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1. Introduction

We consider here stochastic differential equations driven by semimartingales and
the rate of convergence of the Euler scheme approximations to the solutions. It
is already known [2] that Fuler schemes converge, but a complete characterization
of the rate of convergence is still open. We describe here the convergence rate for
convergence in probability, in terms of the Lipschitz constant of the coefficients and
more importantly the L2 norm of the time changed increments of the driving semi-
martingales. In the important special case when the driving semimartingales are
diffusions or Lévy processes, we obtain — under mild additional technical assump-
tions — the same rate of convergence as in the classical case of Brownian motion
and Lebesgue measure as differentials.

For all unexplained notation and undefined terms we refer the reader to Protter
[4]. A standard reference on rates of convergence for the “classical” case of stochastic
differential equations driven by Brownian motion and Lebesgue measure is the recent
book by Kloeden and Platen [1]. For a survey paper of recent results see, e.g., Talay
6].

We work only on the time interval [0, 1], and in our interpretation of the Euler

scheme we follow [2]: let 0 = 7" < 7" < --- < 7} = 1 be stopping times and define
Na(t) = 7¢ for 7pf <t <1y,

We of course assume lim sup 7z, ; — 77 = 0, a.s. We then have that the solution
n—oo k

t
X3 =Xo +/ F(X o (sy)dYs
0

represents the Euler scheme for the equation

13
X, =Xo+ / F(X,_)dYs.
0
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2. The Quasi-left Continuous Case

In this section, we assume the driving term of the stochastic differential equation
is quasi-left continuous, which leads to a much cleaner theory. Quasi—left continuity
(QLC) is often verified in practice: for example, Lévy processes are QLC and so are

most strong Markov processes.. (Any continuous process is a fortior: QLC.)
Definition.

A stochastic process Y is quasi-left continuous (QLC) if all of its jump times are
totally inaccessible stopping times.

See [4, p. 99] for the definition of totally inaccessible stopping times. A canonical
example is the jump times of a Poisson process, or more generally of a Lévy process.

Let Y be a QLC special semimartingale with canonical decomposition Y = M+V,
where M is assumed to be locally square integrable and the finite variation term V

1s predictable. Let
t
0

where (M, M) denotes the compensator of the quadratic variation process [M, M)

of M. Then A is adapted, continuous, and strictly increasing. Define
Yu =1inf{t > 0: Ay > u}. (2.2)

Then v, is a stopping time for each u, and u — +, is also continuous and strictly
increasing, and A., = v4, = u.

Let F' be a process Lipschitz coefficient with (non-random) Lipschitz constant
k, and suppose further F' is bounded by a constant c. Let X* denote the unique

solution of

t
Xi=U}+ / F(X"),_dY, (2.3)
0

where U* are adapted, square integrable, cadlag processes (1 = 1,2).



Lemma 2.4

With X* as in (2.3) we have

E{ sup | X! —X§|2} < Seﬁ(“’k)"E{ sup |UZ — Uf|2}
3<y(u) s<y(u)
where B(a, k) = (12V 3a)k?, (where “v” denotes “max”) if fot |dV,] < a < o0 a.s.
Proof:

Recall Y = M + V is the canonical decomposition of Y. Then

2

t
X} — X7 <3|U} —UZ* +3 / F(XY)so — F(X?)y_dM,_
0

2

1
13 / F(XY)o — F(X2)y-dV,-
0

Let Z; = sup|X! — X2|?, and recalling that y(u) is a stopping time, use Doob’s
e<t
martingale quadratic inequality on the second term and Jensen’s inequality on the

third on the right side above to get (k¥ = Lipschitz constant for F):

E{Zv(u)} < 3E{ sup IU; - Uflz}

s<v(w)

y(u)
+ 12k2E{/ X1 — X2_|%d(M, M)s}
0
()
+ 3k2aE{/ | X1 - X2_| |dV3|}
0

v(u)

