter value for large sets; this is to
discourage small sets unless the corresponding p¥ is quite different from the
other p;’s.

Together, (a), (b) and (c) determine all the other distributions in the prod-



uct partition model. Substituting in equation (5) gives
ps(Xs) = (2r) (14057

<o (-3 (S - ol + T X)) ©

i€S
where X g = ¥;cs Xi/ns. The posterior density of u° conditional on S € p is
normal with mean (02 Xs + p0)/(02 + 1) and variance o2/ns(o§ + 1).

We now compute the joint distribution of p and X, treating the parame-
ters po, 02 and m as fixed constants. We will need this distribution, P(p =
{S1,82,...,5:},X), in the Markov sampling. First, replace the prior cohe-
sions, using (2), by

(S) = ((ns = DY/ms) [ m(2m)" exp (506 -%7)
i€

1 —
= m(ns—1)(2r)"/? exp (5 S (X - X)2) . (7
i€S
This gives a model equivalent to that given by the previous choice of cohesions,
but it will simplify the expression for ¢(S) ps(Xs). These prior cohesions give
K = d(X)T(m)/T(n + m), where d(X)™! = (2r)"2exp(L, (Xi — X)*/2).
We have

P(p——- {51’521 . aSk} X =K HC psr(\Sr) (8)

r=1

From equations (6) and (7) and using the fact that

Z (‘\/,' — 7)2 = Z (X; — —X_5)2 + ng (Ts - Y)z,

€S €S

we obtain ¢(.S) ps(Xs) to be equal to

n - 1 n -
m(ns — DI(1 + 02)” 1/2exp(2S(XS—X)2> exp( 21+S (Xs —po)z).

Substituting for A and ¢(S) ps(Xs) in equation (8) and using the fact that

k k
> ns, (Xs, — #0 = Z ns, (Xs, — X)2 +n(X - uo)z.
= r=1

r=1
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it follows that

e Lm) (1
P(p = {51, Sz, ..., 5}, X) = d(X) o™ (]:[(nsr - 1)!)

- 1 n =
«(1 4+ 02) M exp (—-2— (X ).

1 0.2 k

-0 Y, - X) 9
XeXP(21+03T=17lsr( S, X)) (9)

5. MARKOV SAMPLING

5.1 The Method

There has been a renewal of interest in the technique of Markov sam-
pling recently (see Gelfand and Smith 1990; Gelman and Rubin 1992; Geman
and Geman 1984; and Geyer 1992). For earlier work on the technique, see
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller (1953) and Hastings
(1970). Suppose we wish to estimate IP(k(Y)), where Y has probability dis-
tribution IP. The usual method is to generate N random samples Yy,..., Yy
from IP and estimate IP(h(Y)) by £, h(Y;)/N. Note that =N, A(Y;)/N
converges in probability to IP(h(Y)). When Y is complicated and it is difficult
to generate Yq,..., Yy in this way, an alternative is to generate Y;,..., Yy
from a Markov chain whose unique stationary distribution is /P. The resulting
Yi,..., Yy will be correlated. However, "~ h(Y;)/N computed using this
method, will still converge in probability to IP(2(Y)).

5.2 Application to the Normal Means Problem

In this subsection, all distributions, probabilities and expectations will be

conditional on the data X, although we will not write this out explicitly, since
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X does not change during the simulation. For the problem we are considering,
Y corresponds to the random partition p and IP corresponds to the distribu-
tion of p. We have n functions h;(Y) = IP(y;|p), 7 = 1,...,n. Note that
IP(h;(Y)) = IP(u;). The advantage of Markov sampling is that IP(g;|p) is
easy to compute.

We start with a partition p; = (1,2,...,n). One step of the Markov chain
consists of moving each object 1,2,...,n in turn to arrive at a new partition
p2. We repeat this N — 2 times and estimate IP(y;) by N, IP(p;]p:)/N. In
implementation, the first few samples are often deleted from the average, to
remove the effect of the starting value p;. An example of a possible step in
the Markov chain starting with p; = (12)(34) is:

move 1:  (1)(2)(34)

move 2:  (1)(2)(34)

move 3:  (1)(23)(4)

move 4:  (14)(23)
to get piy1 = (14)(23).

