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Abstract

This paper deals with the empirical Bayes methodology for ranking and selection
problems with specific reference to multinomial populations. Two kinds of empirical Bayes
selection rules are considered. One is to incorporate information from past data to improve
the current decision. The other is to incorporate information from each other as to simul-
taneously improve the decision for each of the component problem under study. Certain
important selection problems regarding multinomial populations, including the selection of
the most probable event within a multinomial population, the selection of the most homo-
geneous population from among k¥ multinomial populations, the selection of homogeneous
populations compared with a control, are considered. The empirical Bayes methodology

is discussed through these selection problems.
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denote the ordered values of the parameters 6y,...,0;. The population associated with
6jx) is called the best population. For a given standard 6y, a population 7; is said to be
good if 6; > 6, and bad otherwise. In many practical situations, an experimenter may
be interested in the selection of the best population and/or the selection of all good pop-
ulations. These problems are known as selection and ranking problems. The formulation
of selection and ranking procedures has been accomplished generally using the indiffrence
zone approach (see Bechhofer (1954)) or the subset selection approach(see Gupta (1956,
1965)). A discussion of their differences and various modifications that have taken place

since then can be found in Gupta and Panchapakesan (1979).

In many situations, an experimenter may have some prior information about the
parameters of interest and he would like to use this information to make an appropriate
decision. If the information at hand can be quantified into a single prior distribution, one
would like to apply a Bayes procedure since it achieves the minimum of Bayes risks among
a class of decision procedures. Some contributions to selection and ranking problems
using a Bayesian approach have been made by Deely and Gupta (1968, 1988), Bickel and
Yahav (1977), Chernoff and Yahav (1977), Goel and Rubin (1977), Gupta and Hsu (1978),
Miescke (1979), Gupta and Miescke (1984), Gupta and Yang (1985), Berger and Deely
(1988), and Fong (1989, 1990, 1992), among many others.

The empirical Bayes approach in statistical decision theory is typically appropriate
when one is confronted repeatedly and independently with the same decision problem. In
such instances, it is reasonable to formulate the component problem with respect to an
unknown prior distribution on the parameter space. One then uses information borrowed
from other sources to improve the decision procedure for each component. This approach
is due to Robbins (1956, 1964). Empirical Bayes procedures have been derived for multiple
decision problems by Deely (1965). Recently, Gupta and Hsiao (1983), Gupta and Liang
(1986, 1988, 1989a, b, 1991, 1993a, b), Liang and Panchapakesan (1991) and Gupta and
Hande (1993) have investigated empirical Bayes procedures for several selection problems.
Many such empirical Bayes procedures have been shown to be asymptotically optimal in the
sense that the component Bayes risk will converge to the optimal Bayes risk which would
have been obtained if the prior distribution were fully known, and the Bayes procedure

with respect to this prior distribution was used.



The present paper is concerned with the selection and ranking problem using the
empirical Bayes approach. Two kinds of empirical Bayes procedures will be considered.
One is to incorporate information from accumulated past data to improve the current de-
cision. The other is to incorporate information from each other so as to simultaneously
improve the decision for each of the component problems under study. The paper is orga-
nized in the following way. We briefly introduce the Bayes selection problem in Section 2.
The empirical Bayes principle is addressed in Section 3. In the later part of the paper,
special reference to multinomial populations is made. In Sections 4 and 5, we consider
certain important selection problems for multinomial population(s). The empirical Bayes

methodology is discussed through these selection problems.

2. Bayes Selection Problems and Procedures

Let ; € ® C R denote the unknown characteristic of interest associated with the
population m;, 2 = 1,...,k. Let X;,..., X be random variables representing the k£ popu-
lations 7y, ..., Tk, respectively, with X; having the probability density function f;(z]6;). It
is assumed that given § = (61,...,60;), X = (X1,...,Xi) have a joint probability density
function f(z|d) = ii fi(zil6;), where £ = (x1,...,2z%). Let f;j < ... < 6 denote the
ordered values of #;’s. The population associated with [ is called a best population. For
a given standard 6, a population 7; is said to be good if 6; > 6y and bad otherwise. Let
Q= {09; € ©, i =1,...,k} denote the parameter space. Also, it is assumed that the
value of the parameter §; is a realization of a random variable ©; having a prior distribu-
tion G; and O4,...,0 are mutually independent. Hence © = (©4,...,0;) have a joint

