Simultaneous Selection For Homogeneous
Multinomial Populations Based on Entropy Function:
An Empirical Bayes Approach.*

by
Shanti S. Gupta** and Lii-Yuh Leu
Purdue University National Central University
TaChen Liang

Wayne State University
Technical Report #94-1C

Department of Statistics
Purdue University

January 1994



Simultaneous Selection For Homogeneous
Multinomial Populations Based on Entropy Function:
An Empirical Bayes Approach.*

by
Shanti S. Gupta** and Lii-Yuh Leu
Department of Statistics Graduate Institute of Statistics
Purdue University National Central University
West Lafayette, IN 47907 Chung-Li, Taiwan, R.O.C.

TaChen Liang
Department of Mathematics
Wayne State University
Detroit, MI 48202

Abstract

Consider k independent m-cell multinomial populations 7ri, ..., Tk, where m; has the
associated cell probability vector p; = (pi1,.--,Pim), ¢ = 1, ..., k. The entropy 6; =
0(pi) = — in: pij log pi; is used as a measure of homogeneity of the population m;. A
Bayes selec]t;(:n rule relative to the Dirichlet prior distribution Dp,(ayq,...,an) is obtained
for selecting all homogeneous populations compared with a standard 6,. When the values
of the parameters a3, ..., o, are unknown, an empirical Bayes selection rule is proposed
and its corresponding asymptotic optimality is investigated. It is shown that the proposed
empirical Bayes selection rule is asymptotically optimal relative to the class of Dirichlet

prior distributions, and the associated regret risk converges to zero with a convergence

rate of order O(exp(—7k + In k)) for some positive constant 7 = 7(ay,...,om).
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1. Introduction

The concept of diversity within a population is of considerable importance in statistical
theory and applications. The multinomial distribution provides a model for studying
the diversity within a population which is categorized into several classes according to
a qualitative characteristic. Such studies arise in ecology, sociology, genetic, economics
and many other sciences. Diversity in ecological contexts has been discussed by Pielou
(1975) and Patil and Taillie (1982). There are two measures of diversity of a multinomial
population which have been commonly used. These are Shannon’s entropy function and

the Gini-Simpson index.

In the literature, selection procedures using indices of diversity as selection criterion
have been studied by many authors. Gupta and Huang (1976) studied the problem of
selecting the population with the largest entropy for binomial populations. Gupta and
Wong (1975) considered the problem of selecting a subset containing the population with
the largest entropy for multinomial distributions. Dudewicz and Van der Meulen (1981)
investigated a selection procedure based on a generalized entropy function. Alam, Mitra,
Rizvi and Saxena (1986) studied selection procedures based on Shannon’s entropy func-
tion and the Gini-Simpson index using the indifference zone approach. Jeyaratnam and
Panchapakesan (1989) developed entropy based subset selection procedure for Bernoulli
populations. Gupta and Leu (1990) studied certain selection procedures based on the
Gini-Simpson index. Recently, Liang and Panchapakesan (1991) and Gupta and Liang
(1993) developed empirical Bayes procedures for selecting the Iﬁost homogeneous multino-
mial populations and for selecting fair multinomial populations in terms of Gini-Simpson

index.

In this paper, we deal with the problem of selecting homogeneous (defined later)
multinomial populations according to the entropies using a parametric empirical Bayes
approach. Let my,..., 7 be k independent multinomial populations, each having m cells
with associated probability vector p; = (pi1,-..,Pim),¢ = 1,..., k. The entropy associated

with 7; is 6; = 6(p;) = — > pij log pij. Note that 0 < 6; < logm for all p;; also,
=1
0; = logm when pj; = ... = pim = —;l—, and 6; ~ 0 when one of the cell probabilities, say

Pij, is very close to 1 and all the other p;;, | # j, are close to 0. For a given constant 6,



such that 0 < 6y < 6* = log m,; is said to be homogeneous if 6; > 6y and nonhomo-
geneous, otherwise. Our goal is to derive statistical selection procedures for selecting all

homogeneous populations while excluding all nonhomogeneous populations.

