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Let X be a random vector uniformly distributed on the unit
cube and f : [0,1]> = R be a measurable function. An objec-
tive of many computer experiments is to estimate y = E(fo X)
by computing f at a set of points in [0,1]%. There is a design
issue in choosing these points. Recently Owen and Tang inde-
pendently suggested using randomized orthogonal arrays in the
choice of such a set. This paper investigates the convergence rate
to normality of the sample mean from one of these designs.

1 Introduction

Let d, n and t be positive integers with ¢ < d. An orthogonal array of
strength ¢ is a matrix of n rows and d columns with elements taken from
the set {0,1,...,¢ — 1} such that in any n by ¢ submatrix, each of the ¢’
possible rows occurs the same number of times. The class of all such arrays
is denoted by OA(n,d, ¢,t) and a more detailed description can be found in
Raghavarao (1971).

Owen (1992), (1994) and Tang (1993) independently suggested the use of
randomized orthogonal arrays in sampling designs for computer experiments
on the d-dimensional unit hypercube [0,1]%. The main attraction of these
designs is that they, in contrast to simple random sampling, stratify on all
t-variate margins simultaneously.

In this paper we shall be concerned with the following orthogonal array
based sampling design on the unit cube [0,1}3. Let

(i) my, 2, 73, be random permutations of {0,1,...,¢—1}, each uniformly
distributed on all the ¢! possible permutations,

(i) Uipipiags 0 < 1,182,833 < ¢—1,1 <5 <3, be [0,1] uniform random
variables and
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(iii) that the U;, 4,.,,;’s and 7g’s are all stochastically independent.
An orthogonal array based sample of size g2 (taken from [0, 1]°) is defined to
be {X(m1(ai1), m2(ai2),73(ai3)) : 1 < i < ¢?} where for all 0 < 4y, 43,43 <
q— 17

Xi(t,02,08) = (44 Uirigsisg)/0, Y1 <5 <3,
X(i17i27i3) = (Xl(ilai27i3)7X2(i177:277:3),X3(i17i2a7:3))la

and «; ; is the (i,)th element of some A € 0A(¢%,3,q,2).

REMARK. The above sampling design is a special case of those proposed
by Owen (1992).

Let X be a random vector uniformly distributed on [0,1]® and f be
a measurable function from [0,1]® to R. An objective of many computer
experiments [see for example McKay, Conover and Beckman (1979), Stein
(1987), Owen (1992) and Tang (1993)] is to estimate p = E(f o X) by
computing f at a fixed number of points. The estimator for u that we are
concerned with here is one based on an orthogonal array; namely

(1) p=q? Zf o X(my(ai), m2(ai2), 73(a53)),

7=1

where [i is the mean of the orthogonal array based sample

{f o X(m1(ai1), m2(ain), w3(a;3)) : 1 < i < ¢%}

and is an unbiased estimator of p.

In 1972, Stein introduced a powerful and general method for obtaining an
explicit bound for the error in the normal approximation to the distribution
of a sum of dependent random variables. Even though since then Stein’s
method has found considerable applications in combinatorics, probability
and statistics [see for example Stein (1986) and the references cited therein],
it appears to have largely escaped the attention of researchers in the area
of computer experiments. In Section 2 Stein’s method is used to investigate
the rate of convergence to normality of 4. In particular Theorem 2 shows
that 4 is asymptotically normal (as ¢ — o) under the finiteness of rth
moments with a corresponding error bound of the order O(q_(”_z)/ (2"'2)),
whenever 7 is an even integer greater than or equal to 4.

The Appendix contains a number of somewhat technical lemmas that
are needed in the proof of Theorem 2.
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Throughout this paper, ® and ¢ denote the cumulative distribution func-
tion and probability density function of the standard normal distribution
respectively. Given any event B, I(B) denotes its indicator function and if
x € R3, then z' is the transpose of z.

2 Stein’s method

In this section, we shall use Stein’s method to investigate the rate of conver-
gence to normality of i where i is defined as in (1) with A € 0A(¢%,3,4,2).
Central to this normal approximation technique is the following lemma.

