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Abstract

In Berger and Pericchi (1993) a general automatic Bayesian method
for comparing models, the Intrinsic Bayes Factor (IBF) was proposed.
One version, the Arithmetic IBF, was shown to essentially correspond
to an actual Bayes factor for a reasonable Intrinsic Prior. A second
version, the Geometric IBF, is justified in Pericchi and Smith (1993),
using a prequential type of loss function, without assuming that one of
the entertained models is the true sampling model. Here we analyze the
general normal linear model, determining the intrinsic Bayes factors
for any model comparisons, nested or separate, as well as for multiple
model comparisons. In these situations we also discuss determination
of intrinsic priors. We also generalize model elaboration ideas to linear
models with fixed mean structure but arbitrary error distributions.
The method is illustrated on examples and compared with other model
selection methods.

Key Words: Automatic Bayes Factor; Bayesian Model Compar-
isons; Intrinsic Bayes Factors; Model Robustness; Tests of Hypotheses.

1 Introduction

1.1 Background

Berger and Pericchi (1993) argued that Bayesian thinking in Model Selection

is necessary, as opposed to estimation problems where Bayesian methods
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may be convenient but not always necessary. In regular low dimensional
estimation problems, Bayesian and classical methods typically cohere as the
sample size grows. However, for Model Selection and Hypothesis Testing
problems, frequentist measures of evidence increasingly differ from Bayesian
measures as the sample size grows. Paradoxically, estimation is much better
understood and developed within the Bayesian paradigm than are model
selection and hypothesis testing. Thus research in the latter areas is timely
and exciting. In fact, in the Bayesian arena we are witnessing a healthy
upsurge of interesting new proposals and new looks at old methods; see
Bernardo and Smith (1994), Kass and Wasserman (1994), Kass and Raftery
(1994), Berger and Pericchi (1993), Gelfand and Dey (1994), 0’Hagan (1994)
and de Vos (1993), among others.

To elaborate on this general issue, classical tests of hypotheses, and
particularly P-values, are being increasingly regarded as providing suspect
measures of evidence in favor or against statistical models. The critical
literature covers both philosophical and practical issues. The former includes
the difficulties in interpretation of P-values and their lack of compliance with
the Likelihood Principle. The latter includes the tendency, in practice, of
P-values to over reject simpler models, particularly with large samples; see,
for example, Allenby (1990). In contrast, posterior probabilities act as an
automatic Ockham’s razor, discounting more complex models when there
is no cost in doing so; see Smith and Spiegelhalter (1981) and Jefferys and
Berger (1992).

Robust Bayes Theory has shed further light on the inadequacy of P-
values. The infimum of posterior probabilities, over enormous classes of

priors, has been found to be far larger than P-values; see Edwards, Lind-



man and Savage (1963) and Berger and Sellke (1987). In particular, the
ubiquitous significance level of 0.05 should only be considered to be at most
mild evidence against the null hypothesis.

A second reason for considering the Bayesian approach to hypothesis
testing and model selection is that prediction is often the eventual real goal.
In allowing for model uncertainty in prediction, it is virtually necessary
to use Bayesian methods, which can keep all models ﬁnder consideration
weighted by their posterior probabilities; see Draper (1994) for discussion
and review.

The main disadvantage of Bayesian Hypothesis Testing, in practice, is
that there is no accepted general strategy for producing Bayes Factors that
are “automatic” or “quasi-automatic”; i.e., that do not require substan-
tial prior input from the user. Although the ideal Bayesian solution would
be based on a careful subjective analysis, preferably in a Robust Bayesian
fashion, routine information processing by non-specialists is not likely to
follow this road. Even accomplished subjectivists frequently wish to utilize
automatic or default methods.

It has long been known that the usual “quasi-automatic” approach in
Bayesian statistics, based on noninformative or default improper priors, sim-
ply does not work in hypothesis testing or model selection problems. The
arbitrary constants appearing in the improper prior specifications do not-
vanish, since model comparisons are based on the marginal likelihood of the
observations, an unnormed quantity; the resulting Bayes Factors are thus
undetermined. A number of “solutions” to this difficulty have been pro-
posed, and are discussed below. In evaluating these solutions, our primary

criterion is — How closely does the solution correspond to actual Bayes fac-



tors with respect to (reasonable) proper priors? For instance, one can ask
whether or not the solution has the same asymptotic behavior as that of
some proper Bayes factor.

One of the general implementations of quasi-automatic Bayes Factors is
that of Geisser and Eddy (1979). However, as the same authors showed,
the asymptotic behaviour of their Bayes Factors is different than that of
proper Bayes factors. This is a consequence of their use of training samples
with lengths that depend on the sample size. The same concern applies to
the method of Aitkin (1991) and to some versions (though not all) of the .
Fractional Bayes factors of O’Hagan (1994). (See Gelfand and Dey, 1994,
for asymptotic analysis of these and other methods.)

Other automatic Bayes Factors arise from asymptotic considerations,
such as the Schwarz (1978) Criterion or BIC. Such asymptotic arguments
nominally ignore a multiplicative constant term, however, and hence do not
clearly satisfy our goal of corresponding to actual Bayes factors. Note, on the
other hand, that Kass and Wasserman (1992) show that BIC corresponds,
approximately, to a proper Bayes Factor in nested model situations when
the simpler model is true. In general, however, BIC seems to overstate the
evidence in favor of the complex model, which is a “bias” that, if anything,
goes in the wrong direction. We will see examples of this.