. .y . . k
prior distribution G(6) = T Gi(0;) on the parameter # over the parameter space 2.
)=z 4

In many situations, an experimenter is interested in identifying the best population
or selecting the more promising subset of the & populations for further experimentation.
For a specified selection goal, an action is a subset of the set {1,...,k}. When action
S c {1,...,k} is taken, it means that population ; is included in the selected subset if
i € S. Let A denote the action space. For each § € Q and S € A, let L(6,S) denote
the loss incurred when 6 is the true state of nature and the action S is taken. A decision

procedure d is defined to be a mapping from X x A into [0,1] such that } d(z,S) =1
SeA
for all z € X, where X is the sample space of X. d(z, S) can be viewed as the probability
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of taking action S when X = z is observed.

Let D be the class of all decision procedures. For each d € D, let r(G,d) denote the
associated Bayes risk. Then, r(G) = inf r(G,d) is the minimum Bayes risk. An optimal de-
cision procedure, denoted by dG, is obtamed if dG has the property that r(G, dG) =r(G).

Such a procedure is called Bayes with respect to G Under some regularity condltlons

G, d) = / 3 d(z, ) [ / L(s, S)dG(0|a:)] f(2)dz

SeA

where G(6|z) is the joint posterior distribution of § given X = z, f(z) = illc'l fi(z;) and
fi(z:) = fe fi(z:]6:)dGi(8;) is the marginal probability density function of X;.

For each fixed z € X, let

Ag(@:9) = [ 18 5)6 @),
~ Q
= A = min A 3.
A(z) = {S € AlAg(z, 5) = min Ag(z, 5')}
Then, the Bayes decision procedure dgy clearly satisfies that > dg(z,5) =1.
~ SeA(x) ~
It should be noted that the Bayes decision procedures vary for different selection
problems and goals, and depend on the loss function chosen. Also, the Bayes decision
procedure is very sensitive to the prior distribution which is obtained through quantifying

prior information into a single prior distribution.

3. Empirical Bayes Selection Procedures

In this section, we continue with the general setup of the early section. However, we
. — . k
assume only the existence of a prior distribution G(8) = x Gi(0;) on 8 over §; the form
F\Z’=21 4

of the prior distributions G;, 7 = 1,...,k, are either unknown or partially known.

We use the empirical Bayes approach. Two kinds of empirical Bayes procedures will be
considered. One is to incorporate information from the accumulated past data to improve
the current decision. The other is to incorporate information from each other so as to

simultaneously improve the decision for each of the component decision problems.



Incorporating Information from Past Observations

According to the usual empirical Bayes framework, for each : = 1,...,k, let Xj;
denote the random observation taken from m; at stage j. Let ©;; denote the random
characteristic of 7; at stage j. Given ©;; = 6;;, X;; has the conditional probability density
function fi(z)0;;). Let X; = (Xuij,...,Xkj), and ©; = (©yj,...,0k;). Suppose that
independent observations Xi,...,X, are available and ©;,j = 1,...,n, are mutually
independent and have the same prior distribution G, though ©; are not observable. Also,

let X = (Xi,...,Xk) denote the present random observation.

Consider an empirical Bayes decision procedure dp((z; X1,...,X4»),S) = du(z,S),
which is a function of the present observation z and the past random observations Xj,...,

Xn. Let r(G,dy) be the conditional Bayes risk associated with the empirical Bayes pro-

cedure dy, conditional on the past observations (X1,...,Xy). That is,
1Gyda) = [ Y dnla,S) [ (6, 5)G(8le)f(2)de.
X sca Q

Also, let E[r(G,dy)] be the overall Bayes risk of the empirical Bayes procedure d,. That

1s,

Er(G.dl = [ Eldu(z, 5) [ L0, S)G(EInf(e)ds,

SeA
where the expectation E is taken with respect to (X1,...,X,). Note that (G, d,)—r(G) >