Lemma 1 (Stein) Let z € R. The unique bounded solution g, : R — R
of the differential equation

d

%g(w) —wg(w)=I(w < 2)-8(2), VweTR,

is given by

(= | - 2@Y o), Fuw<s,

’ o(2)[1 - 2(w)]/¢(w), if w> z

with 0 < g,(w) <1 and |dg,(w)/dw| < 1 for all w € R.

ProOF. Lemma 1 is due to Stein (1972) and we refer the reader to his paper
for a proof. a

Next we state a simple expression for the asymptotic variance of ji due
to Owen (1992).

Theorem 1 Suppose E(fo X)? < co. Let 02,, = Var(jt) with ji as in (1)
for some A € 0A(q%,3,q,2). Then as ¢ — oo, we have

0.1

where for all = = (z1,22,23) € [0, 13

filzs) = /[0 1]2[f($) —p] [ dzr, V1<35<3,

k#3
1
fua(er,z) = /0 [F(z) = 1~ fu(ze) = filen)] T dass
J#k,l
Vi<k<l<3,

(2) frem(x)

I

3
f(-’”)—,“—Z:fj(xj)— Y fri(zk,m).

1<k<I<3
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Assuming that Var(2) = 02,, > 0, we define
W = 05, (i - p).
For all 0 < 41,19,13 < g — 1, we write

EfoX(i1,19,13) = p(i1,12,13),

g—1
g’ Z Z[M(il,iz,ia) —pl, V1<j5<3,

pi(ij) =
k#j ix=0
g—1
pri(inair) = @8 Y Y [udr, iz, 08) — p — pe(ix) — (i),
J#k,1 ;=0
Vi<k<l1<3,

Y(i1,i3,88) = q 20,0[f 0 X (G1,3,43) — s
3
(3) = (i) = Y wra(i i),
j=1 1<k<I<3
and
(4) B(31,92,13) = EY (i1, tg, 3).
Since the orthogonal array A has strength 2, a consequence of the above
construction is that

g—1
(5) > ity ia,43) =0, V1< <3
ij=0

We also observe that W can be rewritten as
2

(6) W = Z Y(ﬂ'l(a’i,l), 71'2((12',2), 71'3(%',3))-

i=1
We shall now state and prove the main result of this paper.

Theorem 2 Let W be as in (6) for some A € OA(q?,3,q,2). Suppose that
E(foX)" < oo for some even integer r > 4, and

2
(7) /[011]3 frem(z)dw > 0’

with frem(2) as in (2). Then
sup{|P(W < w) - ®(w)| : —00 < w < o0} = O(g~ "2/ (2-2)y,

as ¢ — oo.
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Proor. (7) and Theorem 1 ensure that 0,45 > 0 and hence that W is well
defined for sufficiently large q. '
Let (Jy,J2) be a random vector uniformly distributed over the set

{(j17j2) € {07 < g = 1}2 :jl 75 .72}

Also we assume that they are independent of all other random quantities
previously defined (for example W). Define

q2

W* = ZY(TJl,Jz o m1(a;1), ma(a;2), 3(a;3)),

=1

where 7z, s, is a random permutation of {0,...,¢ — 1} which transposes J;
and Jo, leaving all other elements fixed. We observe that (W, W*) is an
exchangeable pair of random variables in that (W, W*) and (W*, W) have
the same joint distribution.

Since the orthogonal array A is of strength 2, we note that W can be

rewritten as
q—1 ¢g-1

(8) W =" 3" Y(i1,i2,0(i1, )

11=012=0
where p is a function that maps {0,...,¢ — 1}? to {0,...,¢ — 1} such that
(41,42, p(i1, 12)) = (m1(ai), m2(ai2), w3(ai3))
for some 1 < ¢ < ¢%. Thus it follows from the definition of W* and (8) that

g—1 g—1

W* = W= Y(J1,i,p(J1,02)) — Y Y(Ja,ba,p(J2,i2))
’i2=0 i2=0

g—1

-1
+ qu Y (J2,00,p(J1,82)) + D Y (J1582, (S35 82))
(9) = sz—_oAl — Ay — Az — Ay, -
say respectively. For convenience we write
V=W-A4, - A,
Let W be the o-field generated by the random quantities

{(m1(@i1), m2(32), 73(0i3))s Uy (ai1)ma(as)ma(aa) 2 1 S 1< 62,1 <5 <3}
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We observe that W is W-measurable.
Next let 2 € R and g, : R — R be as in Lemma 1. From the exchange-
ability of (W, W*), we have

0 = E(W*=W)g,(W)+ g.(W*)]
= 2E[E(W* — WIW)g,(W)] + E(W* ~ W)[g.(W") — g.(W)].