For normal linear models there have been several specific “conventional”
proper priors suggested. Jeffreys (1961) forcefully advocated use of such for
certain specific situations. His approach was extended to quite general nor-
mal linear models in Zellner and Siow (1980). We will see that arithmetic
IBF’s appear to be closely related to this method, in that they seem to cor-

respond to use of “intrinsic priors” that are quite similar to the conventional



priors of Jeffreys and Zellner and Siow.
Another reasonable automatic Bayes factor for nested hypotheses is that
of Smith and Spiegelhalter (1981), based on Good’s device of “imaginary

? We will present comparisons of this approach and the

training samples.
IBF approach later. The general finding is that, as with BIC, the Smith and
Spiegelhalter approach tends to somewhat overstate the evidence in favor of
the more complex model.

In Smith (1983) and Spiegelhalter (1980), a quasi-automatic procedure
for Model Elaboration for location-scale alternatives was suggested. The
goal was to allow for robustification of the sampling model, by compari-
son with non-normal location-scale models. Their suggested procedure has
been found to be quite successful and robust; see Pericchi and Pérez (1993).
However, their suggestion was not fully justified, since it was based on an
improper prior. In Berger and Pericchi (1993) it is shown that, for exchange-
able observations and any location-scale likelihood, Intrinsic Bayes Factors
produce a correction of the improper procedure which is equal to one. Thus
the Spiegelhalter and Smith procedure for location-scale alternatives is actu-
ally well-scaled. In Section 3 we will generalize the procedure just described
to quite general Linear Non-Normal models with fixed mean structure.

A number of other default Bayes factors have been proposed, but are
less related to our method. See Berger and Pericchi (1993) and Kass and

Raftery (1994) for discussion and references.

1.2 Preview

The ideas behind the Intrinsic Bayes Factor are quite general and natural.

Start with standard noninformative priors, and use a minimal part of the



data as a “training sample” to obtain proper posterior densities for the
parameters under each model. Then use the obtained proper posteriors and
the remaining data to compute the Bayes Factor. This procedure is well
scaled, but depends on the arbitrary choice of the training sample. We thus
symmetrize with respect to all possible minimal training samples. There are
numerous potential ways to symmetrize. Here we consider arithmetic and
geometric averages of the Bayes factors obtained from the training samples;
these averages will be called the AIBF and espectively.

Several motivations for AIBF’s and GIBF’s can be given. For instance,
in Berger and Pericchi (1993) it is shown that an (often) proper prior dis-
tribution exists that yields essentially the same result as the AIBF. These
“Intrinsic Priors” may be thought of as reference priors for model compari-
son. On the other hand, within the general Decision Theoretic perspective
of Bernardo and Smith (1994), it is shown in Pericchi and Smith (1993) and
in Smith (1994) that the GIBF is justified using a prequential type of loss
function in the open model perspective, that is when it is not assumed that
one of the entertained models is true. This argument is briefly outlined in
Section 2.2.

The paper is organized as follows. Section 2 reviews the Intrinsic Bayes
Factor (IBF) and certain of its justifications. In Section 3, we study com-
parison of Linear Models having the same mean structure but differing error
distributions. An example is provided. Section 4 develops the IBF for the
General Normal Linear model, including Regression and ANOVA. A Hier-
archical model is also considered. We illustrate IBF’s with various examples
and compare with other approaches. Also in Section 4, an Expectation form

of the IBF is developed for use with small samples, and the intrinsic priors



for the Linear Model are determined. Finally, in Section 5 we provide some

conclusions.

2 The Intrinsic Bayes Factor
2.1 Definition of IBF’s

Suppose that we are comparing ¢ models for the data z,
M;: X has density fi(z)0;), i=1,...,q,

and that we only have available default priors 7V(6;), i = 1,...,q. The
general strategy for defining IBF’s starts with the definition of a proper and
minimal training sample. The entire sample z is divided into two subsam-
ples: z(l), which is the training sample, and z(~!) the remaining observa-
tions used for discrimination. Define the marginal or predictive densities of
X,

m¥ (z) = / £:(z16:)7 (6;)d6;.

Definition. A training sample, z(!), is called proper if 0 < m{](z(l)) < 0o
for all M;, and minimal if it is proper and no subset is proper. (Note that,
if z(1) is proper, then all posteriors, 7}¥(8;]z(l)), are proper.)

The “standard” use of a training sample to define a Bayes factor is
based on using z(l) to “convert” the improper 7}¥(0;) to proper posteriors,
7]V (0;)z(1)), and using the latter to define a Bayes factor for the remaining
data z(—£). The result, for comparing M; to M;, is (with obvious notation)
J fi(2(=)|0;, z(1))7Y(0;](1))db;

T 5a(=D)16r, 2 (D) (8:]= (1)) db;
= B Bi(=0) (1

B;i(1)




where

Wl moMO-REm O

are the Bayes factors that would be obtained for the full data z and training
sample z(!), respectively, if one were to blindly use ¥ and 7r§V .