0 since r(G) is the minimum Bayes risk among the class of all decision procedures D.
Hence E[r(G,d,)] — r(G) > 0. Either of the two non-negative difference can be used as a
measure of optimality of the empirical Bayes procedure d,,. A sequence of empirical Bayes
procedures {d, }52 is said to be asymptotically optimal relative to the prior distribution G
if E[r(G,d,)]—r(G) — 0 as n — oco. The problem concerned here is to construct empirical
Bayes procedures possessing the desired asymptotic optimality. Gupta and Liang (1986,
1988, 1989a, b), Gupta and Hande (1993) and Liang and Panchapakesan (1991) have
investigated several empirical Bayes procedures for certain selection problems under this

empirical Bayes framework.
Incorporating Information from Other Components

We now consider the case where it is assumed that the k prior distributions Gy, ..., Gk

are identical, but there is no past observation available. Under this assumption, the em-
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pirical Bayes idea can still be employed. We may incorporate information from each of the
k populations to make an appropriate decision for the concerned selection problem. Let
di be a decision procedure constructed under such consideration (the detailed methods
will be discussed later through some examples), and let (G, di) denote the corresponding
Bayes risk. Since r(G) is the minimum Bayes risk, (G, dx)—r(G) > 0. An empirical Bayes
procedure dy. is said to be asymptotically optimal if r(G,dr) — 7(G) — 0 as k¥ — o0. One
may desire to construct empirical Bayes procedures having such asymptotic optimality.
Gupta and Liang (1991, 1993a,b) have studied several empirical Bayes selection problems

using this empirical Bayes approach.
Approaches for Constructing Empirical Bayes Procedures

There are three main approaches for constructing empirical Bayes procedures, accord-
ing to how much we know about the prior distribution G, namely, nonparametric empirical

Bayes, parametric empirical Bayes and hierarchical empirical Bayes, respectively.

For the nonparametric empirical Bayes approach, one assumes that the form of the
prior distribution G is completely unknown. In this situation, one may either use the
information obtained from other sources (may be either from the past data or from the
other components) to estimate the prior distribution G, then do a Bayesian analysis based
on the estimated prior or represent the Bayes procedure in terms of the unknown prior,
and then use the data to estimate the behavior of the Bayes decision procedure directly.
Gupta and Hsiao (1983) and Gupta and Liang (1986, 1988, 1991) have studied some

selection problems using the nonparametric empirical Bayes approach.

For the parametric empirical Bayes approach, it is assumed that the prior distribution
G is a member of some parameter family I and is indexed by some unknown parameter(s),
say A. Hence the prior distribution is denoted by G . Suppose now an estimate A depend-
ing on the data can be found and we denote the prior distribution associated with ) by
G5. Note that G is also a member of the family I'. We use G5 to estimate the unknown
prior Gx. We then follow the usual Bayesian analysis and derive the Bayes procedure de
with respect to the estimated prior distribution G5. Using this line of parametric empirical
Bayes approach, Gupta and Liang (1989a,b) have studied empirical Bayes selection proce-

dure for selecting the most probable event in a multinomial distribution and for selecting



the best population from among & binomial populations.

For the hierarchical empirical Bayes approach, it is assumed that the prior distribu-
tion of component ¢ belongs to some parameter family I" and is indexed by a parameter
(or parameters) A; and the \;’s are assumed to be iid, follow a hierarchical prior dis-
tribution. This hierarchical prior distribution may be either known or indexed by an
unknown parameter (or parameters). In the latter case, the unknown parameter(s) should
be estimated. One then follows a hierarchical Bayesian analysis. A decision procedure
derived through this framework is called a hierarchical empirical Bayes procedure. Gupta
and Liang (1993a) have investigated a hierarchical empirical Bayes selection procedure for

sampling inspection.

4. Selecting the Most Probable Multinomial Event

Consider a multinomial population with k(> 2) cells, where the cell 7; has probability
pi, t = 1,...,k. Let ppj, < ... < ppx) denote the ordered values of the p;’s. It is assumed
that the exact pairing between the ordered and the unordered parameters is unknown.
Any cell associated with pjx) is considered as the most probable event. In the literature,
a number of statistical procedures have been considered for selecting the most probable
event. For example, see Bechhofer, Elmaghraby and Morse (1959), Gupta and Nagel
(1967), Panchapakesan (1971), Cacoullos and Sobel (1966), Alam (1971), Ramey and
Alam (1979, 1980), Bechhofer and Kulkarni (1984) and Chen (1986, 1988), among many
others. In the following, our goal is to derive empirical Bayes rules to select the most

probable event.

