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ABSTRACT

For the problem of estimating the mean of the N (6, 1) distribution using squared error loss, we
give some necessary conditions and one necessary and sufficient condition for a given (measurable)
function §(z) to be Bayes. It is shown that there are connections to some results of G.H. Hardy and
M. Mathias on Fourier analysis. We illustrate the use of these conditions by a number of examples.
In particular, a Fourier analytic proof of the fact that only linear polynomials can be Bayes is given.
Other examples include specific rational functions.
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1. Introduction. The purpose of this note is to point out some interesting connections between
some very deep results in the theory of Fourier transforms and some apparently basic results in
Bayesian statistics. For estimating the mean 6 of the N(6,1) distribution using the standard
squared error loss, we give four necessary conditions and one necessary and sufficient condition
for a measurable function 6(z) of the data  to be a proper Bayes estimate for §. The necessary
conditions will be used to give a Fourier analytic proof of the well known fact that linear estimates
of the form ag + @12, —~00 < @p < 00,0 < a3 < 1 are the only polynomials that are proper Bayes
rules for estimating 6; they are also used to demonstrate that certain rational functions of the form
%ﬁf cannot be proper Bayes estimates in this problem. The necessary and sufficient condition
is used to prove that certain other rational functions are in fact Bayes estimates for the mean 6.
There are very interesting possibilities for numerical application of this characterization result for
proving that a given function suspected of not being Bayes in fact is not Bayes. The reader is to be
reminded that characterization of Bayes estimates has been an area of active research in the past;
particularly important are the works of Berger and Srinivasan (1978), Brown (1971), Diaconis and
Ylvisaker (1978), Farrell (1966), Sacks (1964) and Strawderman and Cohen (1971); also see Berger
(1985). Rational functions of X as admissible estimates of # were studied in Ralescu and Ralescu
(1981). Clearly at least some of our results are reinventions of known results by use of alternative
mathematical tools. It is the connection to the deep results of Hardy and Mathias that is of greater

scientific importance and our prime motive is to point out these surprising connections to Fourier

analysis.

2. Main Result. The following notation will be used for the rest of this article: 6(z) will denote

a generic Bayes rule; we will write
h(e).

é(z)=z+ Ok

(2.1)

it is well known that such a representation is always possible for the Bayes rule in this problem.

H,(z) will denote the nth Hermite polynomial, i.e.,

dn 2 22

me"% = H,(z)e”™ 7 (2.2)
We will denote Hy,,(z) = 2% Hyp(2v/2); (2.3)
thus,
d* _ 2 N —g?
—e 7 = Hj, (z)e (2.4)

dz™
For future use, note that Hj, is defined as the 2nth Hermite Polynomial and denoted as Ha, in
Gradshteyn and Ryzhik (1980). Finally, for any L! function h(z),Ch(y) will denote the Fourier
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cosine transform of A, i.e.,

Ch(w) = | (cos(en)h(a)ds (2.5)

We will now state the results in the form of a single theorem.

Theorem 2.1. Let §(z) as in (2.1) be a Bayes rule for estimating the mean § of the N(6,1)
distribution under the squared error loss. Then,

(1) I llim J(6(t) — t)dt exists and equals —oo;
T|==>00 0

(ii) | ]Ijm J 6(t)dt exists and equals +o00, unless é(t) = 0;
Zj— o0 0

5(t)dt
(iii) The function f(z) = e° is the Bilateral Laplace transform of a probability measure u on

the Real line;

(iv) If 6(-) is skew-symmetric, i.e., §(—z) = —&(z) for every z, then

0o
2
(-1)" / Hyn(cy)e™ 5 "DC(y)dy 2 0 ¥V n 2 0,¢> 0; (2.6)
0

o0
in particular, [ h(y)Hzn(y)dy > 0 Vn > 0, if h(-) also satisfies the integrability condition
5 ,

o0 [

[ h(y)e¥’?dy < 0. Conversely, if (2.6) holds for every n,¢ > 0, then §(z) = z + hT((f)) is a
0

proper Bayes rule in the problem.

The following two results will be used for the proof of Theorem 2.1; we state them for ease of

reading.

Lemma 2.2 (Hardy). Let f = R! - R! be any measurable function such that f(z) = 0(6'32/2)
as |z| — oo and such that f(y) = O(e‘yz/ 2) as |y| — oo, where f denotes the Fourier transform of

f. Then f(z) = ce=*"/2 for some real c.

Remark. Lemma 2.2 asserts that a probability density function f and its Fourier transform f
cannot both converge to zero at a standard Gaussian rate unless f is the standard normal density
itself.

