Introduction to Bootstrap Methods in Statistics
by
Dimitris N. Politis
Purdue University

Technical Report #93-49

Department of Statistics
Purdue University

September 1993



Introduction to bootstrap methods in statistics

Dimitris N. Politis

Department of Statistics

Purdue University
W. Lafayette, IN 47907

Abstract

A tutorial introduction to the recently developed resampling and subsampling methods

for statistical inference, i.e., the bootstrap, the jackknife, and their variations, is presented.

1. Resampling and the bootstrap

The goal of this paper is to provide a readable, self-contained introduction to the bootstrap
and jackknife methodology for statistical inference; in particular, the focus is on the derivation

of confidence intervals in general situations.

1.1 The general non-parametric set-up. Suppose that X = (Xi,...,Xy) is an inde-
pendent, identically distributed (i.i.d.) sample from a population with distribution F. In other
words, F(z) = Prob(X; < z), for ¢ = 1,..., N, where  is any real number. The sample is
studied in order to estimate a certain parameter §(F) associated with the distribution F. A
statistic T = T'(X) might be used to estimate §(F') from the data. However, a measure of the
statistical accuracy of the point estimator 7(X) is also desired. For example, the bias and the

variance of the estimator T" are of interest, and are defined as follows:



Biasp(T) = EFT(X) — 0(F) (1)
Varp(T) = ErT4X) - [EFrT(X))? (2)

where Er denotes expectation under the F' distribution.

To fix ideas, consider that 8( F') is a location parameter, say the mean or median of F’, and
T(X) is the corresponding sample statistic (sample mean, sample median, etc.). In many prac-
tical situations the Central Limit Theorem can be invoked to assert that the estimator T'(X) is
approximately distributed as a Gaussian random variable. This will typically be true for most
‘good’ estimators, provided the sample size N is large enough, in which case the estimator
is said to be asymptotically normal, and an approximate interval estimate, i.e., a confidence

interval, for 8(F) can be formed, in addition to the point estimate T'(X).

1.2 Confidence intervals based on asymptotic normality. If the bias Biasp(T) is
negligible (compared to the square root of the variance Varg(T)), a (1 — «)100% confidence
interval for 6( F') will be of the usual form

[T(X) — 2¢/Varp(T), T(X) + 24/ Varr(T)), 3)

where z = 2(1—a/2) is the 1 —a/2 quantile of the standard normal distribution. If Biasp(T) is
not negligible, the confidence interval must be adjusted appropriately; generally, a (1 —@)100%
confidence interval for 8(F') will be given by

[T(X) — Biasg(T) — zy/Varg(T),T(X) — Biasp(T) + z1/Varr(T)] 4)

Note that the aforementioned confidence interval is based on the fact that the asymptotic
normal distribution of T'(X) — §(F') does not depend on the unknown parameter §(F); in other
words, T'(X) — 6(F) is an approximate pivot. However, to formulate this confidence interval
one needs to know Biasg(T) and Varg(T).

Estimates of Biasp(T) and Varp(T) might be available in the statistical literature for
different problems. For example, if T(X) = X = # >N, X; is the sample mean, and 6(F) =
ErX, is the population mean, then it is well known that Biasp(T) = 0, and Varp(T) =
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&Varp(X1), where Varp(X1) can be estimated by the sample variance N TN(X; - X)2
If T(X) is the sample median and §(F) is the population median, estimates of Biasp(T) and
Varp(T) can still be calculated (cf. Lehmann (1983)), but are substantially more complicated.

The bootstrap (and the closely related jackknife (cf. Efron (1979, 1982)) could alternatively
be used to easily obtain estimates of Biasp(T') and Varp(T) for a wide variety of statistics

T(X). However, before going into that, let us look at this problem from a different angle.

1.3 The usefulness of Monte Carlo randomization. Suppose, for the sake of argument,
that the population and its distribution F were in fact known. Then, Biasr(T) and Varg(T)
could be calculated exactly by analytical methods, or approximately by Monte Carlo simulation,
in case the analytical computation is difficult.