The transition probabilities for movement of the i** object are computed as
follows. Let the current partition be p’ = {S,...,Sk}; suppose the i** object

lies in S;. Form a new partition {S},...,S;} with the i** object removed:
ns,>1:8" = S,r=1....75-L7+1,...,k
S o= 5i—{1}
b = k
ng,=1:8 =8, r=1...,-17+L...,k—-1
ST = S
b = k-1



Now form a new partition p* including the i** object where

(1) p* = {Sy,....{S5,i},..., S t=1,...,bor

(2) a new component Sy, = {i} is created and p* = {S},..., S5, S5y }-

The new partition will be equal to p* with probability proportional to P(p =
p*). The constant of proportionality is chosen so that the transition probabil-

ities sum to one and is equal to

5 -1
(Z Plp=1{S],.- ., {S5,i},....S; )+ Plp={51,..., S5, Sppq )) .
r=1
To simplify the expressions for the probabilities, we divide the numerator
and the denominator by P(p = {S7,...,5;,S54,}). Let

P(p = {Sf,...,{S:,i},...,S;})
P(p = {.S’f,...,Sg,SE_l_l )

Q(t)
Qo+1) = 1.

t=1,...,b  (10)

Then, p' — p* = {S5,...,{S;,i},..., Sy} with probability
b+1
Q) /3 Qr),t=1,....b
r=1
or p' — p* ={S5},...,5;, S5} with probability
b+1
Q+1) /D Qr).
r=1

Another way to write this, which we will use below, is

P(p")
ZPOIPOGRPI IP(PO)’

p' — p* with probability

(11)

where R, is the set of partitions which can be obtained from p’ after moving
the i** object. Note that p’ € R, and that the sets R, partition the family of
all partitions. Therefore p’ € R, implies that R, = R,«. The sets R,, when



n =4 and 1 = 2, are

)(4), (1)(23)(4), (1)(3)(24), (1)(2)(3)(4)}
4),(1)(234), (1)(2)(34)}

Ry = {(12)(3
Runey = {(12)(34)
R1234) = {(1234), (2)(134)}

Ruasyey = {(123)(4),(13)(24),(13)(2)(4)}

( )

R(14)(23) = { 14)(23’ ) ( )(3) 14)}

The family of all partitions of size four is partitioned into

{ R(1)(23)(a)» Ri12)(34)» R1234)> R(123)(4)» R(14)23)}-

We will now show that the transition probabilities in (10) give us a Markov
chain with unique stationary distribution IP. Assume that p* has probability

distribution IP;, where p* is the partition obtained from p’ after moving the

ith object. Then

Py(p") = 3 IPy(p*|p") IP(p')
= Z IP+(p*|p") IP(p')
o'lp'ER
' P(p")
= P
P’IP‘EE:RP. (p ) Z:polpoERF,/ HJ(FO)
' P(p*)
= P
p’Ip’ze:R,,- (P ) ZpolﬁoERpt 1IP(po)
= IP(p*)

The second equality holds because if p' ¢ R,., then IP1(p*|p’) = 0), the third
is got from (11) and the fourth follows as p’ € R, implies that Ry = R,».
We have shown that if p’ has probability distribution IP, then so does p*. The
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transition matrix for moving each object varies with #; if objects 1,2,...,n
are moved in turn and if IP is the initial probability distribution of p’, then
IP will be the probability distribution after the movement of each object,
and therefore IP will be the probability distribution after movement of all n
objects. Therefore IP is a stationary distribution of the Markov chain. Note
that the Markov chain has a finite number of states. It is irreducible as it is
possible to go from any particular partition to any other partition. Also, as
it is possible to be in the same partition after one Markov step, the Markov
chain is aperiodic. Therefore, the limiting distribution of the Markov chain is

its unique stationary distribution IP.