The paper is organized as follows. In Section 2, we derive a Bayes procedure dg for
selecting all homogeneous multinomial populations according to Shannon’s entropy under
a Dirichlet prior distribution G for the cell probability vector. When the hyperparameters
of the prior are unknown, the Bayes procedure dg cannot be implemented. In such a
situation, we study this selection problem through a parametric empirical Bayes approach
in Section 3. We incorporate information from the k populations to construct estimators
for the unknown hyperparameters and obtain a “Bayes” selection procedure d* relative to
the estimated prior distribution. We investigate the corresponding asymptotic optimality
of the selection procedure d* in Section 4. It is shown that the associated regret risk of
the selection procedure d* converges to zero with a rate of convergence of order
O(exp(—7k +1n k)) for some positive constant 7 depending on the values of the hyperpa-

rameters.

2. A Bayes Selection Procedure

In order to derive an empirical Bayes selection procedure, as a first step, we obtain
a Bayes selection procedure under a known prior distribution. Let @ = {p = (p1,...,px)|
pi = (pi1y.--»Pim),t = 1,...,k} be the parameter space. Let X; = (Xi1,...,Xim)
be the cell frequencies arising from a sample of N independent trials from population
7iyt = 1,...,k. Then, given p;, X; has a multinomial distribution Multi (N, p;) with the
probability function

N
fizilp) = [[ »if (1)
x,-j! j=1
j=1

m
at point z; = (Zi1,...,Tim) for which0 < z;; < N,1 <j<mand ) z;; = N. Given the

J=1
Pi,---,Pk, the random vectors Xi,...,X are assumed to be conditionally independent.
We also assumed that p; is a realization of a random probability vector P; = (P, ..., Pim),

and P,...,P; are itd, having a Dirichlet prior distribution G with hyperparameters
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(ai,-..,0mn); namely, the corresponding probability density function is given by,

M(awo) 11 ;-1
g(pilas, .- rom) = m——— [[ 237, (2)
jl;[ll"(aj) j=1

where a; > 0,5 = 1,...,m and ap = in: aj. We denote the Dirichlet prior having
hyperparameters (a1,...,amn) by Dn(a; ,]._.1. yam). Let A= {a|a = (a1,...,ar),a;i =0,1,
¢ =1,...,k} be the action space. When action g is taken, it means that population =; is
selected as a homogeneous population if a; = 1 and excluded as nonhomogeneous if a; = 0.

For the parameter vector p and action g, the loss function L(p, @) is defined to be

k k

L(p,a) = Y _ ai(80 — 6:)Ij0,0,)(6:) + Z(l — a;)(0; — 60) 11, ,6+1(6:)- (3)

=1 =1

In (3), the first summation is the loss due to selecting some nonhomogeneous populations

while the second summation is the loss of not selecting some homogeneous populations.

Let X be the sample space of the random vector X = (X1,...,Xk). A selection
procedure d = (dy,...,d;) is defined to be a mapping from the sample space X into the
product space [0, 1]¥, so that, for each z = (z1,---,2x) € X,d(z) = (di(z),...,dk(z)), and
d,-(:g) is viewed as the probability of selecting population 7; as a homogeneous population
given X = g is observed. We let C denote the class of all selection procedures defined in

the above way.
Bayes Risk of d Relative to G

Under the preceding statistical model and the loss function L(p,q) in (3), by inter-
changing the order of summation and integration, the Bayes risk of a selection procedure

d = (di,...,d;), denoted by r(G,d), can be obtained as follows.

k k
r(G,d)=Y_ > di(z){6o — E[6:|X = 2]} [] fiz:)
TeX i=1 i=1

. (4)
+ / 6; — 6 lag, ..., am)dp;,
; Q‘(90)( 0)g(pilaz )dp

where Q;(60) = {p:|6; = 0(pi) > bo},2=1,...,k,
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filzi) = /f,-(:g,-lp,-)g(p,-lal,...,am)dp.-
the marginal probability function of the random vector X; = (Xi1,...,Xim),

E[6;|X = z] : the posterior expectation of §; given X =z

= —ZE[P,-,- log P;|X = 1]
i=1

m (5)
=—Y E[P; log P;|X; =z
7=1
since P; is independent of X;,! # i, under the preceding assumptions. Therefore, a
Bayes selection procedure d¢ = (dig,...,drg) can be obtained as follows: For each
zeX, 1=1,...,k,
1 if E[6;|X; = zi] > 6o,