Consequently we observe from Lemma 3 (see Appendix) that

EWg. (W) = (g/HEW* - W)[g(W") - 9:(W)] — Aq

(10) = E/Edf;gz(V +w)E(w)dw = Ag,
where
1 g—1 ¢g-—1
= 2D I I CRN RO
i1=0i2=0

and for all w € R,
(g/HY(W*-W) W -V<w<W -V,
Kw)=4¢ (¢/4)(W-W*) fW*-V<w<<W-V,

0 otherwise.

We further observe that
1 2/717\11/2 2\1/2 1
(11) |Aq] < ﬁ[Egz(W)] (EW)H* < =1

since 0 < g,(w) < 1 for all w € R. Now we observe from Lemma 1 and (10)
that

[P(W < 2) ~ 8(2)
|B{g.(W) ~ Wau(W))]

1B [ 0.(W) = g (V + w)lK (w)du
HE g (WIE [ K(w)dw ~ Boga(W) [ K(w)dul

(12) HELg. (W)L~ B [ K(w)dul + |l

i

IN
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Thus to prove Theorem 2, it suffices to obtain appropriate bounds for the
terms on the right hand side of (12). This is achieved by (11), (12), and

Lemmas 4, 5 and 6 (see Appendix). Hence we conclude that

sup{|P(W < w) — ®(w)| : —00 < w < 00} = O(q~r=2/(2r-2)y

as ¢ — oo. This proves Theorem 2.

REMARK. We would like to add that the first two terms on the right hand
side of (12) have been studied in some detail by Ho and Chen (1978) in the
context of investigating the convergence rate of Hoeffding’s combinatorial
central limit theorem and our proof of Lemma 6 in this paper was motivated

by their results.

3 Appendix

Lemma 2 Let W and A; be defined as in (8) and (9) respectively. Then

(13)

g—1 g—1 g-1

E1/q) Y Y. D Y(ig,ia,i3) = 1+ 0(1/q),

11=013=0143=0

and if E(f o X)" < oo for some positive even integer r, then

(14)

as g — oo.

E(A7) = 0(¢7"?),

Proor or LEMMA 2. We observe from (8) that

1 =

EwW?
g—-1 g~1
EY Y Y2(i, g, p(i,2))
11=0125=0
g—1 ¢g-1
FEST Y ST ST i, iz, plin, i2))ih, G2, (i1, 52))
11=042=0 jy i1 j2#i2
g—1 g—1
+E Y DS Y iy i, p(in, i2))ii(in, G2, (i, 52))
7:1 =0 1:2 =0 jz #1,2
g—1 g-1
+E Z Z Z ﬂ(ilaiZaP(ilai2))ﬂ(j1,i2ap(j177:2))

11=0142=0 jy #4y
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1 g—1 g—1 ¢g-1
= PBE- Z Y2(i1,i2ai3)
q 11=012=0143=0
1 g—1 g—-1 ¢—1
-1 > > iy, iz, i3)i(ji, das is)
n 11=0142=0143=0 j1 #41 jaFiz
g—1 g—-1 ¢g-1
1 Z Z Z Z Z Z ﬂ(il’i27i3)ﬂ(jlaj2’j3)
11=042=013=0 j1 #i1 Ja#i2 jaFis
g—1 ¢—1 g-1
( Z Z Z Z Z #(7’1’12’7’3)#(117]%]3)
q 7= z1"0 12=013=0 jo#i3 ja#is
-1 g-1 ¢-1
Z 3700 Y i, o, 18)i(G1, 82, 43)
21_‘0 19=013=0 71 #41 Ja#ia
1 g—1 g-1 ¢g-1

= E- Z Z Z Yz(i1,i2’i3)