While Bj;(!) no longer depends on the scales of 7}’ and 7V, it does
depend on the arbitrary choice of the (minimal) training sample z(l). To
eliminate this dependence and to increase stability, a natural idea is to
average the B;;(!) over all possible training samples z(I),l = 1,..., L. Thus,
in Berger and Pericchi (1993), we defined the arithmetic IBF (AIBF) and
geometric IBF (GIBF) as, respectively,

1 & 1&
Bf = ng,-,-(l)=Bﬁ--i§Bg(l), (3)

L 1/L L 1/L
(]_:_[B,-,-(l)) =B;.‘{-(HB,?}’(1)) : (4)

1=1

GI
BS

An important point, observed in Berger and Pericchi (1993), is that the
average of the correction factors, BJj(l), must converge (for large samples)
in order for BJ‘-‘;I to correspond to a proper Bayes factor. To this end, it is
typically necessary to place the more “complex” model in the numerator of
the AIBF, i.e., to let M; be the more complex model. (See Section 4.2 for
the recommended analysis when M; is not nested in M;.) We then define
Bf" by

B;‘}’ =1/ Bﬁ.l .

2.2 Justification and Comparison of IBF’s

IBF’s apply to very general problems, even nonnested and highly irregular

problems. They also possess a number of desirable invariance properties. See



Berger and Pericchi (1993) for discussion of these and related justifications.

Here we focus on the extent to which IBF’s behave like actual Bayes
factors, since we suggested in Section 1 that this should be of primary con-
cern in evaluation of default methods of model selection. In this regard, a
cornerstone of the justification for the AIBF is that it corresponds to use
of a plausible default (proper) prior, that we call the Intrinsic prior. This
is discussed in Section 4.5, with intrinsic priors for the normal linear model
being derived.

As an illustration, consider comparing M, the ii.d. N(0,0?) model,
with M,, the i.i.d. N(8,02) model. For the AIBF derived from a “modified
Jeffreys” prior (see Section 4), the conditional intrinsic prior for 8 is shown,
in Section 4.5, to be

_ L (-exp{-p*/o}})
ﬂ(ﬂlc"?) - 2\/7—”72 (,32/0'%) - (5)

This (new) prior satisfies the desiderata in Jeffreys (1961) for a prior in this
problem, namely: i) Location at zero, ii) Scale o, iii) Symmetry around zero,
and iv) It should have no moments. Jeffreys observed that the simplest dis-
tribution he knew that satisfied his desiderata was the Cauchy(0,07) density,
and hence he recommended its use. It is interesting that the intrinsic prior
in this problem also satisfies i-iv; also appealing is that it is not as sharply
peaked at zero as the Cauchy.

We regard this justification of the AIBF to be of paramount importance.
However, the justification essentially assumes that the true sampling model
is one of the entertained models. What happens if this is not so?

To answer this question, let us draw from Pericchi and Smith (1993)

and Smith (1994), in which we entertain two models, M; and M,, but do



not necessarily believe that either is the true sampling model. Suppose
the data ¢ = (1, %3,...,Z,) actually arrived sequentially, and write ) =
(Z1y.+ -y %) and Zg1) = (Tigrse ey Zn)-
Assume the prequential type of utility function, for model evaluation,
n
UM;) =Y logm;(z:|z¢~Y),
i=s+1

where s is the minimum value so that m;(z,41|z(*)), for j = 1,2, are proper
predictive densities. Notice that, in Bernardo and Smith’s words, we have
a model when we have a predictive; thus before we reach the value s, we do
not yet have proper models to compare.

It is easy to see that U(M;) can be rewritten as
U(M;) = log(m;(2(o41)|2))-
Thus the formal solution of the model selection problem is to prefer M, if
m2(‘”(-¢+1)|z( )) s
lo Ndz,, 0
/ (ml(z(,+1)|:c(’)) mA(:v(a+1)|fB ) Z(s+1) > Uy
where mA(:v(,+1)|a:(")) corresponds to the actual sampling model.
For exchangeable observations, a Monte Carlo approximation to this
integral leads to the approximate solution: prefer M, if
K
[T[Bar(z(esry (D] (@)]E > 1,
=1
based on K random selections from the I = 1,..., L partitions z = (z()({),
z(,41)(1)). Therefore the (approximate) solution is equivalent to selection
according to the GIBF. Notice, also, that this scenario motivates the use of

minimal training samples; they define the first points at which the utility

function is computable.
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Another pleasant feature of the GIBF is that it is automatically coherent
across models in the sense that Bff = BZ/Bfi’. The AIBF is not automat-
ically coherent across models, but Berger and Pericchi (1993) develop a
modification that is coherent; for linear models, the “encompassing” model
approach, recommended in Section 4.2, also results in coherence across mod-
els.

It is easy to see that the GIBF favors simpler models to a greater extent
than does the AIBF, and that they can differ markedly in some instances.
- As they each have separate, reasonable motivations, we do not at this time
recommend one over the other. Indeed, the problem of model selection is so
complex that it is perhaps unreasonable to expect a simple “good for every-
thing” recipe. We thus put forward a general strategy, the Intrinsic strategy,
which has several possible valuable implementations, and will trust experi-
ence to reveal which should be used, and when. See Berger and Pericchi
(1993) for more discussion of possible evaluations within the Intrinsic strat-
egy.