5.3 Prior Parameters

To implement Markov sampling we will need to compute the ratios Q(¢) in
equation (10) and the functions k;(Y) = IP(u;|p,X). Let v = 1/(1 + o2).
From equation (9) and letting

ns, +1, ifr=t

ng: =
ns,, otherwise,
and
— (nersr-F)(,')/(nsr—}—l), ifr=t
Xse =14 __
Xs,, otherwise,
we obtain
ns, 1—v [ - <~ 52
Q(t) = 1/2 exp Z nSr' (‘YS; - A) - Z nSr (XST - X) .
muv 2 r=1 r=1

The posterior density of 4 has mean (062 Xs + po)/(08 + 1). Hence

P(pjlj € S € p,X) = IP(p°|S € p,X)

= Xs+v(po—Xs).



The quantities Q and h depend on the prior parameters - pg, v = 1/(1+03)
and m. We estimated yo by X and o by 2, (X, — Y)z. Note that we do not
divide by n or n — 1: this is because overestimating 2 when groups are close
together is not as serious as underestimating o2 when groups are further apart.
To estimate m, first let X(;), ¢ = 1,...,n be the ordered data. Start with one
set i.e. nsets=1. If the interval between X(;y and X(yy), ¢ = 1,...,n — 1,

is larger than one, form a new set i.e. nsets=nsets+1. We estimate m by

2nsets—2'

6. SIMULATIONS

6.1 Other Estimates of Normal Means

The product estimate (21,..., i) is compared to:

(1) the mle (il,..., i), where

=X
(2) an empirical Bayes (EB) estimate (2, ..., i2), which is computed as fol-
lows. We have X;|u; ~ N(u;,1). Let p; ~ N(ge,02). Then X; ~ N(pe,1+032).

We estimate g by X and 14 02 by s? = Y7, (X; — X)?/(n — 1). Therefore,

the hyperparameters g, and o2 are estimated by

and

0, fs?2 <.

We then let p; ~ N(jie,52) to obtain
62
62+ 1

,uiIXNN (X-l- (‘X,'—T\;)
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Therefore,

X+(X:-X)(1-2%), ifs?>1

22
=9
Z X, if 2 < 1.
(3) a mixture estimate (fi3,...,i13), where 22 is computed by assuming that

X;|pi ~ N(pi,1) and p; ~ G where G is arbitrary. The maximum likelihood
estimate of G, é, has less than or equal to n steps. We will assume that G
has n steps of size 1/n at a;,...,a,. We can represent this problem as an
incomplete data problem and use the EM algorithm (Dempster, Laird and
Rubin 1977) to find the maximum likelihood estimates of a,,...,a,. Then
[ y(27) ™" exp(~(X: — y)*/2) G (y)
S (2m)7% exp(—(X: — y)*/2)dG(y)

" Ly (2r) 7 exp(—(X; — a;)7/2)

Jer 7 (27)77 exp(—(Xi - ,)?/2)

il =Pe(uilXs) =

6.2 Results

In Table 1, we compare the product estimate to the mle, the EB estimate
and the mixture estimate using the average difference in estimated mean square
error. There are 20 observations and 50 samples for each set of means p.
We use, for example, 19°13 to represent g; = ... = p9 = 0,30 = 3. In
the Markov sampling, we found that N = 1000 samples was sufficient for
convergence of the product estimate. We also did the exact calculation to
compute the product estimate for a few different p’s, when n = 10. We
compared the estimate obtained using Markov sampling to the exact estimate
and found that they were very close. We deleted the first 100 samples to
remove any effect of the starting value p; (this was probably more than was

necessary).
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We find that the mle is better than the product estimate only when there
are a few groups two or three SD’s apart (22,25). For all the other p’s consid-
ered, the product estimate is superior.

The EB estimate is better than the product estimate when there are three
or more similar sized groups one, two or three SD’s apart (16-18,20-22,24,25)
and for two groups two SD’s apart (8). It does not detect small groups of
outliers; see 2-6 and 12-15. It doesn’t perform well if the groups are more
than three SD’s apart due to the fact that it shrinks towards the mean of the
data.

The mixture estimate is superior to the product estimate for less than six
groups three or four SD’s apart (5,9,15,18,19,23). It does well when there are
outliers four SD’s from the rest of the data (5) but not so well for outliers 10
SD’s away (6). In general, it doesn’t do well for groups less than four SD’s
apart.