The idea behind Monte Carlo simulation is the following. Since the population is considered
known, we can draw any number of i.i.d. samples from it. Suppose that we draw B samples,
X®, ..., X®B), where each sample consists of N i.i.d. observations from the population F. If

B is large enough, the strong law of large numbers can be invoked to claim that

B
Erg(T(X)) = 5 ) o(T(X?)) (5)

=1

where g(-) is some function, e.g. g(z) = z or g(z) = z%. Then we would have

. 1 & ;
Biasp(T) = & ; T(X®) - 4(F) (6)
1 & - 1 & :
Varp(T) ~ & Y THx0) - (5 Y T(XP (")
i=1 =1

But if the population is considered known, we could also directly evaluate the sampling
distribution of the approximate pivot T'(X) — 6(F), without reference to the asymptotic (for
large N) normal distribution. Define Pr(A) to be the probability of event A occurring, under
the assumption that the population has distribution F', and let

DistT,F,g(a:) = Pp(T(X)—6(F) < z). (8)



Knowledge of Distr pg(z), for all real z, would immediately yield a (1 — a)100% confidence

interval for §(F) in the form
[T(X) - ¢(1 - 2/2), T(X) - g(/2)], (9)

where g(a/2) and ¢(1 — a/2) are the /2 and 1 — a/2 quantiles of the Distr r(z) distribution
respectively. The above confidence interval is equal-tailed, meaning that the probability the
interval’s left end-point is bigger than (F) is equal to the probability the interval’s right
end-point is smaller than #(F). Other constructions (e.g., symmetric, shortest length, etc.)
for confidence intervals are also available (cf. Hall (1988, 1992)) and possess some interesting
theoretical properties; nevertheless, the confidence intervals that are most often used in practice
are equal-tailed (cf. Efron and Tibshirani (1993)).

Again, although F' is considered known, the analytical evaluation of Distr rg(z) may be
difficult, and we might resort to Monte Carlo. Observe that Distr rg(z) is just a shifted
(centered) version of

DistT,F(:l:) = Pr(T(X) < ) (10)

so that Distr re(z) = Distr p(z +6(F)). If we define the indicator function of event A by the

formula

1 if A occurs
1(A) =
0 else

then, using equation (5) with g(T(X)) = 1(T(X) < z), and the fact that Er1(A) = Pr(4),
we have

B
Distr,p(z) = %E 1(T(XO) < z) = %(#T(X(i)) < z) (11)
=1

i.e., the theoretical probability should be approximately equal to the observed sample propor-
tion if B is large.! From equation (11), the quantiles of Distt g(z) and of Distr re(z)) can be

approximately calculated, and the confidence interval (9) constructed.

1.4 The bootstrap principle. To summarize, if the population and its distribution F
were known, then we would be able to calculate (analytically or by Monte Carlo simulations)

INote that (#T(X) < £) reads: number of the T(X(?)’s among T(XM),..., T(X(®)) that are observed

to be less or equal to z.



Biasp(T), Varp(T), and Distr rg(z). However, in the practical problem the population and
its distribution F are not known. The bootstrap method now is an outcome of the following
simple idea: since you do not have the whole population, do the best with what you do have,
which is the observed sample X = (X1,...,XN).

In other words, the bootstrap method (cf. Efron (1979)) amounts to treating your observed
sample as if it ezactly represented the whole population. In this fashion, the Monte Carlo

procedure in which B i.i.d. samples were drawn from the population is modified to read:

e Draw B i.i.d. samples X*(),... X*(B) (each of size N) from the sample population
consisting of the observations {X7,..., Xn}. In the bootstrap terminology, these B i.i.d.
samples are called resamples. Of course, drawing an i.i.d. sample from a finite population

such as {X1, ..., Xn}, amounts to sampling with replacement from the set {X1,...,Xn}.

Note that, as the whole population has distribution F', the sample population has distribu-

tion ﬁ‘, the so-called empirical distribution, which is defined as

. 1 ¥ 1
F(z)= 53 1(Xi <0) = T (#X: < o). (12)
i=1
To elaborate, in order to form the ith resample X*() = (X7 (i),.. .,X;,(i)), we sample with
replacement from the set {Xi,...,Xn}, or, using a different terminology, we take an i.i.d.

sample of size N from a population with distribution F.

1.5 The bootstrap as a ‘plug-in’ method. This last observation suggests a different
perspective for the implementation of the bootstrap as a simple ‘plug-in’ method. Namely, if
at a certain formula the unknown distribution F appears, you just substitute F in place of F
to get its bootstrap approximation. For example, the bootstrap approximations to Biasg(T)

and Varp(T) are given (cf. equations (1), (2)) by
Bias*(T) = Biasp(T) = ExT(X) - 8(F) (13)

Var*(T) = Varz(T) = EzT*(X) - [EsT(X)]% (14)



It should be noted that H(ﬁ’) is just the sample statistic corresponding to the population pa-
rameter §(F). In most cases, the statistic T(X) is chosen to be just 9(F). For example, if
6(F) is the population median, then we might want to use the sample median to estimate it,
ie. T(X) = 0(F). We will henceforth assume that §(F") = T(X) for simplicity; in a different

situation the ‘plug-in’ principle can be appropriately modified.