There is an important class of problems for which the AIBF and the

GIBF coincide, and it is to this class that we now turn.

3 The IBF for Fixed Design Linear Models but
Different Error Distributions

Assume that we are considering the Linear Models
Mj: Y=X,3J-+ajej, (6)

for j = 1,...,q alternative error models €; ~ g;; here Y isnx 1, X is n x k,

B; € R*is kx1,0; >0, and ¢; is n x 1. Note that the design matrix, X,
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is assumed to be fixed across models. We label the unknown B and o by
j, so as to emphasize that parameters can have different meanings within
different models. We will use reference default priors, 1rJN (B;,0;) = 1/0;.
A minimal training samplé can be seen to be any (k + .1)-vector y(1) with
corresponding sub-matrix X (!), of X, such that X*(/)X(!) is nonsingular.
Let |A| denote the determinant of a matrix A.

Lemma 1. In the above situation, if g;(v) = g;(—v), then the marginal

density of the minimal training sample y(1) is
my (y(1)) = 21X OX O ?ly(1) - XOEOXO) X OO (7)

Lemma 1 is established in Berger, Pericchi and Varshavsky (1994). It is
a quite surprising result because m;(y(/)) does not depend in any way on
g;. For instance, it holds when g; is any A, (0,X;) distribution, regardless
of 3 ;. It also holds for nonnormal distributions.

Since “calibration” of priors for different models by “matching predic-
tives” is an acknowledged technique (cf., Laud and Ibrahim, 1992, and
Berger and Pericchi, 1993), Lemma 1 suggests that the reference prior is
properly calibrated for comparison of any models of the form (6). This re-
sult greatly simplifies the model elaboration for linear models, since then all

Bf (1) clearly equal one (see (2)) and hence (from (3) and (4))
Bﬁ.l = Bﬁl = B;Y (8)

The latter is often available in closed form, as in the following example.
Example 1. The data y;;,¢=1,2; j = 1,...,n,, is felt to arise from the
“two group” model y;; = p; + 0¢;;. It is desired to compare the two models

My: the ¢; areii.d. N(0,1), and My: the ¢; arei.i.d. U(—/3,V3).

12



n,-=2 n,-=3 n,-=4 n,-=5 n.-=10 n,-=15 n,~=20
BY,  0.992 095 0.799 0.646 0.297 0.018 0.007

Table. 1; . Simulation of two Uniform groups. Behaviour of the IBF with
respect to sample size

Let 7; denote the range of the data for group i; let rp = Max{ry,m};
let n = n; + ny; and let R denote the usual residual sum of squares after
fitting the Normal model. Calculation shows that the marginal densities of

the observations for the Uniform and Normal models are

1 nr rmn+r 1
N _ 12~ N 2
mU(y) - T;—z(nr% (n _ l)TT n— 2)’

L((n —2)/2)

N¢oN _
my(y) = 27r("—2)/2(n1n2)1/2R("‘2)/2'

Thus BY ; = my(y)/m{ (y)-

In Table 1 we present the average of the IBF’s for ten simulations of n;

observations from each of the two Uniform densities: U(—2,0) and U(0,2).
At n; = 2, the IBF’s average is nearly one, as would be expected for minimal
data. The IBF’s in favor of the Uniform Model grows reasonably fast as n;
increases, being overwhelming for n; = 15 or 20.

For other common error distributions in this example, the marginals of
the observations are also either available in closed form or involve at most

a one dimensional numerical integration (over o ).
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4 The IBF for the Normal Linear Model

4.1 Basic Formulas

Suppose, for j = 1,...,¢, that model M; for the data Y (n x 1) is the linear

model

Mj: Y = Xjﬂj + €j, €~ N,-,(O, O'J?In),

where 67 and B; = (Bj1, 82, -,Bx;)' are unknown, and X; is an (n X k;)

given design matrix of rank k; < n. Let
B; = (X;X;)"' X}y and R; = |y — X;B;I’

denote the least squares estimator 3; and residual sum of squares, respec-
tively.

We will consider default priors of the form
7N (B8;,05) = 0; U9, ¢ > 1. (9)

Common choices of ¢; are g; = 0 (the reference prior; cf., Bernardo, 1979,
and Berger and Bernardo, 1992) or ¢; = k; (the Jeffreys prior). When
comparing model M; nested in M;, we will also consider a modified Jeffreys
prior, having ¢; = 0 and ¢; = k; — k;. This is intermediate between the
reference and Jeffreys priors.

It is easy to show, for these priors, that a minimal training sample y(!),
with corresponding design matrices X;(!) (under the M;), is a sample of size
m = max{k;} + 1 such that all (X}(!)X;(l)) are nonsingular. (Note that
if g; = —1, i.e., constant noninformative priors are used, then one would

instead need m = max{k;} +2.)
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Computation yields that

gy o IO (k4 )/ XX RO
#2662 T((n— ki + ¢:)/2) |X}Xj|1/2 Rg_n-kj+qj)/2’

and that B[ (l) is given by the inverse of this expression with =, X;, X;,
R;, and R; replaced by m, X;(1), X;(1), Ri(l), and R;(l), respectively; here
R;(1) and R;(1) are the residual sums of squares corresponding to the training

sample y(I), i.e.,

= [y - OB, B;(1) = (XXX (My().  (11)

Inserting these expressions in (1) results in the following arithmetic IBF’s for
the three default priors being considered. (For the corresponding geometric
IBF’s, simply replace the arithmetic averages by geometric averages.)
Using the Jeffreys prior:
ty.|1/2 n/ 1 1/2 m/2
w =i (5) 1 X woxom (59) - 02
Using the Modified Jeffreys prior: Defining p = k; — ki,

| XXM (~)<"~k M 1 & IXFWX I (R,-(z))“’“’”

BAI ik Sulat 1 NN .
| X7 X; |12 L= 1XI(OX(12 \ Ri(1)

. (13)
Using the Reference prior: Defining p = k; — k; and

_ (= k)T + 1/2)
=" - RDIR) .