The product estimate is superior to the other three estimates for one group
(1), for small groups of outliers less than four SD’s or very far for the rest of
the data (2-4,6), for two equal sized groups one SD or more than four SD’s
apart (7,10,11) and for three groups, where two of the groups are small, less
than four SD’s apart (12-14). To summarise, the product estimate is usually
only worse than one of the mixture estimate (which works best for groups more
than three SD’s but not too far apart) and the EB estimate (which works best
for groups three or less SD’s apart) and is often superior to both (and almost

always superior to the mle).

7. PREDICTING BATTING AVERAGES
We compute the product estimate and the other estimates considered in
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Section 6 for the batting averages data of George (1986b). He looks at batting
averages of the 26 major league baseball teams for the 1984 season and uses
the averages after 300 at bats, (b',...,5%), to predict the averages for the
remainder of the season, (pl,...,p?®). Assuming that the number of team hits
has a binomial distribution, that is, 300 5 ~ Bin(300, p‘), he uses the variance
stabilizing transformation f(b) = 300'/2 arcsin(2b — 1) to obtain normality.
Explicitly, letting X; = f(¥') and u; = f(p'), the asymptotic normality of &
and the continuity of f then gives X;|p; ~ N(u;,1).

The product estimate, the EB estimate and the mixture estimate are re-
transformed to get estimates of p' = f~'(p;). The batting averages and re-
transformed estimates are given in Figure 1. The mle estimate is very variable
following no particular pattern. The EB estimate is almost constant for all
of the teams. The product and mixture estimates do not vary much but are
influenced slightly more by the data i.e. the batting averages after 300 at bats.
Very large or small data values tend to lead to larger or smaller estimates.

We also computed the squared error losses for the different estimates and
compared these to each other and to the estimates given in George (1986b).
The loss for the mle (26.64) is very large. The losses for the product (4.30),
EB (4.28) and mixture (4.33) estimates are very similar. The product estimate
does almost as well as the best of George’s general Stein estimates (4.24) and

has smaller loss than any of his multiple shrinkage estimates (5.37, 4.73, 4.43).
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Table 1: Comparison of the Product Estimate to the Other Estimates.

Average Difference in Estimated
Mean Square Error

I Mle EB Mixture
S 1. 20° -18.2 (.7) 0.0(.1) -0.6(.2)
2. 19°1! ~174 (1) -01(1) -0.7(.2)
3. 19°12 ~155 (1) —0.6(.1) —0.8(.2)
4. 19°1° —140 (1) -22(2) —06(2)
5. 19914 _146 (1) -54(3) 0.5(.3)
6. 19011 —175 (1) —14.6(.5) —0.6(.2)
7. 10°10! ~14.0 (7) —0.1(1) —1.1(2)
8. 10°10? —6.7 (.9) 0.8 (.3) -0.5(.3)
9. 10°10° —6.1(1.0) —1.9(.5) 0.1(.4)
10. 10°10* —10.7 (8) —8.0(4) -02(.3)
11. 10°10%° ~168 (.6) —16.3(.5) —1.3(.2)
12. 1493132 —10.7 (.8) —0.1(2) —08(.2)
13. 1403234 74 (1) —25(3) —0.9(.3)
14. 1403338 6.3 (1) —3.6(5) —0.4(.3)
15. 1403438 84 (5) —67(5) 1.0(4)
16. 607172 —9.1 (.8)  06(2) —0.7(.3)
17. 607274 —25 (8) 13(4) -11(3)
18. 607378 04 (8) 16(5) 0.7(5)
19. 607478 55 (1) —43(5)  L1(4)
20. 505! 5253 52 (.9)  14(3) -1.1(3)
91. 50525456 0.4 (7)  20(4) -1.1(4)
99. 5053 56 59 0.7 (5)  1.9(4) —1.4(.5)
93. 505%58512 2.0 (4) -12(4) 23(6)
94, 3031323333526 —0.7 (1)  2.5(5) —1.9(4)
95. 3032393638310912 18 (5)  2.8(4) —3.3(4)

NOTE: The difference is between the product estimate and the other estimate.
Values in parentheses are the standard errors of the difference in estimated
mean square error.
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Figure Captions

Figure 1. Batting Averages and Estimates. b, average after 300 at bats =
mle; p, average for remainder of season; +, product estimate; 0, EB estimate;

#, mixture estimate.
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