< 3E{sup |U! - UZ|?} + B(«, k)E{/ Zs_dAg}
3< vy 0

where A; = (M, M), +f0t |dV,|+1t, and B(a, k) = (12V 3a)k?. By Lebesgue’s change

of time lemma (cf., e.g., [5, p. 379]) and Fubini’s theorem we obtain

B{Z,0} < 3B{sup U ~ U2} + Blas ) | E{Z,,,}ds.
0

$<Yu

Since u — E[sup |U; —UZ|?} is an increasing function of u, by a version of Gronwall’s
$<Vu

inequalities (cf., e.g., [3, p. 359]) we have the result. O
Theorem 2.5



Let

t
X, = Xo +/ F(X),-dYs,
0

14
th:XO‘l‘/ F(Xn)nn(s_)dys.
0

Assume Y is a quasi-left continuous, special semimartingale, and that if Y = M+V
18 115 canonical decomposition, then M is locally square integrable. Also assume F

18 process Lipschitz and bounded. Let

pn(8) = E{(Yy(s—) = Vi (vs=0)* )

() = fot pn(s)ds, and p, = pn(A1). Then X™ — X converges to O in ucp at rate
V Pa-
Proof:

Assume first that M is a square integrable martingale and fot |[dVs] < a a.s. we

can rewrite
X7 =X + /0 (P omy = FX™),_)dYs + /0 CP(xX™,_av,
= Xo 4+ UP + /Ot F(X™),_dY,.
Using (a + b)* < 2a? + 242, Doob’s inequality, and the Lipschitz property of F:

Tu
E{sup |U?*} <(8V 2a)k2E{/ | X7 sy — Xf_]szs}
0

$<Yu
lv
= vain{ [EO 20— Y o,

and since F' is assumed bounded by a constant ¢:
Tu
<(8V 2a)k2cE{/ (Y, —Ynn(s_))szs}
0 .

:7(aak)c)/() E{(Ys _Yﬂn(‘Ys—))2}d37

where the last equality is by Lebesgue’s change of time lemma and Fubini’s theorem.

Since the equation for X has U° = 0, Lemma 2.4 implies

E{sup |X; — X;‘n(s)lz} < 3ePlabug g, k,c)/ pn(s)ds.
8< vy 0



Since pn(t) = fot pn(s)ds and A; > 1 a.s., we have the result.

To remove the simplifying assumptions, choose € > 0 and T so large that P(T <
A1) < €, but M7 is a square integrable martingale and fOT |dVs| < @ a.s., for some
a, however large. (Recall that ¢ — fot |dVs| is continuous, since Y is QLC and V is

predictable.) Let m, be a sequence increasing to co. Then,

P su X, — X7 >6>
<3S]I;l)mn\/pn| |

5P<miﬁﬂXT @WFﬁ>6)+HT<AQ

E{sup|X] — (X)T*}

<ed <1

B (mn)?Pn6?
. 3eP(@R)§(a, k, c)pn

B (ma)?pné®

where we have used the Chebyshev-Markov inequality. Slnce the py’s cancel, and

since € was arbitrary, we have

1
M/ Pn
in probability, hence X — X™ tends to O in ucp at rate v/p,. O
Example (2.6)
Let Y be a Lévy process such that E(Y?) < oo each t, Yy = 0. Then Y has a

canonical decomposition Y; = (Y; — £t) + £¢, where € is a constant. (For example,

(X — X™)] tends to O

Y having bounded jumps would more than suffice!) Then A; = 7t for a constant

T7>1,and v, = %u One then has

,On(s) {( (8) 7]17.(7(3_))) }
1
=Ey(Yo) —You0) [~

n
and therefore p, ~ %, which means that X™ — X converges to O in ucp at rate
ﬁ, which is the same rate for solutions of stochastic differential equations driven

by Brownian motion and Lebesgue measure.