11=0122=0143=0
g—1 ¢—1 ¢g—1

szzzwmm

71 =0 2 =0 3= =0

[~

-1 g-1 g-1

11=0142=0:3=0

as ¢ — 0o. The second last equality follows from (5). This proves (13).
Next we observe from the definition of A; that
g—1
E(A;) = E[Z Y(Jl,i2,p(J1,i2))]T
12=0
g—1 g¢g-1

E(1/9) Z [Z Y (41,92, p(41,82))]-

11=0 72=0

(15)

We observe that on expansion, the right hand side of (15) consists of terms
of the form for some b > 1,

g—1 b
E(1/9) ) > I Y7 (1, 92,0, (51, %2,0))

41=0 (’L'z 19982 b)EB(b) a=1

b
O NI NND WS | R

11—0 (12 1, 12 b)EB(b) (i371 ,...,isyb)EB(b) a=1
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where 7,, 1 < a < b, are positive integers such that Y-°_, r, = r and B(b) is
the subset of {0,...,q — 1}° with all its coordinates different.

If there is an r, = 1, say 71 = 1, then it follows from (4) and (5) that
the number of summations on the right hand side of (16) can be reduced
by 2, namely the variables ¢31 and 437 can be eliminated. Proceeding in
this way, we observe the number of summations in > ¢, i, »)EB(B) and
2 (i31,i3,5)€B(p) €N be each made to be at most r/2. This implies that

b b . . .
q( ')) Z Z z H E[Y"(i1, 12,0, 13,0)]l
PL) (720 (2,1 iz p)EB(B) (3.1 yenia, ) EB(B) a=1

g—1 g—1 ¢g—1

O(q"9%) 3" 3" N E[Y"(in, i3, 13)]

11=0142=043=0

= O(q_rﬂ)a
as ¢ — 0o. The last equality follows from Theorem 1 and (3). ]

Lemma 3 With the notations and assumptions of Theorem 2,

E(W* - W|W)
9 -1 g-1
= 2 E[Z > Afir, ia, pli, i2)) W].
q Q(q 11=0142=0

Proor or LEMMA 3. We observe from (9) that

E(W* —~ W|W)
-1 ¢-1 2

- [Z Z Z Y(]l,lz,P(]B,’LZ))IW] _E

q(q_ ) J1"012—013#.71
-1 g-1 9

(17) = Z > A1y, pUd3, 1)) W] = ZW.

J1=0i2=0 ja#j;

The last equality follows from the observation that given W, Uj, ;) o(5s.i2).k
is still a uniform [0, 1] random variable whenever j; # jz and 1 < k < 3.
Lemma 3 follows from (5) and (17). a

Lemma 4 With the notations and assumptions of Theorem 2, we have

1B (WIE [ K(w)dw 1] <1/(g-1).
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ProOF OoF LEMMA 4. Since |dg,(w)/dw| < 1 for all w € R, it suffices only
to prove

1B [ K(w)dw =11 < 1/(g - 1).
By replacing g,(W) by W in (10), we have
1 g—1 g-1

q_——IE[W > D Aliny iz, p(i, i2)))-

11 =0142=0

1=E(W?) = E/K(w)dw—

Lemma 4 follows since as in (11) we observe that the last term of the above
equation is bounded by 1/(g —1). O

Lemma 5 With the notations and assumptions of Theorem 2, we have
(B g (W)E [ K(w)dw~ B, (W) [ K(w)du] = 0(¢ /)
dw”* dw”*® ’
as ¢ — 0o uniformly over z € R.

PRroOF OoF LEMMA 5. We observe from (9), Lemma 4 and the definition of
K(w) that

(B 0. (W)E [ K(widw - Bg.(W) [ K(w)dul

< BIE[[ K(w)dw - 1) +1/(g— D)
= (1/4)E|E[g(W" - W)’ - 4W]| + 1/(g - 1)
< (1/4)Y E|E(gA} - IW)|
k=1
(18) +a/2) Y EIE(AAIW) +1/(g-1).

1<j<k<4

To prove the lemma, it suffices to find appropriate bounds for the terms on
the right hand side of (18). For the sake of clarity, we shall break the proof
down into 5 steps.