0 otherwise.

diolz) = { ©)

Note that from (5) and (6), d;¢ depends on z only through z;, and therefore, is denoted by
” k
dic(z:). The minimum Bayes risk among the class C is r(G,dg) = >, ri(G,dig), where
=1
ri(G,dic) = )_ dic(zi) {60 — E[6:|X: = @] }fi(gi) + C:

i (7)
and Ci= [ (6= Bo)a(pilan, ., com)pe
Q;(6o)

An Expression for E[0;|X; = z;]

It is known that the posterior distribution of P; = (P;1,..., Pim) given X; = z; is the
Dirichlet distribution D, (zs1 + a1, . .., Zim+am ). Thus, for each component j =1,...,m,
the posterior distribution of P;; given X; = z; follows a Beta(z;; + aj, N + ag — zij —
a;) distribution and the associated posterior probability density function is denoted by
hij(pijlzi; + oy N + a0 — zi5 — aj).

o0
Now, since 0 < p;; <1, —p;j log pij = Y_ pij(1 — pij)?/y. Therefore,
y=1
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E[-P;jlogP;;|X; = ]

(e ] 1
1
=2 y /0 p(1 —p)” hij(plzij + o, N + a0 — i — aj)dp
y=1

oo

_ Z (N + ao)l(zij + aj + DI(N + a9 — zij — o + y)
yL(zij + a;)I(N + g — zij —a;)TI(N +ag+y+1)

y=1

=i Tij + a; ﬁ (N+ag—a:,-,-—a_,-'+z>
y(N +ao+y) 15 N+og+z

y=1

(8)

)
= z qi.’i:ll(alv coe ’aml".l."i)
y=1

=¢ij(a1,...,am|zi),

y—1
N N — _ Zijtoj N4ao—zij—aj+z
where q”y(al,...,amlgz)— y(N+aoty) HO ( Ntaotz .
=

Note that for each y = 1,2,...,¢jy(0u,...,anlz;) is continuous in a; for a; >

oo

0, £=1,...,m. Also, Y, gijy (a1,...,am|zi) converges uniformly for each (ay,...,an)
y=1

€[0, 00)™. Therefore, g;j(ai,...,amnl;) is continuousin (ay,...,a,) for each (a1,...,am)

€[0, 00)™.
Now,

E[6:|X: =g = ) _E[-P; log P;j|X =i

=1

i 9
=Z qii(al,"'aamlz’i) ( )
J=1

= gi(a1,...,am|zi)-

Therefore, gi(aa,...,am|zi) is continuous in (ay,...,an) for each (ai,..., am )0, 00)™.

Also, the following limits exist: For oy > 0,l=1,...,m,
(a') Qi(al, ceey U1, 01 Ajt1ye0-y aml@i) = clvu_ﬂ) Qi(al, oo ,amlgi)-
J

(b) gi(e1,.--505-1,00, @jp1s..samlzi) = lim gias,..., am|z:).
J
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Finally, for the later use, we define g;(o0,...,00|z;) by
qi(OO, ceey OO|-’§,) = lim qi(av seey al:!.:i)
a—00

m
=Z ali—l»%o gij(a,...,alz;)
j=1

m—1

(

1
Yy m
m.

)y

M

L~
il
ot

Il
—_

og

Alternative Expression for E[0;|X; = z;] in terms of Moments
First note that X; = (Xi1,...,Xim),t =1,...,k, are 7¢d, and

Na;

(7))

pi = ElXyj] =

N(N—l)aj(aj + 1)
ao(ao + 1)

Aj = E[X}]=p; +

Now, using (10) to substitute for a; in (11), we obtain

ao[N(Aj — pj) — (N = Dpj] = N[Np; — 5] > 0.