Example (2.7)



Let Y be a diffusion that is the solution of a stochastic differential equation
driven by standard Brownian motion and Lebesgue measure. Then since B; and
t have continuous paths, they are a fortiors QLC, and one easily checks that with
mild assumptions on the coeflicients that determine Y, that X™ — X converges to
O in ucp again at rate \/Lﬁ

We note that the same proofs can be used for systems of SDEs, which yield the

same rate of convergence.
3. The General Case

When the jumps of a semimartingale are not necessarily totally inaccessible, then
the process A given in (2.1) need not be continuous, and the situation becomes more
complicated. For simplicity we again assume we have one driving semimartingale
Y and one equation; our results extend trivially to several driving semimartingales

and systems.
(3.1)Assumptions on the driving semimartingale Y:

We assume Y 1s a special semimartingale with canonical decomposition Y =
M +V, where M s assumed to be locally square integrable; the finite variation
term V is predictable and also there exists a constant o such that fol |[dVs| < a a.s.

Finally assume Y has square-integrable jumps.

We consider the equations

X, = Xo + /0 F(Xa )Y,
(3.2)

t
X! = Xo +/ FX g o—))dYs
0

where f is Lipschitz continuous with constant k& and bounded. (7, is defined in
Section 1 and determines an Euler approximate scheme.)
Let ¢ be a constant such that (12 V 3a)k? < % Let

t
Ap = (M, M), +/ V| + 1. (3.3)
0
Then A is predictable, right continuous, and strictly increasing. Let Ty = 0, and

Tiy1 = inf{t >T;: Ay — A, > f} (3.4)



Define

- o tAT H - . _
A= QLT = LT 4 [V AT -

tAT?
where ZT— = Ztl(t<Ty+ Z17-14>T), for a cadlag process Z and random time T' > 0.
(Of course, s At = min(s,t).) Next define
vi(u) =inf{t > 0: A% > u}, (3.5)

so that v* is the right continuous inverse of A*. Note that v*(u) is a stopping time
for each u > 0. Let Y = YT~ — YTi and define also:

Pr(8) = B{(YS (9= = Yy ()0 | (3.6)

and note that pt (s) < co. Also,
. . s .
7o) =)+ [ sl
0

and

[o/€]+1

Po= > pulb), (3.7)

i=1
where [a/€] denotes the integer part of a/€.
Theorem 3.8

Let f be Lipschitz continuous and bounded and assume assumptions (8.1) hold.
Let X™, X be solutions of (3.2). Then X™ converges to X uniformly in probability

on [0,1] at rate \/p,. That is, for any sequence m, increasing to oo,

lim —sup | X" — X| =0,

N0 Mpy Pn t<1

with convergence in probability.

Before proving Theorem (3.8) we establish three lemmas. With the same f and

Y, it is convenient to consider more general equations:

{ X} =Ul + [y f(XL)dYs,

X2 =02 + [ f(X2)dY, (39)



8

where U', U? are adapted, cadlag processes.
Lemma 3.10

Assume supAA; < &, where B(a, k) < 1, and Bla,k) = (12V 3a)k?. Let Z; =
sup| X! — X§t|2. Then

s<t
3 Bla, k) > 1 _ 1722
E{Z, n} < ex u |E{ sup Uy —Ug|"}
{Zyw} =5 — Ba, k)T (1—B(a,k)§ tg&)' g
Proof:
Since

t 2
X! - X2| < |3U}—Ut2|2+3‘/ F(Xso) = F(X3_)dM,
0

2
+3

?

/0 L) — Fx)av,

using Doob’s quadratic martingale inequality and Jensen’s inequality implies
v(u)
E{Z,w} <3E{ sup |U} —UZ’}+ B(a, k)E{ / Zs_dAs},
s<~(u) 0

and by Lebesgue’s change of time lemma and Fubini’s theorem,

<3B{ sup (U2~ U2} -+ Bl VB (s = 0o} + Blar k) [ B{Z00)ds.

s<v(u)

However, 0 < Ao vy(u) — u < supAA4; < ¢, whence
t

B{Zy} <3B{ sup U~ U2} + B(a, DB Zy-} + (e B) [ B{Z9-)ds,

s <y(u
and since f(a, k)¢ < 1 and u — Z.(,) is increasing in u, we obtain
(1 - B(O‘ak)é)E{Z’y(u)} < 3E{ sup IU; - U3|2} + B(a, k)/ E{Z’V(S)—}ds-
0

s<y(u)