STEP 1. From the Cauchy-Schwarz inequality, we observe that

g—1

{E|E(gA} - 1M} = {EIE[a(} Y (J1,i2,p(J1,i2)))* - 1IW]|}?

i2=0
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g—1 ¢-1
< E{ Z [Z Y(ih i27p(i1, i2))]2}2
31=0 i2=0
g—1 g-—-1
(19) —2E Y[ Y (i1, iz, p(in, i2)))? + 1
11=0 i3=0
We note from (5) and (13) that
g—1 g¢g—1 g-1 g—1 ¢g-1
EY [ Y(uinp(i,i))? = E(1/q)Y Y > Y(ir,izis)
11 =0 i,=0 11=0142=0143=0

g—1 g—1 ¢g-1

Z >N (G, 42, 43)

q(q - 21_0 12=013=0

= 14 0(1/ ),
and similarly (though more tedious),

g—1 ¢-1

E{Z[Z Y(ila 7:27p(i13 iZ))]2}2 =1 + O(l/q),

11=0 i2=0

as ¢ — 0o. Thus we conclude from (19) and the symmetry of Ag, 1 < k< 2,
that
(20) E|E(gA? - 1|W)| + E[E(gA} - 1|W)| = O(¢/?),
as g — oo.
STEP 2. Next, we have

E(qA3|W)
g—1

= E[q(Y" Y(J2,i2,p(J1,12)))*|W]

i2=0

= Z > ZYz(n,zz,p(th))IW]

- 1
q 21-—0 ]1?’-11 22—0
1 171 g—1

+ D337 i, o, p(d1s 2)) (i1, G2, P31, 52))
g—1: ot ey
11=0 j1#£41 12=0 ja#ip
(21) = E(A311|W)-|—A3,2,

say respectively. We observe that

{E|E(A3, - 1W)[}?
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< E(431-1)?
9 g—1 g—1
= E{l - '—1 Z Z Z Y (7‘1’12ap(]1az2))
1,1 =0 _71 ;éZ]_ 12—0
g—1
-i-(———)2 Z S Z >, Z Y2(i1, i3, p(J1, 92))
11 =0 j1 #41 12=0a31=0by#a; a2=0
XY *(ay, az, p(b1,02))}
(22) = 0(1/y),

as ¢ — 0o. Also we note from (5) that

E(43, 2)

= )2 Z Y Z > By, iz, p(j1,2))ii(in, Ja, P31 52))

11=0 j; #21 12=0 jp #i2

X Z_: > Z > a1, a2, p(b1, a2))ii(a1, bz, p(b1, b2))

a1=0 b1#aq a2=0byF#az

(23) = O(1/9),

as ¢ — o0o. Thus we conclude from (21), (22), (23) and the symmetry
between Az and A4 that

(24) E|E(gA2 - 1)W)| + E|E(gA2 - 1W)| = 0(¢~/?),

as q — 0.
STEP 3. We observe that

qEIE(AlAzIW)l
g—1 g¢g-1

- -—E] Z 3 N> V(i i, p(01,42))Y (1, J2, P31, 52))

11=0 j1#d1 12=0 j2=0
g—1 ¢g-1

———E(Wz) + —1——E >0 Z Y (i1, i3, p(i1, 82))]”

21'—0 12—0
0(1/9),

IA

i

(25)

as g — 0o.
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STEP 4. Now we note from (9) that

qEIE(A3A4\W)I

-1 ¢g-1

= —E|E(E 3 Z Y Ain, iz, p(j1, 12))ilJ1, J2s (11, 52)) W)

11=0 j; #41 12_0 72=0

g 1) Z > |Z >, E fi (i1, B2, 33) fi(J1, 12, J3)]

13=0 ja#iz 11=0j1#7; i2=0

1)3 qZ > |E > Z Y Aili1, b, 83)fi(J1, 52, J3)|

13—0 Js#ls 11=0 j ?521 i2=0 jp#i2

1)3 Z | Z 2 Z D (i, ia, i3)fi(f1, 2, 3) -

13=0 11=0 j1#11 12=0 jo#i2

IA

(26) o7

Thus it follows from (5) and (13) that the right hand side of (26) is bounded
by

g—1 g—1 ¢g-1

Z Z |Z Z [1,(11,7,2, Z3)”(7/177‘2a.73)|

23—0_13;éz3 11=0i=0
-1 g-1

(q—1)° Z | Z > (41,42, 13))