1.8 A parametric set-up. This ‘plug-in’ viewpoint permits one to see how the bootstrap
would work in a parametric problem as well. For example, if the distribution F(z) = Fy(x)
is known up to some parameter #, then the parametric bootstrap method would be to ap-
proximate quantities such as Biasp(T), Varp(T), and Distr r(z) by Biasg,(T), Varg,(T),
and Distr,F,(z) respectively, where f = T(X) is the estimated (from our sample) value of the
parameter 8. All the Monte Carlo approximations remain valid, except that in the parametric
set-up, to form the ith resample X*() = (Xf(i), - .,X;,(i)), we take an ii.d. sample from a
population with distribution Fj;. Note that in parametric problems, the theory of Maximum
Likelihood estimation and Fisher information are traditionally used to get point and interval
estimates of the unknown parameter 8 (cf. Miller (1986)); however, the bootstrap will tend to
give more accurate estimates in general (cf. Hall (1992), Efron and Tibshirani (1993)). Having
said that, let us return and focus our attention on the general non-parametric problem, that is,

the problem where F is completely unknown, since here the bootstrap is more urgently needed.

1.7 Construction of bootstrap confidence intervals. As was mentioned before, to
calculate Biasp(T) and Varp(T) we might have to resort to Monte Carlo simulation even
if the distribution F were known; see equations (6), (7). Thus to calculate Biasy(T') and

Varg(T) we might use the following Monte Carlo approximations:

Bias*(T) = Biasp(T) ~ %i T(X*) - 6(F) (15)
1 & ] . 18 .
Var*(T) = Varg(T) = % 2_: T3 (X*0) - 5 Z T(X*))2 (16)

The above mentioned bootstrap approximations to Biasp(T) and Varg(T) can be used

to yield a confidence interval for 6(F) based on the normal approximation of equation (4).



Alternatively, we can by-pass the normal approximation and set confidence intervals for (F)
based on the exact distribution of the pivotal quantity T(X) — 6(F) given in equation (8).
Of course, this exact distribution is not known, but a bootstrap approximation is available.

More specifically, the bootstrap approximation to Distt rg(z) is given by
Disty o(z) = Disty, g o(z) = Pa(T(X) - 6(F) < z) (17)
and an equal-tailed (1 — a)100% bootstrap confidence interval for (F') would be
[T(X) - ¢"(1 - /2), T(X) = ¢*(2/2)]; (18)

where ¢*(a/2) and ¢*(1—a/2) are the a/2 and 1— /2 quantiles of the Distr, g 4(«) distribution
respectively. It should be noted at this point that this just one of many possible ways to
construct a bootstrap confidence interval; see Efron and Tibshirani (1993, chapter 22) for a
thorough discussion, and DiCiccio and Romano (1988), Hall (1988, 1992) for a comparison
of bootstrap confidence intervals. Note that in the terminology of Hall (1988), equation (18)
represents a confidence interval based on the ‘hybrid’ method, whereas in Hall (1992) equation
(18) is the ‘other percentile method’ confidence interval; to avoid the confusion we will refer to
equation (18) as the pivotal method for bootstrap confidence intervals.

The bootstrap distributions Disty, z 4(z) and Disty p(z) = Pp(T(X) < =) —and therefore

their quantiles as well- can be easily evaluated by Monte Carlo as follows:

B
Disty, (o) = 3 UT(X"D) < ) = Z(FT(XO) < ) (19)
i=1

and

Dists o(z) = Disty 4 o(z) = Disty, p(z + (F)) = %(#T(x*(ﬂ) <z+0(F) (20

It should be noted that since the resampling procedure implicit in equation (20) is done
with the sample Xi,..., Xy being fized and playing the role of a population with distribution
F’, the sample statistic 0(ﬁ‘ ) is just a fixed number, calculated once and for all from the original
sample X;,..., Xn. In the bootstrap literature, the terminology is that the resampling is done

conditionally on the data Xy,...,Xn.



1.8 Higher order accuracy of the bootstrap and studentization. The reason for
the success and popularity of the bootstrap methodology is twofold: (a) it provides answers
(confidence intervals, standard error estimates, etc.) in complicated situations, and (b) it pro-
vides more accurate answers in standard settings, more accurate as compared to the ubiquitous
normal approximation. So far we have discussed only part (a) above; we will know focus on
(b).