A Bayes Selection Rule

For each 7 = 1,...,k, Let X; denote the observations that arise in the cell 7; based
on N(> 2) independent trials. Thus, for given p = (p1,...,px), X = (X1,...,Xi) has a

multinomial distribution with the probability function

NI k . k
f(zlp) = — Hpj’, z;=0,1,...,N and Za;ij. (4.1)
I (z;!) =1 s=1
j=1



k
Let @ = {pl0 < pi <1,i=1,...,k, ) pj = 1} be the parameter space. It is assumed that
=1
pis arealization of a random parameter vector P = (Pi,. .., Py), which has a Dirichlet prior
distribution G with hyperparameters o = (a3,...,a) and is denoted by Di(oq,...,ar),

where all a;’s are positive but unknown. That is, P has a probability density of the form

k k
r Qg i —
9(2)=T(—)—HP?' L, 0<pi<l, Y pi=1 (4.2)
[T T(as) =1 =
=1
k
where ap = Y, ;.
=1
Let A = {i|i = 1,...,k} denote the action space. When action ¢ is taken, it means

that cell ; is selected as the most probable event. For the parameter p and action 4, the

following linear loss L(p, ) is considered:

L(p,i) = px — pi (4.3)

the difference between the most probable and the selected event.

A decision rule d = (dy,...,dx) is a mapping from &, the sample space generated by

X, into [0,1]%, such that for z € X the function d(z) = (di(z),...,dr(z)) is such that
k

0<di(z)<1,7i=1,...,k, and ) di(z) = 1. di(z) is the probability of selecting the cell
=1

=
7; as the most probable event given X = z.

For decision rule d, let (G, d) denote the corresponding Bayes risk. Straightforward

computation yields that

r(G,d)=C— Y dilz)ei)f(z) (4.4)

I’IEGX
where
z; + o
i) = BIPIX = 1] = oot
flz)= / f(z|p)dG(p): the marginal probability function of X,
Q
and C= /Qp[k]dG(l?)-



From (4.4), a Bayes selection rule dg = (d¢1,-.-,dgk) can be obtained as follows. For
each z € X, let
A(z) = {ilei + ai = max (z; + o))} (4.5)

Then for each i = 1,...,k, define
dgi(z) = {

where |A| denotes the cardinality of the set A.

|[A(z)|7! if i € A(x),
0

otherwise,

(4.6)

Note that the Bayes selection rule dg defined through (4.6) is a randomized rule. A

non-randomized Bayes selection rule, say dg = (dg,,...,dg;), is also given below. Let
* =4*(z) = min A(z). Then for each : = 1,...,k, let ‘

e oy [1 ifi=i,

Gilz) = {0 otherwise. (4.7)

The minimum Bayes risk for the concerned selection problem is (G, dg)(= r(G, dg)).

Since the values of the hyperparameters (a1, ...,ax) are unknown, it is not possible
to apply the Bayes selection rules for the selection problem at hand. In the following,

empirical Bayes approach is employed.
Incorporating Information from Past Observations

According to the usual empirical Bayes framework, it is assumed that there are
marginally iid random observations X; = (Xj1,...,Xjk), § = 1,...,n, with marginal

probability function f(z) available when the current decision is made. We also let X 41 =

X = (Xy,...,Xi) denote the present observation. Empirical Bayes rules are proposed

depending on whether the value of the parameter o is known or unknown. Note that
k

ag = Y, aj. In the case where ag is known, the individual values of a;, ¢ = 1,...,k, are
i=1

still unknown.
First, foreachi=1,...,k,and each n =1,2,..., let
— 1 1= oo
Xi(n) =~ Z Xij, Mi(n) = ~ ZX,-J-,
j=1 J=]_
Zi(n) = [NXi(n) — My(n)]X(n),
Yi(n) = [Mi(n) = Xi(n)]N — (N — 1)(Xi(n))*.