N(N-1)aj aj;+1
_ ] [1 %

since Npu; — A; = =)

m
7 = 1 to m and noting that > p; = N, we obtain

Jj=1
N(N? - Z:l/\j)
Qg = A]_ >0
w2 = 32 )
a; = AJ >0

where A=N > A\; —N?—(N-1) 3" u2>0.
=1 j=1

J=

7

(10)

(11)

(12)

] > 0. Summing both sides of the equality in (12) for

(13)

(14)



By substituting (13) and (14) into (8) and (9), we see that E[—P;; log P;;|X; = z]
and E[f;|X; = z;] can also be viewed as functions of the moments y; and Aj,j =1...,m.
We denote such functions by

E[-P;j log Pij|Xi=zi| = gij(a1,...,am|z:)

(15)
= Qi]'(ﬂl, ce ,/"ma’\l’ o 7’\m|€§i),

and
E[91|Xz = .’Bi] = qi(al, s aam|:§i)
(16)
= Q,-(,ul, N ,um,/\l,. ooy /\mlg,‘).
Also, Qi(p1,. -y fbmyA1,. .., Am|2i) is continuous in g and Aj,j =1,...,m.

3. An Empirical Bayes Simultaneous Selection Procedure

It is assumed that the hyperparameters of the Dirichlet prior distribution Dy,(ay,
...,@m) are unknown. In such a situation, it is not possible to implement the Bayes selec-
tion procedure dg for the concerned selection problem. In the following, by incorporating
information from the k populations, we first construct estimators for the unknown
parameters «;, 4; and Aj,7 = 1,...,m. Then, by mimicking the behavior of the Bayes

selection procedure, we derive an empirical Bayes simultaneous selection procedure.

Define, for each j =1,...,m

-

" k
ﬂj = % E X,'j, )\j = % E .Xlzj and
) z'r_—;zl ,\ =1 m (17)
A=N ¥ 5N —(N-1) ) a2
]::1 =1

Note that E[g;] = u;, E[S\]] = Aj, J =1,...,m, and j;, :\j and A are consistent
estimators of uj;, A; and A, respectively. We may estimate o by substituting the unknown

parameters by the corresponding estimators according to (14). However, though 4 > 0, it
is possible that A < 0. Using (10) and (11),

AEsz:,\,-—N?—(N—nzm:uf
=1 =1

_ N N NN -—1aj(a; +1)
B > ag(ao +1)

(87 81
0 Ut



which converges to zero as ap tends to infinity. Therefore, as A< 0, it may indicate that
the value of ap may be very large, and therefore, at least one of the a;’s is very large since

m
apg= >, a; and a; > 0,5 =1,...,m. Based on these discussions, we derive an empirical
=1
Bayes simultaneous selection procedure as follows.

When A > 0, we estimate Qi(p1, ..., fbm, A, . - -, Aml|2:) by
Qi(ﬁl,...,ﬂm, X],...,:\mlig,‘).

When A < 0, we estimate aj,j =1,...,m, by &;, where

& = { oo if either (N2 — i; X,-)ﬂj > 0 or :\j = N2, (18)

0 otherwise.

When A < 0, according to the preceding definition (18), either all the a;’s equal to
infinity or exact one of the &;’s equals to infinity and all the others equal to zero. Now,

we estimate g;(aa,...,am|z;) by ¢i(d1,...,am|z:).

Empirical Bayes Simultaneous Selection Procedure d* = (d},...,d})

We propose an empirical Bayes simultaneous selection procedure d* as follows: For

each: =1,...,k,zeX, define

1 if either (A >0 and Qi(fi1,- .., fimy M, - -+, Am|zi) > 6p)
di(z) = or (A < 0and gi(é,...,6&m|z:) > ), (19)

0 otherwise.

The Bayes risk of the selection procedure d* is

k

r(G,d*) = _ri(G,d}),

=1
where

k
ri(G,d}) =Y di(z) {6 — E6:|X: =z} [] fi(zs) + C:

e 3=t (20)
=Y Eild}(X(0),z:)] {60 — El6:|X: = 2:] } fi(zi) + G,

where X(¢) = (X1,...,Xi—1,Xit1,...,X k) and the expectation E; is computed with
respect to the probability measure generated by X (7).
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An Illustrative Example: Suppose that £k = 10, m = 5, N = 20, 8* = In 5 and
the control level 8, = 1.40. The data (X;1,...,Xis5), ¢ = 1,...,10, from each of the 10

multinomial populations are listed as follows.

i X Xio Xiz  Xu  Xis
1 7 3 3 4 3
2 3 3 1 10 3
3 0 2 10 5 3
4 4 4 2 9 1
5 8 1 3 5 3
6 1 3 2 12 2
7 2 1 2 2 13
8 12 2 1 2 3
9 2 10 2 1 5
10 11 2 3 0 4
We estimate the parameters uj;, A;, 7 =1,...,m, Aand aj, j =1,...,m based on

the data. The corresponding values of the estimators are:

fp =50, f2=31  3=29, j4=5T7  j5=33
M =412, X =157, =145, A =477, s =127
A=15944, and
6y =2.256, Gy =1.399, a3 =1.309, &;=2.572, & = 1.489.