BAI lexll/z R(n-—k-)/Z g L IX;(I)XJ-(I)II/Z. (Rj(l))l/z (15)
XX/ R(n k)2 T, o IXIOX(D72 " (R(1)@+DI2"

For Known ¢?: If the o7 are known and equal o2, and the ¥ (B;) = 1,
then

= (2mo?)ki=k/2 . | X} X;|1/2 {

1
W ex —F(Rj - R,)} . (16)
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Here, a minimal training sample is a sample of size m = max{k;} such that
all (X}(1)X;(1)) are nonsingular, and Bf{() is as in (16) with X, X;, R;, and
R; teplaced by X;(1), X;(1), Ri(1), and R;(l). Thus the arithmetic intrinsic
Bayes factor in (1) is
o XY 1
Bﬁ = W «exp ——;(Rj - R,) (17)
| X;(O)X;(D)2 1
——(R:() = R: .
I3 oo o { -z 0- o)}

Independently of our work, deVos (1993) suggested, for linear models,
an approximate weighted geometric average of the training sample Bayes
factors, with the weights chosen so as to simplify the resulting computation.
In our averages, we use only equal weights w(l) = 1/L. (An exception is
when L is so large that only a subset of size L* of the collection of training
samples can be used; this would correspond to choosing w(!) = 1/L* on this

subset, and w(!) = 0 otherwise.)

4.2 The Encompassing Model Approach

In order for IBF’s to correspond to actual Bayes factors (asymptotically),
it is necessary for the average of the B} (l) to converge (asymptotically)
to a nonzero value. It was mentioned, earlier, that comparing the more
complex model to the simpler mode] will tend to ensure this convergence,
whereas reversing the order can result in a lack of convergence (at least for
the AIBF). When comparing nonnested linear models, however, it is often
not clear which model (if either) is more complex. In Berger and Pericchi
(1993) a solution to this dilemma was proposed: create a model, M, in

which all M; are nested, and then define all IBF’s relative to M.
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Definition. For the linear models M;, j = 1,...,q, given in (6), define
the encompassing model, My, as the linear model with design matrix X
consisting of all covariates from all the M;. Then define the arithmetic

encompassing IBF of M; to M; as
B} = B /B (18)

Thus the encompassing model approach first compares all models to the

encompassing model My, and then uses the multiplicative property of Bayes
factors to perform other model comparisons. Note that the minimal training
sample will now be a sample of size m = ko + 1, where k; is the dimension
of B,, assuming the resulting (X3(!)Xo(l)) is nonsingular. Note, also, that
the geometric encompassing IBF can be similarly defined; actually, however,
it is clear from the multiplicative nature of geometric IBF’s that the result
will just be the usual geometric IBF, but with the minimal training sample
size being ko + 1, rather than max{k;} + 1.
Example 2 (Hald’s Regression data). This classic data set (cf, Zell-
ner, 1984) is typically analyzed using Normal regression models. There are
four potential regressors, which we denote by 1,2,3,4 and a constant term
(included in all models) which we denote by ¢. This data set is somewhat
extreme because of the very small sample size (n=13) and because the design
matrix is nearly singular. The encompassing model is clearly that defined
by 1,2,3,4,c. The minimal training samples are of size 6 in this example
and there are a total of 1715 such training samples.

In Table 2, we give the Bayes factors of the encompassing model to the
submodels for the AIBF with reference and modified Jeffreys priors (AIBF1
and AIBF2, respectively), for the GIBF with reference and modified Jeffreys

17



Model AIBF1 AIBF2 GIBF1 GIBF2 ZS BIC P-value

1,23 0.29 0.29 016  0.13 0.3 0.3 0.84
1,24.¢ 0.26 026  0.15  0.12 0.3 0.313  0.896
1,34, 0.31 032 0.9 0.16 0.36 0.438  0.501
2.3,4,c 1.2 1.2 073 0.6 1.11 509  0.071
1,2,¢ 0.18 019  0.08  0.04 0.26 0.08 0.47
1,3,c 82423 15873.3 3965.9 1844.2 2439.0 7971320.2 0.0
1,4,c 0.46 0.45 0.2  0.09 0.56 045  0.168
23,c 2164 3614 963 448  90.91 32307.5  0.0002
24,c 21744 50711 1272.2 591.6 833.33  2383719.0 0.0
3,4, 13.1 13.8 4.6 2.1 7.14 130.6  0.0055
1c 4158.8 8530.9 1386.0 300.3 3125.0  775803.8 0.0
2c 1009.8 35644 539.9 117.0 11765  234150.7 0.0
3,c 228421 52083.6 6327.2 1371.1 11494.2 13534582.1 0.0
4c 8513 1705.3 405.0  87.8 1086.9  213945.2 0.0
¢ 197215 37830.2 8316.2 749.3 11235.9 5442341.9 0.0