ag Known Case

Let &in = a9 Xi(n)N~! and let Ap(z) = {i|z; + din = lrga,éck(:vj + éjn)}. Then define
<<
empirical Bayes selection rule d, = (dn1,...,dnt) and dy, = (d}4,. - ., d};), respectively as

follows:

Foreachi=1,...,kand z € X,

(o= J [An(@)]T1 i € An(z)
dni(z) = {0 otherwise, (4.8)
« oy (1 if i =minA,(z)
dni(z) = { 0 otherwise. (4.9)

Note that dy, is a randomized rule while d;, is a nonrandomized rule. The selection

rule dy, has been considered by Gupta and Liang (1989b).
ap Unknown Case

Let u; = E[Xi(n)] and \; = E[M;(n)]. Then, a direct computation shows that
u; = Na,-ao_l, A= Na,-ao_l + (N? — Nai(a; + l)ao_l(ao +1)~L. Hence, a; = L,-lLi_Zl,
where Ly = (Npi— i), Liz = (Ai— pi)N — (N —1)g?. Thus, Zi(n), Yi(n) and Z;(n)/Yi(n)
are moment estimators of L;;, L;z and «;, respectively. Note that L;; and L;; are both

positive. Also, Z;(n) > 0. However, it is possible that Y;(n) < 0. So first define

Ain(zs) = {“f' + Zi(n)/Yi(n) if Yi(n) >0

z otherwise,
and let
An(2) = {ilAin(2:) = jpax Ajn(z;)}
Then define empirical Bayes selection rules t:in = (dp1,...,dnt) and (:l; =(d%,,...,d*,) as
follows:

Foreachi=1,...,k and z € X, define

it -1 o .
doi(z) = |An(z)] if £ € An(x), _
(2) {0 otherwise, (4.10)
and
B ={} fi=mindi(2) (811)
0 otherwise.
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The selection mle d,, has been studied by Gupta and Liang (1989b).
Asymptotic Optimality

Let (G, d,) be the Bayes risk associated with the empirical Bayes selection rule d,.
Since r(G,dg) is the minimum Bayes risk, r(G,d,) — r(G,dg) > 0 for all n. This regret

risk is always used as a measure of performance of the selection rule d,,.

Definition 4.1. A sequence of empirical Bayes rules {dy,, }52., is said to be asymptotically
optimal at least of order ¢, relative to the prior distribution G if r(G,d,) — r(G,dg) =

O(cn), where {c,} is a sequence of positive numbers such that lim ¢, = 0.
n—o00

Gupta and Liang (1989b) have studied the two empirical Bayes selection rules d, and
@n, defined in (4.8) and (4.10), respectively, and established the corresponding asymptotic
optimality. Along a similar line, the asymptotic optimality of d; and (:l; can also be

established.

Theorem 4.1. (Gupta and Liang (1989b)). For the empirical Bayes selection rules

dn, d,, c:in and (:i:z defined previously we have,

r(G,dn) — (G, dc) = O(exp(—cin)),
(G, dy) — (G, dg) = O(exp(—cen))
r(G,dn) ~ (G, dg) = O(exp(—c3n))
r(G,dn) — (G, dg) = Oexp(—csn))

for some positive constants ¢;, : = 1,2, 3,4.

Remark 4.1. Another selection problem related to the multinomial population is to
select the least probable event; that is, to select the cell associated with p[y- By using
the loss L(p,¢) = pi — pp1), Gupta and Liang (1989b) have studied two empirical Bayes
selection rules according to whether ap is known or unknown, and establish the associated

asymptotic optimality.

Remark 4.2. Gupta and Hande (1993) have generalized the result of Gupta and Liang
(1989b) for a more general loss and established the exponential rate of convergence for
their proposed empirical Bayes rule. They also considered the problem of selecting the

most (least) probable event and simultaneously estimating the probability associated with
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the selected cell in a decision-theoretic framework. A sequence of empirical Bayes rules is

constructed and is proved to be asymptotically optimal of order O(n™1).