Accordingly, the values of the empirical Bayes estimators Q;(X;) = Qi({u, - . -, iis, M,.es s |X:)

are as follows:

i 1 2 3 4 5
Q:(X)) 1488 1.371 1.361 1.398 1.419

i 6 7 8 9 10
Qi(X:) 1.296 1.254 1.283 1.386 1.312

Comparing the values Q;(X;) with 8y = 1.40, the empirical Bayes procedure d* selects

populations m; and 75 as homogeneous populations.
4. Asymptotic Optimality

Since dg = (dig,---,drg) is the Bayes selection procedure, for the empirical Bayes

selection procedure d* = (d5,...,d}), ri(G,d}) — ri(G,dig) > 0 for each component ¢ =

10



k
1,...,k, and therefore, r(G,d*) — r(G,dg) = 3, [ri(G,d}) — ri(G,dig)] > 0. This non-
i=1
negative regret risk [r(G, d*)—r(G, d¢)] is used as a measure of performance of the empirical

Bayes selection procedure d*.

Definition 4.1. A selection procedure d = (dy,...,dx) € C is said to be asymptotically
optimal of order {ex} relative to the prior distribution G if r(G,d) — r(G,dg) = O(ex)

where {e} is a sequence of positive values such that klim er =0.
—00

Since 0 < 6y,8; < log m = 6*, |6y — E[6;|X; = z;]| < 6*. According to (7) and (20),
for each: =1,...,k,
0 <ri(G,d;) — ri(G,dic)
=" Eild}(X) - dic(z:)| X = z:l{60 — E[6:|X: = 2]} fi(z:)

Z;
<0* 3 P {di(X) =0, dic(z:) = 11X: = 2} filzs) (1)
Li€A;
+6° Y Pi{di(X) =1, dia(z:) = 01X = 2:} filg:),

Ti€B;
where A; = {z;|E[6;|X: = zi] > 6o}, Bi = {z:i|E[6:i|X: = zi] < 6o}, and P; is the
probability measure generated by X (7). Note that A; = ... = A, B; = ... = By since
(X:, Pi),i=1,...,k are 12d randorzl vectors. Also, recall that
E6:|X; = z:] = gi(au, . . ., aml|2i)
= Qi(H1, -+ Bmy A1y - - -, Am|Zi)-

Let A=(A1y-. s dm), A = (Ayeoisdm), 8= (81, -+, tm) and & = (fi1, ..., fim). For each
zi € Ai, Qi(g, Mzi) > 6. Also, A=N Y Xj — N?* — (N —1) ) p% > 0. According to
i=1

=1

(19), for each z; € A;,

P; {d}(X) =0, dic(X:) = 1|X: = z:}

. . (22)
<P; {Qi(f2, Alzi) — Qip, Alzi) < 6o — Qi(p, Alzi) or A — A < —A|X; = z;}.

Since both Q;(y,Alzi) and A are continuous functions of g and A for u; > 0,X; >

0,7 = 1,...,m, there exists positive constant w(g, A, z;) such that
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{1Qi(2, Az:) — Qi Alza)l > 160 — Qi Mz} U { |A—A| > 4}

< (23)
C {l&j — pjl > w(y, A, zi) or |Aj — Aj| > w(g, A, z;), for some j =1,...,m }.