Table 2: Hald’s data; Bayes Factors of the encompassing model to all pos-
sible sub-models

priors (GIBF1 and GIBF2, respectively), for Zellner and Siow’s conventional
prior (denoted by ZS), for BIC, and we also give the P-values corresponding
to the submodels. We do not present the IBF’s for the Jeffreys priors, partly
due to a lack of space but mainly because our practical and also theoretical
analysis (see Section 4.5) suggest that the Jeffreys priors are less reliable in
this set up.

Discussion The AIBF’s are reasonably stable with respect to the pri-
ors considered. Also they are quite similar to the actual Bayes factors of
Zellner and Siow. The GIBF’s are somewhat more favorable to the simpler
models; GIBF1 seems to be roughly half the AIBF’s, while GIBF2 is half
again smaller. (We have found that GIBF2 tends to be rather unstable and
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“too small,” hence we do not recommend its use.) Considering the small
sample sizes and high colinearity, the stability of the IBF’s is encouraging.
BIC values for most models are reasonable, particularly for the seemingly
best model (1,2,c). In general, however, BIC does seem to favor the more
complex model, as was mentioned in the Introduction.

Using (18), any pair of models can, of course, be compared. For instance,
suppose that we wish to compare M;: 1,2,c; M,: 3,4,c; and Mj: 1,4,c.
Assume, say, reference priors. From Table 2 we obtain B! = 72.8, B4 =
2.54, and B! = 0.035 which are reasonably close to the respective GIBF’s:
56.1, 2.45 and 0.044 and are also close to the Zellner and Siow values which
are, respectively, 27.46, 2.15 and 0.078. Thus M, is moderately preferred to
M; and quite strongly preferred to M,. The corresponding values for BIC
are 1637.2, 5.64, and 0.003. The first and last values seems too high and too
low respectively, as compared with the other criteria. This is not surprising

since, in this example, we are far from being in a large sample situation.

4.3 ANOVA and Hierarchical Models

We now specialize the formulae for the IBF in the general linear model
to ANOVA1 models. Also, we compare these models with a (nonlinear)
hierarchical model. This is an interesting comparison in its own right, since
we are discriminating between versions of a “fixed effects” and a “random
effects” model.

For simplicity assume that the design is balanced. The observations are
Yi; NN(,B,', 0’2), i= 1,...,I;j= 1,...,J.

We employ the parametrization §; = p + o4, with S, =0.
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Suppose that, initially, we wish to compare the usual models,
Mi: a=...=a;=0 vs. My: the a; are unequal. (19)

Assume, as before, either reference priors (¢; = ¢; = 0) or modified Jeffreys

priors (¢ = 0,93 = I — 1). Then the AIBF is seen to be

Al _ T((n-1I+¢)/2)T((I+q1)/2) Mm 1/2
Byl = T((n -1+ q)/2)T((1 + ¢2)/2) ( I+ 1)> (20)
B2 g B pUte2 ()

x 2
R(zn—I+qz)/2 L P R(ll+qx)/2(l)’

and the GIBF has the same expression except that the arithmetic average
is replaced by a geometric average.

We next analyze two data sets which appeared in Box and Tiao (1973,
pp. 246-247). The first is the dyestuff data and the second a simulated data
set where the within residual sum of squares is smaller than the between
residual sum of squares so that the usual frequentist method for estimation
of variances would yield a negative estimated variance. In both examples
there are I=6 potentially different groups and J=5 replicates, so that n=30.
Thus, in both examples, the minimal training sample size is m=7. As in
Table 2, we denote by AIBF1 and AIBF2 the Arithmetic IBF with reference
and modified Jeffreys priors, respectively. GIBF1 is the recommended GIBF
(that with reference priors). We also give the Bayes factors arising from use
of Zellner and Siow’s (ZS) and Smith and Spiegelhalter’s (SS) criteria as
well as BIC and the P-values. We also include the Fractional Bayes Factor
(O’Hagan, 1994) with the choice of the fraction b = m/n, denoted by Fm.
Example 3. Box and Tiao Dyestuff Data

See Table 3.

Example 4. Box and Tiao Simulated Data
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Models AIBF1 AIBF2 GIBF1 ZS Fm SS BIC P-value
My/M, 536 420 115 51319 4.42 558.104 1044.12  0.0044
M,/ M, 0.5 0.23

Table 3: The Box and Tiao dyestuff data. Bayes Factors of M, to M; and
of Mz to M3

Models AIBF1 AIBF2 GIBF1 ZS Fm SS BIC P-value
Mz/Ml 0.0145 0.0038 0.0034 0.008 0.007 0.122 0.2279 0.7311
M, /M, 0.088 0.025

Table 4: Box and Tiao simulated data. Bayes Factors of M, to M; and of
M2 to M3

See Table 4

As in Example 2, the AIBF’s and ZS are reasonably close. Also they are
close to Fm in examples 3 and 4. Note, however, that this is so with the
choice of the fraction b = m/n. Other choices favored by O’Hagan (1994),
particularly those which do not go to zero with the sample size, are likely
to yield very different numbers.