5. Selection from Several Multinomial Populations

The multinomial distribution provides a model for studying the diversity within a
population which is categorized into several cells according to a qualitative characteristic.
Such studies arise in ecology, sociology, genetics, economics and other disciplines. Diversity
in ecological contexts has been discussed by Pielou (1975) and Patil and Taillie (1982).
There are two measure of diversity of multinomial population which have been commonly

used. These are Shannon’s entropy function and Gini-Simpson index.

Selection from several multinomial populations has been earlier discussed by a few
authors. Gupta and Wong (1975) have considered selection in terms of the Shannon
entropy function using the subset selection approach. Alam, Mitra, Rizvi and Lal Saxena
(1986) have considered selection in terms of the entropy function as well as the Gini-
Simpson index using the indifference zone approach. Rizvi, Alam and Lal Saxena (1987)
also considered a subset selection rule based on certain other diversity indexes. Recently,
Gupta and Leu (1990), Liang and Panchapakesan (1991) and Gupta and Liang (1993b)

have studied certain selection rules based on Gini-Simpson index.

Let m,...,7 be k£ multinomial populations, each having m cells with associated

probability vector p; = (pi1,...,Pim), ¢ = 1,..., k. Define
6= p— Ly =3 - L (5.1)

= T m = Y oom’

which is essentially equivalent to Gini-Simpson index. 6; is used as a measure of homo-
geneity of population 7;. Note that 0 < 6; <1 — % Let O3 < ... < 0(x) denote the
ordered values of §;’s. The population associated with 6] is called the most homogeneous
population. For a given constant 6y, 0 < 6y < 1 — -;;, population 7; is said to be homoge-

neous if §; < 6y and nonhomogeneous if ; > ;. Our goal is to develop selection rules to

select the most homogeneous population and/or to select all homogeneous populations.
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5.1. Selecting the Most Homogeneous Multinomial Population

For each i = 1,...,k, let X; = (Xi1,...,Xim) be the cell frequencies in a sample of
N; trials from population m;. Then, given p;, X; has the probability function

Ni!' T oz
fi(zilp:) = = HP;'}’ (5.2)
H :l:ij! J=1
i=1

where z;;, j = 1,...,m, are nonnegative integers such that i z;j = N;. Given p;, X;,
i =1,...,k, are assumed to be conditionally independent. Wé also assume that p; is a
realization of a random vector P; = (P;1,..., Pim) which has a Dirichlet prior distribution
D, (a1, . . -, @im) With probability density given by

m

Tr Ol-' ii—1 =
gi(p;) = —m—(;)— Hpg-’ , a;; >0 and o;= Zaij. (5.3)
[ T(aij) 5=1 i=1
i=1
and Pji,...,P; are mutually independent. Let G(p) denote the joint distribution of
Py,..., Py, where p = (py,...,p;)- Let A= {i|i =1,...,k} be the action space. Action
¢ corresponds to selecting 7; as the most homogeneous population. For parameter p and

action ¢, the loss function L(p,%) is defined as

L(p,i) = 6 — 6. (5.4)

A selection rule d = (dy,...,dx) is defined as a mapping from X, the sample space
E
of X = (X1,...,Xk), into [0,1]* such that 0 < di(z) < 1,i=1,...,k, and } di(z) = 1
ot < i=1 o
for each z € X. That is, d;(z) is the probability of selecting m; as the most homogeneous

population given X = z.

L3

A Bayes Selection Rule

The Bayes risk r(G, d) of selection rule d can be written as

k
"Gd)= T Y dleeia)i@) - [ o) - o, (55)
rexi=1 ~ L -

13



where

m m
pi(zi) =E [Z P,-";-Q(,- = :g,} : the posterior expectation of Z P,-zj given X; = z;,

k
f(g) = Hfi(“ji),

fi(z:) = / fi(zi|p)gi(p)dp: the marginal probability function of X,

and Q= {plp=(p;,...,pr)} is the parameter space.