Combining (22) and (23) yields that for each z; € 4;,
P; {d}(X) = 0,dic(X:) =1|Xi=z: }

<P; {|ij — pj| > w(g, A, zi) or 1A; = Aj| > w(g, A, z;) for some j =1,...,m|X; = z; }

<SP (I — pil > wie, Azl X = 2 }+ P 1N = Aj] > wle, A 2)lXi = 2: 3. (24)

i=1

Similarly, for each z; € Bj, Qi(y,Alzi) < 6o, and there exists positive constant
w(, A, z;) such that

P{d}(X)=1,dic(X:) = 01X = z:}

L A . 25
< SIPHIAs — il > wl 201X = 233 + PRy = Al > (e Azl X =i}l )

J=1

Thus, it suffices to evaluate the behaviors of P;{|f; — p;| > w(g, A, z:)| X = z;} and
Pi{|%; — Xj| > w(p, A, z:)|Xi = zi} foreach j =1,...,m,and i = 1,..., k.

Let ;(5) = 221 lzk;l Xgj. Then, jij = 2214:(i) + X4, Thus,
££i
Pi{|f; — p5) > w(g, A, 2:)| X = z:}
= Pi{ji; — pj < —w(p, A, 2)|Xi = z:} + Pi {5 — pj > w(p, ) 2zi)|Xi=2: }
= Pi{i;(3) — py < [=kw(g, X z:) — @ij + p5]/(k — 1IXi = z:}
+ Pi{; (i) — pj > [kw(g, A, i) — @ij + p5]/(k — 1)| X = z:}
= Pi{i;(3) — pj < [—kw(p, A z:) — @ij + pi]/(k - 1)}

+ Pi{1;(5) — pj > [kw(g, A, z:) — zij + p5]/(k — 1)}

since X(z) and X; are independent.

(26)

When k is sufficiently large, for fixed g, ), [—kw(g, A, zi) — zij + p5] [/(k—1) <
—3w(g, A i) and [kw(y, A z:) —=i; + pjl/(k — 1) > Fw(g, ), z:). Hence, for k being
sufficiently large and for fixed g and ), (26) and (27) together yield that

12



Pi{|ftj — pjil > wlp, A, z:)| X = 23}

- 1 . 1
<P{;(0) — ms < —5wlts A 2i)} + P i) — v > s, 3, 2i)} (28)
(”, ’ 1 (k — 1)’(1)2([1,, /\’ -'lfi)
< —(k — AN
—_ exp { (k 1) 4N2 + xp 4N2 ?

where the last inequality follows from Theorem 2 of Hoeffding (1963).

Similarly, we can also obtain the following inequality

Pi{|X; — Xl > w(p, A, z:)l X = z:}
(k - 1)w (p'v ) 1) (k — 1)’(02(”, A7171')
< B z [y Ay T
Let 7= W min {w?(y, ), z:)|z: € Ai U B;}

and ¢ = 2 max {exp(—(—L’-V}’—J)-)I i €A; UB}

Then, 7 = 7(g, )) > 0 and ¢ = ¢(g, )) < oo since A; U B; is a finite set. By the definitions
of 7 and ¢ and (28) and (29), we obtain, for k being sufficiently large,

Pi{lij — pil > w(g, A, 2:)|Xi = 2} < ¢ exp (—7k), 50)
30
Pi{|%; = Ajl > w(p, X, zi)|Xi =2} < ¢ exp (—7k).

By combining (21)-(30) together, we obtain an asymptotic optimality of the empirical

Bayes selection procedure d*, which is stated as follows.

Theorem 4.1 Let d* be the empirical Bayes simultaneous selection procedure defined in
Section 3. Then under the Dirichlet prior Dp,(a1,.-..,amn), d* is asymptotically optimal,
and (G, d*)—r(G,d¢) = O(exp (—7 k+4n k)), where 7 = 7(g, )) is the positive constant
defined before.

13



Proof: Through (21)-(30), we can obtain that for each: =1...k,
ri(G,di) —ri(G,dic)

<6* Y Pi{di(X) =0, dic(z:) = UXi = i} fi(zi)

Ti€A;
+6° Y P {di(X) =1, dig(zi) = 01X = z:} fil=:)
Li€EB;
<0*2m c exp(—7k) Z fi(zi) + 6* 2m c exp(—7k) Z fi(zi)

Ti€A; Ti€B;
<2mé* ¢ exp(—rk).
Therefore,
k
"G, d") — r(Crd) < 3 2mbtc exp(—rk)

=1

=0(exp(—1 k+ £ n k)).
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