On the other hand, BIC favors the more complex model to a much
greater extent, as does SS to a somewhat lesser degree. The version of BIC
used for Tables 2, 3 and 4 is the Likelihood Ratio of the more complex
over the simpler model multiplied by |X{X;|/?/|X3X;|'/?; see Berger and
Pericchi (1993). Another plausible version of BIC in these ANOVA examples
is to multiply the Likelihood Ratio by n*(*1=¥2)/2  where n* is the “effective”
sample size, here n* = J. In Tables 3 and 4 this alternate BIC is 426.23 and
.0930, respectively.
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That the BIC’s (and SS) are unreasonably high is indicated by computing
an upper bound on the Bayes factor over all i.i.d. N'(u, po?) priors for the
B; (under M,), with reference priors used for the unknown g and o? (under
both models). The upper bound (over p) for the dyestuff data is B = 24.15.
As this is an upper bound over a broad class of priors, BIC and SS are
clearly suspect.

For both Examples 3 and 4 a plausible alternative model is the following
hierarchical model that we denote by Msj:

%j ~ N(Bi,0?),i=1,...,5j=1,...,J,
1(Blie,02) = Nl 2lir), () = 1o, (21)
o(lns 02) = a1 (e )T2,2(07);
where 1= (1,...,1), To1(stx) = 1, and 75 5(02) = 1/(% + 02). See Berger
and Strawderman (1994) for discussion and justification of these and related
priors for hierarchical models.

It is convenient to first make the change of variables p = 02/0?. In de-
termining mY (y), all parameters, except p, can be integrated out, resulting
in

(119 + )=t
(Ru(1/J + p) + Rp)n-11?’

9(n-1)/2
(27r)(n—1)/2JI/211/2r((n - 1)/2),

my (y,p) = Ki (22)

K,

where R,, Rp are the usual within and between residual sum of squares
respectively. Hence m} (y) is obtained by a one dimensional integration of
(22) over p.

Let us turn now to the correction factors. The more complex model here

is M,. So the minimal training samples are of size I 4+ 1; one observation
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from each group (to be denoted by y;1(!)) plus one replica in, say, group k
(to be denoted by i5(1)). Then, for the same prior specifications as above,
a similar computation yields,
[(1/2)2-T+1)/ 2g-1/2
Ny = 2
ms (V:P) = G177 1 o @+ D2+ I G Dy )

where, defining F,(!) = (ye1(!) + ye2(1))/2,

H(p,l) = : [(1+ )Ey.l()+(p+ )1_2(1)4' (?/kl(l) Yi2(0))?

ix£k

(1+p)(p+1/2) EUAY
_(Ip+(I+1)/2)'((1+ )gy'l(l)+(p+ ) yk(l)) :

Thus computing the mY (y(!)) will also involve a one dimensional numerical
integration over p.

Tables 3 and 4 also give the IBF’s for comparing M, (with the reference
prior) to M; (with the prior stated above). Note that it is not clear how
to define ZS, SS, BIC, or even the P-value for this comparison; hence the
corresponding entries of Tables 3 and 4 are left blank.

Consider, first, the Bayes factors for the simulated data in Table 4. Here
Mj is substantially favored over M, (by factors of 11 and 40 for the AIBF
and GIBF, respectively). Not surprisingly, the “correct” M, is favored by
factors of 6 or 7 over M3.

The Bayes factors for the dyestuff data in Table 3 show that Mj is favored
over M, by factors of 2 and 4 for the AIBF and GIBF, respectively, with
M, being least favored.

These two examples support the value of using a hierarchical model. The

hierarchical model, M3, is not unreasonable for either of the two extremes;
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indeed, somewhat surprisingly, it is the best model for the dyestuff data.
The computations involving M3 were done by averaging over only 1/3 of
the training samples. This cost saving device was used because numerical

integration was required for each training sample.

4.4 The Expected Intrinsic Bayes Factors

For small sample sizes, the training sample averages in (12), (13), and (15)
can have large variances (as statistics in a frequentist sense), which indicates
a possible instability of IBF’s when the sample size is small. An attractive
solution to this problem, if M; is nested in M;, is to replace the averages by
their expectations under M;, evaluated at the parameter MLE under M;.
Since M; is nested in M;, the minimal training sample size is m = k; + 1.

Defining p = k; — k; as before, the ezpected arithmetic intrinsic Bayes factor

is given by
1 L
BEAT = BN. 32_: [Bf ()] (24)
- BN. *ZlXt(l)X(l)lllz M; (R,-(l))(q:'+1)/2 25)
7 I XHDX(D]V2 7,65 | (Ri(1))astp+Dr2 |
where

x—Pl? ' I'(: +p+1)/2)
2065-43/2  T((¢; +1)/2)

and the expectation is under M; with (83;,0;) replaced by the standard

ct = (26)

estimates (,Bj,&j), where 67 = R;/(n — k;).

Under mild conditions, the law of large numbers can be applied to show
that (B'/Bfi*T) — 1, as the sample size grows under M;. But since M;
is nested in M;, convergence is also achieved when M; is true. It is thus

reasonable to use BAT in place of Bf'.
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If the training samples can be chosen to be exchangeable, so that the ra-
tios of determinants in (25) are equal, then the summation in (25) disappears
and one has a computationally quite simple IBF.