Let
I(z) = {ilpi(z:) = min, ¢;(z;)} (5.6)

Then a randomized Bayes selection rule dg = (dgu,...,dgt), which minimizes r(G, d)

among the class of all selection rules, is given by

-1 “op e
dos(e) = { H@I i € I(2), .
¢ (q::) {0 ~ otherwise. (5.7)
A nonrandomized Bayes selection rule dg = (dg,,...,dg;) is given by
« oy [1 if ¢ =minlI(z),
G'(:g) B {0 otherwise. ~ (5-8)

The minimum Bayes risk is (G, dg).
Expressions for ¢;(z;)

It is well known that the posterior distribution of P; given that X; = z; is the Dirichlet

distribution Dy, (zi1 + i1, . - -, Tim + @im ). Thus a straightforward computation yields that

(Ni+ i)+ X (zij + aij)?
L

j
i\Zi) = 5.9
pilz:) (Ni + a; + 1)(N; + as) (5:9)
Also, let pi; = E(Xi;), Aij = E(XfJ) Then, after computation, we obtain
pij = Niosj/ai, (5.10)
Xij = pij + Ni(Ni — Davijaij +1)(0i + 1) 7o, (5.11)

14



and hence,

ai{Xij — pis — NTU(N: = Dpd} = Nipij — Xij > 0,

(5.12)

the positivity being verified from (5.10) and (5.11). Summing both sides of (5.12) and

noting that ) pi; = N;, we obtain
Jj=1

a; = Bi/Ai)

where
Ai=N; 3 Nij =N} = (Ni — 1) ) pf; >0,
j=1 j=1
B,'=N?~—N,' > Aij > 0.
Jj=1

Now, use (5.10) and (5.13) to substitute for a;; and «; in (5.9). This yields

pi(zi) = D’((;f’)

where
Di(z:) = (AiBi + NiA2)? + Y (Aizij + N7 ' Bipsj)?,
=
C; = (Bi + NiA; + Ai)(Bi + N:A)).

Incorporating Information from Past Observations

(5.13)

(5.14)

(5.15)

(5.16)

It is now assumed that the hyperparameters «;; of the Dirichlet priors are unknown

and certain past observations are available. Thus, empirical Bayes approach is employed.

For each i = 1,...,k, let X = (Xi1e, ...y Xime), £ = 1,...,n, denote the past data from

m;. Assume that X, = 1,...,n, are iid with marginal probability function f;(z;) and

Xie,£=1,...,n,1=1,...,k are mutually independent. Let

~

_ 1 n 1 n m
Xij(n) = > Xije, Mij(n) = ~ > XEe, Mi(n) =) Mij(n)
=1 =1 =1

Ain = NiM;(n) — N — (N; — 1)‘2:[1'1(”)]2

=1

Al = max(0, Ain)
Bin = N} — N;M;(n)
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Then, A;, — A;, A;t; — A; and B;, — B; almost everywhere. Finally, define for each

i=1,...,k,
Cin = (Bin + AL, N;)(Bin + AL N; + A})

Din(2:i) = (Af, Bin + NiAF)? + ) _{Af,zij + N ' Bin X ij(n)}?
=1

@in(zi) = Din(z:)/Cin.

Liang and Panchapakesan (1991) proposed an empirical Bayes selection rule d;, =

(d: ,dr ) defined as follows.

nl, . e
* —_ |In(¥f)|~l if: € In(:f)v
d’"(%) - {0 - otherwisé, (5.17)
where
In(z) = {ilpin(zi) = Do, @jn(z5)}- (5.18)

Note that dj, is a randomized selection rule. A nonrandomized selection rule, say

dyt = (dpy,...,d%}) can be obtained as follows.
"ok 1 ifi =minI,(z)
d . e n ~ ? .
m(?) { 0 otherwise. ~ (5.19)

Asymptotic Optimality

Liang and Panchapakesan (1991) have studied the empirical Bayes selection rule dj,
and established the corresponding asymptotic optimality. The asymptotic optimality of
the empirical Bayes selection rule d;,*can also be established in a similar way. We state

the results as follows.