The result now follows by multiplying by 1_—,3(101—k)£ and applying Gronwall’s inequal-
ity. O

Lemma 3.11
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Assume ¥ = YT~ pa(s) i= ph(s), () 1= 7A(w), and ¢ = ||fl|zes, where Ty, ok,
and v' are given by (8.4), (3.6), and (3.5). Then,

E{ sup |Xs—X"*} <8V 2a)k2c{§pn(u) — /u pn(s)ds}.
s<v(w) 0

Proof:

We write the equation for X" as:
¢
X¢=Xo+U +/ F(X)dYs,
0

. where U] = fot f(X:;n(s_)) — f(X7?_)dYs. In the corresponding equation for X take

U? = 0. By Lemma (3.10) it then suffices to estimate

E{ sup |U*}=E{ sup |U} U]}

s<(un) s<v(uw)

Using that f is Lipschitz with constant k& and also bounded by ¢, and by Doob and

Jensen’s inequalities, we have:

(w)
E{ sup |U™]*} < (8k*V 2ak2)E{/ X (o) — X;‘_|2dA3}
s<y(u) 0 "

~y(u)
= v2aRs{ [ g )P = Yy o)A, )
0
y(u)
<8V 2a)k2cE{ / (Y, — Y,,n(s_))szs}
0
< h(a, k,c) [E{(Av(w —u)(Yytus) = Yonu(u-)))?}

+ E{/O (Yy(sm) — Ynn<v<s—)>)2d3}] :

where h(a, k,c) = (8 V 2a)k?c. Since 0 < A,,) —u < supA4; < supA; < ¢, the
' t t

preceding is:
< h(e, k,c) [‘EE{(YY(U—) — Yyanu-)"}
+ /0 E{(Yy(s) = Ynn(v(s—»)Z}dS]

= (a5, 0)|éa(w) + [ pno)is|.
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Lemma 3.12
Assume Y = Y71, Then,

lim P( sup |Xs—XD|>¥6)=0,

T s<y(w)
with rate of convergence /7L (u).
Proof:
We have

P( sup |X,—X7|>6)
s<y(u)

< P(sup |XI™ = (X7 > 68)+ P(|Xr — X3 > 6). (3.13)
s<v(w)
where R = y(u) A T. The first term on the right side of (3.13) tends to O at rate
\/Pn'(u) by Lemma (3.11) and Chebyshev’s inequality. For the second term on the
right side of (3.13), note that

Xr—Xp=Xr- = X7_ + (f(X1-) = f(X] (1)) AYT,
and using the Lipschitz property of f:

[Xr— X3 < [Xr- — Xpo| + kXr— - X}, gAY
< sup | X7 (X)L + kIAYT),
s<v(u)

and since 1 4+ k|AY7| < o0 a.s., X7 — X} tends to O in probability at least as fast
as sup |XI——-(X™T-|. O

s<v(u)
Proof of Theorem 3.8:

Lemmas (3.10), (3.11), and (3.12) establish that for any sequence m, increasing

to oo, if we assume Y = Y11, then

1
lim ————= sup |X — X =0, (3.14)

"0 M/ P (1) <7 (u)
with convergence in probability, for each u > 0. By definition of T} and v!, if we
take u > €, then v'(u) > T} a.s. Thus we can rewrite (3.14) as:

lim —T sup |th/\T1 — Xt/\T1| =0 (315)
P M/ () 1<1
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with convergence in probability. We now let Y2 = Y72~ — Y11 and consider the
equations

t
X, = Xonr, + / F(X,_)dY2,
(3.16)

X = X0 /f mo)dY?,

which are the same as equations (3.2) but stopped at T,—. We rewrite these equa-

tions as
t
Xt = Uz? ‘I'/ f(Xs—)dYs27
0
t
—up+ [ e ar?,
0

Since Y is assumed to have square integrable jumps, we can immediately apply
Lemma (3.10), and a slight modification of Lemmas (3.11) and (3.12) give the in-
ductive step. This is a finite induction, only needing to be performed at most [a/€]+1
times. Theorem (3.8) follows. O
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