Suppose that we have at our disposal a consistent? estimator of the variance Varg(T); let
us call this estimator V/a?F(T). To fix ideas, consider the simplest case where the statistic
T(X) of interest is the sample mean X. In this case, there is available a simple consistent
estimator of Varg(T), namely Varg(T) = s2/N, where s? = (N — 1)1 TN, (X), — X)? is the
sample variance. Dividing the statistic T'(X) by its estimated standard deviation V/a;F(T )
is usually referred to as ‘studentization’, since —if the data were Gaussian— this would result in
Student’s #-distribution. Consider then the sampling distribution of the ‘studentized’ statistic,

ie.,

T(X) - 6(F)
Varg(T)

Knowledge of Distsiygent(z) for all real z would yield a (1 — «)100% confidence interval for

6(F) in the form

[T(X) - w(1 — a/2)\/ Vare(T), T(X) — u(e/2)\/ Vars(T)], (22)

where u(a/2) and u(1—a/2) are the @/2 and 1—a/2 quantiles of the Dist udent(z) distribution

Distsydent(z) = Pr( < ). (21)

respectively.

Note however that for general statistics, or even for the sample mean if we are not willing to
assume that data are Gaussian, the distribution Distsiygen:(z) and its quantiles are unknown;
nevertheless, it can be estimated by the bootstrap, similarly to what was discussed in the
previous sections. In pérticular, the bootstrap distribution Dist},,  ...(¢) that can be used to

approximate Distsiydent(2) is given by

—~ (i)

: 1 : .
DzSt:tudent(m) = E Z 1(#T(x*(z)) <z\Varr (T) + O(F))
i=1

ZLoosely speaking, an estimator is consistent if it is accurate for large samples, i.e., asymptotically correct.



= LHTEC0) < oy VareO(T) + 0(8), (29)

where V?z?p*(i)(T) is the estimate of the variance of the statistic T(X) as computed from the
X*() resample. For example, in the sample mean case, V/a?F*(i)(T) =(N-1)"1 YN (X ;(i) -
X*®)2, where X*0) = N1 X;:(i).

Note that, if a variance estimate is not readily available, V’a\rF(T) itself could be a bootstrap
estimate constructed as in section 1.3; in that case, V/a;p*(i)(T) is the bootstrap variance
estimate computed from the X*() resample! In other words, we have an iterate(;l or nested
bootstrap —a bootstrap simulation for each of the original bootstrap resamples; cf. Hall (1992)
or Efron and Tibshirani (1993) for more details.

In any case, an equal-tailed (1 — @)100% bootstrap confidence interval for 8(F)

[T(X) - w(1 - a/2)\/ Varp(T), T(X) - u*(a/2)y/Varp(T)), (24)

where u*(/2) and u*(1—a/2) are the a/2 and 1~ a/2 quantiles of the bootstrap Dist},, j...(2)
distribution respectively; the confidence interval of equation (24) is called a bootstrap-t or a
percentile-t interval due to the ‘studentization’.

As it turns out (cf. Singh (1981)), the confidence interval of equation (24) is more accurate
than either the pivotal bootstrap interval of equation (18), or the normal confidence interval
of equation (3); this is what is meant by ‘higher order accuracy of the bootstrap’, or that the
bootstrap ‘captures the skewness’ of the underlying distribution. This higher order accuracy
comes at a price, since the iterated bootstrap is much more computer intensive than the simple
bootstrap; however, in the sample mean case the extra computational burden is minuscule,

because a variance estimate can be computed without Monte Carlo simulation.

1.9 Trasformations and variance stabilization. The reader should also refer to the
textbook by Efron and Tibshirani (1993) for a different construction of higher order accurate
bootstrap confidence intervals, the BC, intervals, that are based on the idea of ‘bias correction’.
It is quite interesting to note that the BC, intervals have the additional desirable property of
being ‘transformation invariant’, a property not shared by the bootstrap confidence intervals

of equations (18) and (24), nor by the normal approximation interval of equation (3).



To explain the property of ‘transformation invariance’, consider a (strictly) monotone func-
tion g(-), and its inverse g7(-). Since T = T(X) is considered to be a good estimator of
6 = 0(F), then it follows that g(T') is a good estimator of g(6). Suppose [, u] is an equal-tailed
(1 — @)100% approximate confidence interval for 6(F) constructed using any of the available
methods, i.e., normal theory of equation (3), pivotal bootstrap of equation (18), bootstrap-¢ of
equation (24), or bootstrap BC,.