Theorem 5.1. (Liang and Panchapakesan (1991)) Let {d}} and {d;"} be sequences of
empirical Bayes selection rules defined through (5.17) and (5.19), respectively. Then

r(G, ‘!:) - (G, ‘!G) = O(exp(—csn)),
(G, di) (G, do) = Ofexp(—con).

for some positive constants ¢s and cg.
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5.2. Selecting Homogeneous Multinomial Populations

In this section, we discuss the problem of selecting homogeneous multinomial popu-
lations compared with a standard 6y. Let A = {s|s C {1,2,...,k}} be the action space.
When action s is taken, it means that population ; is selected as a homogeneous popula-
tion if ¢ € s and excluded as a non-homogeneous population if : & S. For parameter p and

action s, the loss function is defined to be

L(p,s) = D (6: = 00) (51— 1y(6:) + > (60 — 6:)Ij0,0,1(8:)- (5.20)

ieS €S

A selection rule d = (dy,...,d;) is defined to be a mapping from the sample space
X into the product space [0,1]*, such that for each z € X, di(z) is the probability of
selecting population 7; as a homogeneous population. in the follov"ving, it is assumed that
the random probability vectors Pj,..., Py are mutually independent, with a common but

unknown Dirichlet prior distribution Dy,(8y,...,Bm).

For selection rule d, the associated Bayes risk r(G,d) is given by

k

r(G,d) =) ri(G,dy), | (5.21)

=1
where

ri(G,di) = ) di(z) [Z E[Pjlz:] - ;1; - GOJ f(z)
=1

TEX (5.22)
+ /(90 — 0:)1(0,6,)(8:)9(p;)dp;.
Thus, A Bayes selection rule de = (dg1, . ..,dgt) is obtained as follows:
P 2(X. — n]< L
dgi(z) = { L B =g S ot b, (5.23)
- 0 otherwise.

k
The minimum Bayes risk is r(G,dg) = Y, ri(G,dgi). Also, as seen from the preceding

. i=1
section,

B [Em: Pj|Xi = ?z} = D(C:.Ei) (5-24)
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where

(C=(B+NA+A)B+NA)
D(z:) = (AB + NA?)* + 3 (Azij + N7 By;)?
j=1

m

m
A=NE/\J'—N2—(N—1)_EI#?>0, (5.25)
J=

.

=1

B=N}*—-NY ) >0,
i=1
| uj = E[Xy;] and \j = E[X]}].

Incorporating Information from Among ¥ Components

We assume that the hyperparameters of the Dirichlet prior distribution Dp,(71,. .., Tn)
are unknown. In this situation, it is not possible to apply the Bayes selection procedure
dg. By adopting the idea of empirical Bayes, we incorporate information from each of the

k multinomial populations and develop empirical Bayes selection rules.

k . k
For each j = 1,...,m, let f; = 1 3 X;j, Aj = %EX,ZJ Then, Efij = p; and

E:\j = Xj. We use fi; and :\j to estimate p; and Aj, respectively. In (5.25), replacing u;

and A; by the corresponding estimators 2; and :\j, respectively, we obtain the following

estimators. ) m o
A=N35-N—(N-1) 3 2,
Jj=1 j=1
B=N*-N3S 4,
Jj=1
4 At = max(0, fi), (5.26)
C =(B+(N+1)At)(B + NA),
D(zi) = (A*B + NA¥2)? + 3 (Atay; + N71Bj, )2,
\ J=1
Now, define R
D(z:)
pi(zi) = —=—. 5.27
pi(z:) & (5.27)
We then obtain an empirical Baye selection rule é’ = (Jl, . ,cik) given as follows: For
eachi=1,...,k, and z € X,
di(z) = { L if Gi(zi) < 57 + 6o, (5.28)
z 0 otherwise.

Note: Gupta and Liang (1993b) studied an empirical Bayes selection rule for this selection
problem under the assumption that 7y = 72 = ... = 7, which means that the prior is a

symmetric Dirichlet distribution.
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Asymptotic Optimality
The Bayes risk of the empirical Bayes selection rule El is given by r(G, {l) where

k

T(G, (::,l) = Z T‘i(G, Ji)

=1

and r;(G, d;) is given in (5.22). Note that r;i(G,d;) > ri(G, dgi) since dg; is the Baye rule
for component i. Therefore, (G, (:i) —r(G,dg) > 0. This nonnegative regret risk is used

as a measure of performance of the selection rule d.

Theorem 5.2. Let gl be the empirical Bayes selection rule constructed precedingly. Then,

for each ¢,

ri(G,d;) — ri(G, dg;) = O(exp(—ck))

for some positive constant ¢ and therefore,

r(G,d) —r(G,dg) = O(exp(—ck + {n k)).
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