See Chandrasekharan (1987) (page 112) for a proof.

Lemma 2.3 (Mathias). A symmetric and continuous function 4(y) such that 9(0) = 1 is the
Fourier transform of a probability measure if and only if (—1)" ‘7'0 ¢(py)H2n('y)e‘y2/ 2dy > 0 for
all integer n > 0 and all p > 0. o

See Lukacs (1970) (page 79) for a proof.



Proof of Theorem 2.1. It is well known that if §(z) as in (2.1) is a Bayes rule with respect to
the prior G (say), then h(z) is proportional to the marginal density

1 1. 02
m(z) = / o O} @2.7)

Therefore, we can assume for all results of this article that k(z) = m(z). Part (i) of the Theorem

now follows on simply using
JE@-at
eo
[=a
= eo0

- %:% (2.8)

and on observing that co > m(0) > 0 and m(z) — 0 as |z| — oo by a standard application of the
Dominated convergence theorem.

For part (ii), note that

z

2 JIGOROL B
m(z)e T = m(0)-e° ‘ez
[
= m(0)- e (2.9)

Now notice that m(z) is the density of the convolution Z + Y where Z ~ N(0,1) and ¥ ~
G, and hence the Fourier transform of m is O(e‘yz/ 2). Consequently, by use of Lemma 2.2,

lim sup m(z)e®/? = 0o, from which part (ii) follows immediately on use of (2.9).
le|—o0
For part (iii), on using (2.9) again,

T

f&(t)dt
eo
e J #e‘%“’zea“’e‘%osz(ﬂ)
] FA=e757dG(6)
o0
J €**du(8)
J du(®)

where dy = e‘%esz, and hence the result follows.
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For part (iv), é(z) =z + ﬁh'g% is a Bayes estimate if and only if (-) is a Gaussian convolution
i.e., if and only if ¥(y) - e¥’/? is (also) a Fourier transform of a Probability measure where 1(y)
is the Fourier transform of A. Since §(z) is assumed to be skew-symmetric for part (iv) (although
it does not have to be; a parallel result is apparent for the general case), we have, using earlier

notation, ¥(y) = 2Cx(y) and hence, by Lemma 2.3,
e 2 2,2
(-n" / Han(y)e e Cu(py)dy >0 V> 0,p>0 (2.10)
0

(since the integrand in (2.10) is an even function).

Part (iv) will now follow on writing ¢ = %; the converse follows on using the if part of Lemma

o0
2.3. To observe that [ h(y)Hzx(y) > 0 for all n > 0, rewrite, for 0 < p < 1, (2.10) as
0
[eo]
22 P22
0<(-1)" / Han(y)e™ 7€ 2 Cu(py)dy
0

= (—1)"/H2n(y)e_y;eﬁ2ﬁ (/ cos(pa:y)h(:v)d:c) dy
0

0

= (-1)" / h(z) (/ °°S(pzy)e‘é‘l‘pz)ﬂzn(y)dy) i (2.11)
0 0

(by Fubini’s Theorem, which is valid here for 0 < p < 1). In the inside integral in (2.11), now use
the integral identity

e cos(BzV2)H, (ax)de

= Tﬂ-(l - az)ne_%ﬁzﬂ'z*n (_'—,———2(22’6_ 1)) (2.12)

(see item 7.388.4, page 840 in Gradshteyn and Ryzhik (1980)).
On using (2.12) in (2.11) and rewriting H3, in terms of Hyy, as in (2.3), one has

i 2.2
0< (—1)n/Hzn(y)e—yz/ze%ch(y)dy
0

__ Vo ( 7 )"]oh(x)m ( z )e‘ﬁz—’—fﬁdz Vap20  (213)
= D "\Vi-p? = ’
2,2

=> /h(z)]bn ( ° ) e 20=-rdz >0 Yn,p>0,




which gives the required inequality [ A(z)Hz,(z) > 0 by letting p — 0; it is at this penultimate
0

[ o}
step that the condition [ h(z)eézzdz < oo is required for validity of Dominated convergence.
0

3. Applications.

Example 1. In this example, we use parts (i) and (ii) of Theorem 2.1 to prove that if i(z) = E a;z’
is a Bayes estimate for 6, then a; = 0 for all { > 1. In combination with the well known fact that
ap + a1z is a Bayes rule whenever 0 < a; < 1, this will then characterize those polynomials which
can occur as Bayes estimates. The result is known, of course. According to usual convention, we
will assume a,, # 0 and n > 2. Towards this end, first note that if n > 2, then part (i) of Theorem
2.1 implies that n cannot be even. So assume n = 2k + 1,k > 1. However, part (ii) of Theorem 2.1
would force asx41 > 0, which would then contradict part (i). This proves as k+1 = 0. The proof is

now completed by standard induction arguments.