Observe that ¢g(T') is just a statistic based on our sample, and it can be ‘bootstrapped’ as
well. In other words, the sampling distribution of g(T") can be estimated, and an equal-tailed
(1 — @)100% confidence interval for g(#) can be formed, by the same method used to obtain
the interval for §(F); say this interval is [g;,g.]. It then follows that [¢7(g;), 97 (g.)] is an
approximate (1 — @)100% confidence interval for §(F"), and this new confidence interval should
be compared to the interval [/, u] found directly. If the two intervals for ( F') are identical, then
the propertylof ‘transformation invariance’ holds; if not, it makes sense to ask ”which of the
two intervals is better?”, in which case one is led to search for an ‘optimal’ transformation g(-)
to use in connection with the construction of confidence intervals.

In some isolated cases, e.g., Fisher’s hyperbolic tangent transformation for the correlation
coefficient (cf. Efron and Tibshirani (1993, p. 54 and p. 163)), a transformation is available
in the literature that approximately ‘normalizes’ and ‘variance stabilizes’ the estimator T'(X);
in other words, the estimator g(T') has a distribution that is closer to being Gaussian than the
distribution of T'(X), and the variance of g(T') does not depend on the parameter 8( F’), at least
not significantly. As a consequence, such a transformation is ‘optimal’ to use in connection
with the construction of confidence intervals based on the normal approximation of equation
(3).

In most cases however, it may not be possible to simultaneously normalize and variance
stabilize the estimator T(X) by a single transformation. As it turns out, the ‘optimal’ transfor-
mation associated with constructing bootstrap-¢ confidence intervals should primarily achieve
variance stabilization. Now if Varp(T') were known as a function of §(F'), then an approximate
variance stabilizing transformation g(-) could be found by the §-method (cf. Miller (1986),
Efron and Tibshirani (1993)). The problem of course is that Varg(T), 6(F), as well as the
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functional relationship between the two are generally unknown!

Nonetheless, an approximate ‘optimal’ transformation for variance stabilization can be com-
puted using an iterated bootstrap —much like the iterated bootstrap described in the previous
section on studentization— to calculate estimates of Varp(T') from each resample; details can be
found in Efron and Tibshirani (1993, p. 163). It should be noted that if an iterated bootstrap
is carried out to calculate the variance stabilizing transformation, then there is no need to do
another iterated bootstrap to get the bootstrap-t confidence interval. In other words, there is
no need for the studentization any more since the variance can be considered constant, and a
bootstrap confidence interval for g(6) based on the pivotal method of equation (18) would be

obtained and then inverted (using g~') to give a good bootstrap confidence interval for 6(F).

2. Subsampling and the jackknife

While one reason for the success of the bootstrap is its widespread applicability, there are
certainly situations where the bootstrap is not applicable; for example, in the case where the
statistic 7(X) is linear, i.e., of the sample mean type, the validity of the bootstrap crucially
hinges on whether the statistic is asymptotically normal or not. As a matter of fact, a huge
statistical literature on the bootstrap has accumulated since Efron’s (1979) pioneering paper,
with main focus to show the applicability of the bootstrap in many different settings; see our
section 3 for some bibliographical comments.

At another level, recall that performing the bootstrap in practice requires sampling with
replacement from the observations X3,..., X, to get a resample of size N. The ezact compu-
tation of the bootstrap distribution would actually involve taking into account all the possible
resamples, weighted by the corresponding multinomial probabilities; however, the number of
possible resamples is % which is impractically large. Doing the Monte Carlo random
bootstrap sampling gets around this problem, but there is also another way of lowering the

computational complexity: the jackknife and subsampling.
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2.1 The jackknife idea. Consider sampling without replacement from the observations
X1,..., XN, to get a resample (now called a subsample) of size b, where of course b < N. If
b = N — 1, this is exactly the original jackknife of Quenouille and Tukey (cf. Efron (1979,
1982) and Efron and Tibshirani (1993) for details), and there are only N possible different
subsamples. Since these subsamples are all equally probable under the sampling without re-
placement scheme, formulas much like (15), (16), (19), and (20) can be constructed to estimate
bias, variance, and distribution of the statistic T(X); these will be given in a more general form
in what follows.