1a=0 73=0143=0

2q3

q(q
(27) = 0(1/9),

as ¢ — 00.
STEP 5. We observe that

qEIE(A1A3IW)|
-1 ¢-1 ¢g-1

= ——-El Z Z Z Y(Zl,ZZ,P('LI,7'2))#(217.72>p(217.72))‘

21—0 22""0 ]2—0
= 0(1/9),
as ¢ — o0o. Thus it follows by symmetry that
(28) qE|E(A143|W)| + qE|E(A1A4|W)| = O(1/9),

as ¢ — oo.
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Now we conclude from (18) and the results of the above 5 steps, namely
(20), (24), (25), (27), and (28) that

d d

Bl - E— dw!| = -1/2
|F——g.(W)E / K (w)dw — E——g.(W) / K (w)dw| = 0(¢~Y/2),

as g — oo uniformly over z € R. This proves Lemma 3. ad

Lemma 6 With the notations and assumptions of Theorem 2, we have
d d A= (r=2)/(2r—2)
1B [110.0%) - S 0:(V + w)lK (w)du] = Og )
as ¢ — oo uniformly over z € R.

Proor oF LEMMA 6. Let ¢ > 0. We observe as in Ho and Chen (1978),
page 247, that

d d
E [ 1200.W) = 20,V + )| K (w)dw
<omf  K(udut2p /I o [+ 4a] > 20)K (w)dw
w[>2e w|<L2e

+4£E/I I (IW|+ 1)K (w)dw
w|<L2e

(29) +E I{(z-2e <V £ 24 2¢)K(w)dw.

|wi<2e
Now to prove Lemma 6, it suffices to get appropriate bounds for the terms
on the right hand side of (29). To do so we shall divide the remainder of

this proof into 4 steps.
STEP 1. First we observe as in Lemma 4.6 of Ho and Chen (1978) that

4
E y K(w)dw < 2¢)  E[AL(JAk] > ¢)]
w|>2e k=1

IA

(30) 8gE[ATI(|A4] > €],

since Ag, 1 < k < 4, all share the same marginal probability distribution.
Hence using Hélder’s, Markov’s inequalities and (14), the right hand side of
(30) is bounded by

8qLE(ADP/T[P(|A1] > )]0~/ < 8qE(A})/e7 2 = e~ =D 0(q~D/3),



ORTHOGONAL ARRAY SAMPLING DESIGNS

as ¢ — oo uniformly over ¢ > 0.
STEP 2. Also by Holder’s and Markov’s inequalities, we have

jw|<2e

(/2 E{IADI (A1l > €) + I(| 42l > €)]}
4qe[ E(ADMIP(|41] > €))7
4qE(A7)/e"?

= 5—(T—2)0(q—(r-—2)/2),

IA

<
<

as ¢ — oo uniformly over € > 0.
STEP 3. Next we observe from (14) that

4
= /Iw|<2e(|W| + DK (wydw < gE(W|+1)(3 Ax)®

k=1
= O(ge) E(AD]/?
= O(E)’
as ¢ — oo uniformly over ¢ > 0.
STEP 4. Define
—4e  fw<z-—4e,
h(w)y=S w—z ifz—4e <w<z+4e,
4e if z44e < w.

Consequently,

15

d
E/ %hZ(V + w)K(w)dw > E I(z—2¢ <V < 2+ 26) K (w)dw.

|w|<2e
Thus we observe as in (10) that

E ol I(z—2e <V < z+42¢)K(w)dw
w|<2e

-1 g-1
1 q q

IA

11=0142=0
1 g—1 g~1
< 4EW + -1 3> i, 2, p(t1, 82)))
13 =012=0

= 0(e),

EWh,(W) + q—-_—TE[hz(W) > i, b2, (i1, 82))]
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as ¢ — oo uniformly over € > 0 and z € R.

Now Lemma 6 follows from (29) and Steps 1 to 4, by taking ¢ =
g (r=2)/(2r=2), o
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