Example 2. Let §(z) = %"ﬁ‘z’f for 2 > 0; we will assume a; > 0, since a; < 0 is clearly uninter-
esting. Notice that there is no loss of generality in keeping the leading term in the denominator as
1. In this example, we will use part (iii) of Theorem 2.1 to demonstrate that estimates of the above
form cannot be Bayes estimates if 7 = agay — a; > 0. To achieve this, first note the elementary

fact that for z > 0,

/ §(t)dt = (% - El) tn(1 + ay7) + (3.1)
g 2
zqnu
By virtue of Theorem (2.1), e° is a Bilateral Laplace transform corresponding to a probability
measure, i.e., for z > 0,
faaa o0
@ =f@)= [ era)

-0

for some probability measure v. It is an easy fact that therefore f (z) must be log convex. However,

log f(z) = —Zln(l + ayz) + — M7
a3 a;

and is clearly not convex if 4 > 0. Of course, there are more direct ways to obtain this example.

Example 3. This is a positive example in the sense that we will now use part (iv) of Theorem 2.1

to prove that for every 0 < r < 1, the rational function

3rx + r2zd

§(z) = 14 rz?
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is a proper Bayes estimate in this problem. It follows that
2
h(z) = Ay - r(1 + rz?)e~ T A7), (3.2)

where A; is a positive constant and will henceforth be justifiably ignored. Our intention is to show

that -
(—1)n/HZn(Cy)e_yz_(cz_l)Ch(y)dy >0 Vn,c>0.
0

The calculations in this example are complex, but the idea is to present an evidence that part (iv)
of Theorem 2.1 is not an academic characterization. Towards this end, note the following series of
facts:

a Cp(y)=42-(1- %)e'ﬂ%, (3.3)
Wwhere Aj is a positive constant. (3.3) can be obtained by direct integration or by using the formula
for the Founer transform of the normal distribution N(0,0?) and then taking two derivatives to

obtain f z?(coszy)e” Z’dz but for a sign.

b fe—y252 (zy)dy = Y2 (22 — 1y (3.4)
(see 7 373.2, page 837, Gradshteyn and Ryzhik (1980))
¢ [ e i (2)de = U AT FCn i) (5.5)

2. a§
(see 7.376.2 in page 838 in Gradshteyn and Ryzhik (1980)) where F(a, b;c; z) is the usual Hyper-

geometric series
d F(-n,b;b;2)= (1 - 2)" for any b
(see 9.121.1 in page 1040 in Gradshteyn and Ryzhik (1980)).
e c(c+1)F(a,b;c,z)~ c(c+1)F(a,b;c+ 1;2) — abzF(a + 1,b+ 1;c + 2;2)=0 (3.6)
(see 9.137.6 in page 1044 in Gradshteyn and Ryzhik (1980)).
At this stage, recall that the required inequality is

- l)n/Hzn(cy)e T )< 1y2)20

-7

( - lr—fz;) dy >0 (3.7)

2
= (—1)"/Hzn(cy)e_‘v2—("2”"1:r
0

(oo} (o
2 , 2 T
= (- [/ Hanlen)e™ = rimldy - 7 [ M(en)e™ 504020 2 0
0 0

To obtain the first integral in the right side of (3.7), we use fact b listed above, while fact c is used

to obtain the second integral.



On using the notation
_c1-7)

7= cAl-r)+r’
this reduces (3.7) on algebra and use of fact e to

1

VT - %(1 ) %z 9227123 .T(n + %)((1 —2)" = 2n2(1-2)""1) >0 (3.8)

This, however, will follow if one can show
! - 1
Vi B 12 eeinm g a2 0 (39)
since 0 < z < 1.
(3.9) is achieved on using Legendre’s duplication formula

(o) 2382

(see Dettman (1984), page 199) in (3.9); actually one proves a stronger inequality in the process.
We skip these details for brevity. This shows é(z) = 3—T1£_|‘_!'TT—:§"—3 to be a Bayes estimate for every
O0<r<l.

4. Final Remarks and Summary. We have presented here some techniques for verifying if
a given estimate is Bayes. Connections to Fourier analysis are derived. We also give significant
evidence that the methods are useful in some explicit examples. The characterization result in

Theorem 2.1 is of potential in numerical verification of the Bayes status of an estimate.
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