In general, one can take an arbitrary b, not necessarily equal to N — 1, yielding the so-called
delete-d jackknife, where d = N — b; the number of possible subsamples now rises to W]—G’—Lb—),
and again a Monte Carlo method can be employed to randomly chose a smaller number, say B,
among these subsamples to be included in the jackknife. As long as b is large enough (but of
smaller order of magnitude than N ) the subsampling distribution estimates are asymptotically
correct.

In some sense, subsampling can be thought to be even more intuitive than the bootstrap,
because the subsamples are actually samples (of smaller size) from the true distribution F,
whereas the bootstrap resamples are samples from an estimator of F. As can be shown (cf.
Politis and Romano (1992), distribution estimates based on subsampling are valid in a wider
range of situations than their resampling (i.e., bootstrap) analogs, even in cases where the
statistic 7(X) is not asymptotically normal; however, they do not possess the property of
higher order accuracy, and this is essentially due to the fact that the subsampling size is b and
not N.

This difference between the subsample size and the original sample size has an additional
consequence, namely that a re-scaling is in order in computing the subsampling distribution
estimator. Suppose that the variance of T(X) is approximately proportional to ¢?/7%, for
large N, where c is some constant; in regular cases, 7% = N. It follows that the variance of T
calculated from a sample of size b is approximately proportional to ¢2/72; here the need for a

re-scaling becomes apparent. The subsampling procedure can finally be summarized as follows:
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e Choose B subsamples X*1), ... X*(B) among all the possible subsamples of size b of the
sample population {X3,...,Xn}. Suppose the ith subsample is X+ = (Xf(i), e ,X,’;('.));
the final step now is to evaluate the statistic T' over each of the chosen subsamples, cre-

ating the pseudo-replications T(X*()),..., T(X*(B)),

2.2 Confidence intervals based on subsampling. The subsampling estimates of
Biasp(T), Varp(T), Distr,r(z), and Distr rg(z) are Bias*(T), Var*(T), Dist§ p(z), and
Dist},ﬂa(:c) respectively which are presented below; note that if B = W?%F and Monte Carlo
randomization is not used, i.e., all possible subsamples are taken into account, the approxima-

tion signs (~) below can be replaced by equality signs.

ias* ~ IP_ l 2 *(2) — )
Bias™(T) = = ( 5 ;T(X )—T(X) (25)
7'2 1 B *(; 1 B *(;
Var*(T) ~ -4 (E Y THXT@) - 5 Y r(x W)F) (26)
™ i=1 =1
B
Disth p(z) = %; 1(T(X™) < x%’ = %(#T(X*(i)) < m%’) (27)
and
Disth o(s) = GHTX) < 2 + 7(X)) (28)

Similarly to the interval (18), an equal-tailed (1 — @)100% confidence interval for (F) based

on subsampling would be

[T(X) - ¢"(1 - 2/2), T(X) - g"(a/2)], (29)

where ¢*(/2) and ¢*(1-0a/2) are the /2 and 1—a/2 quantiles of the Dist}, ,(z) distribution
respectively.

As a final remark, it is worth noting that if the B subsamples that are used to construct the
subsampling estimates are chosen (without Monte Carlo randomization) to be the N —b+1
subsamples characterized by the property that each contains b consecutive observations from
the original sample X,..., Xy, then the subsampling estimates given above are valid even if
the sample exhibits serial correlation; see Politis and Romano (1992) for more details regarding

subsampling stationary time series.
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3. Some bibliographical comments

At this moment, there are four published books on the bootstrap: the original monograph
of Efron (1982), the textbook by Hall (1992) that contains a lot of material concerning the
higher order accuracy of the bootstrap and the effects of ‘studentization’, the collection of
research papers in LePage and Billard (1992), and the new textbook by Efron and Tibshirani
(1993). There are also two collections of lecture notes: Beran and Ducharme (1991) provide
theoretical expositions of the concept of ‘prepivoting’, a method related to ‘studentization’, and
of bootstrap balanced confidence intervals and prediction regions, and Mammen (1992) focuses
mainly on the bootstrap for linear models.

Several review articles are now available in the literature: Efron and Gong (1983) and Efron
and Tibshirani (1986) have a more applied flavor, whereas DiCiccio and Romano (1988) give a
theoretical treatment. Swanepoel (1990), and Léger, Politis, and Romano (1992) review more
recent developments and provide discussion on more advanced applications of the bootstrap
methodology; both papers also contain an extensive list of references. Léger et al. (1992)
and Bose and Politis (1993) provide reviews of the bootstrap for dependent samples. Finally,
the reference for most of our section on subsampling is Politis and Romano (1992) that also

contains a good number of examples where the bootstrap does not work.
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