One can define the geometric analogue of (25), but we will not consider
this because the expectations cannot be given in closed form. For nonnested
models, one can define the expected arithmetic intrinsic Bayes factors w.r.t.
an encompassing model, and proceed as in Section 4.2.

The expectation in (25) can be evaluated in closed form for the de-
fault priors we consider. We present the results here; see the Appendix for
derivations. The answers are in terms of Kummer’s function, M(a, b, ¢) (see
the Appendix and Abramowitz and Stegun, 1970, Chapter 13). Note that
Kummer’s function is available in standard software packages such as Math-
ematica. We evaluate the expectations under M; at 3;. To use (25), one
simply replaces (8;, ;) in the expressions below by (ﬁj,&j). The expecta-

tions depend on the “noncentrality” parameters
M) = 0728; X; (NI - Xi((NIX; (XD X (NX;(DB;. - (27)

Using the Jeffreys prior: Here ¢; = k; and ¢; = k;, and the expectation

in (25) becomes

R;(1)\**/2 . p+1 p+k;+2 AU
N (O B o B

where
oo _ D + /DT ((0+ 1)/2)
T((k; + p+2)/2)T(1/2)
Using the Modified Jeffreys prior: Here ¢; = 0 and ¢; = k; — k; = p,

and the expectation in (25) becomes

i (p+1)/2
Gt
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gl =07 tpe1
= A(l)2 (- ,\(1 ) +(1+ IYO) )e_'\(l)/z] . ifp=3
sorl( =50 + x0p) — (1 +30 T agpe X ifp=5.

Examples 3 and 4 Continued: For the Dyestuff and Simulated data, the
expected AIBF yields 3.82084 and 0.00308, respectively. These values are

reasonably close to the values appearing in Tables 3 and 4, which are 4.20 and
0.0038. Note that the expected AIBF is here computationally far cheaper
than the corresponding AIBF. The latter involves 187,500 training samples
as compared with only six different terms in the former (corresponding to six
different non-centrality parameters). Of course, one can always just compute
the AIBF using a moderate subset of training samples.

Using the Reference prior: Here '¢; = ¢; = 0, and the expectation in
(25) becomes

(B | _ _exp{-2(1)/2} 1 p+2 A(l)
E (Ri(l))(p+1)/2] - a;’zp/zr((p+2)/2) ('" —_— —) (30)

Known o?: For the case where the o} are known and equal o2, and
W}v(ﬂj) = 1, the analogue of (25) is (see (16))

EAI _ |X.-tXi|1/2 1 Xt(l)X(l)lllz
pp = B e (- w1 S R

B |exn {555 B0 - R} (31
Here, the expectation can be evaluated (see the Appendix) as
1
B lexp {~5 (R - ROD)| =2 ewix0/8). (32)
4.5 Intrinsic Priors for Nested Linear Models

In Berger and Pericchi (1993), it was argued that arithmetic IBF’s for nested

models typically correspond to actual Bayes factors, with respect to reason-
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able prior distributions. This was advanced as one of the strong arguments
for use of arithmetic IBF’s. The prior distribution that would correspond
to an arithmetic IBF was called the intrinsic prior.
The formal definition of an intrinsic prior was based on an asymptotic
analysis, utilizing the following approximation to a Bayes factor:
B:: = BN . 71',-(0,-)7rfv(0.-)(1+0(1)); (33)

T aN(0)m(6)

7; and m;

here 7;¥ and 7" are the noninformative priors used to compute B,

are the actual priors that determine Bj;, and 6; = (3;,8;) and 6, = (Bj, ;)
are the MLEs under M; and M;. The idea was to compare (3) with (33),
and observe that, if the IBF in (3) corresponds to an actual Bayes factor,
then . X A
TR0 Kty
1=1 5 \Y5)m:(0;
For nested models, it was argued in Berger and Pericchi (1993) that this

holds asymptotically if

L N
1 T30 = ey 2
where it is assumed that §; — ¥(0;) asymptotically, under model M;.
Model M; will be said to be nested in M; if X; consists of a subset of
the columns of X;. (More general types of nesting can be reduced to this
by transformation.) In fact, we will assume that the covariates have been
ordered so that X; = (X;X*) (the concatenation of the two matrices, not
the product). Writing ,6;- = (B4, "), it is convenient to write m;(8;) =
7;(B;,05) as

Wj(ﬁpaj) = W}(ﬂ*lﬁo’aj)'ﬂf(ﬂo,aj)' (35)
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Note that (8, 0;) is the analogue, under M;, of (3;,0;) under M;. We do
not make the common mistake of identifying these parameters as being equal
but, as they are related “nuisance” location-scale parameters, it is natural
to assign them the same noninformative prior. We in fact will choose this

common prior to be the same as ¥(8;,0,) = o7 *%), 50 that
7By, 03) = o7 4, 738y, 0) = a7 . (36)

If (B;,0:) and (B,, 0;) really were the same parameters, this choice would be
noncontroversial. As they are not necessarily the same parameters, however,
it could be argued that m; and 7I'J? may not be properly “calibrated.” If,
however, ¢; = 0 (i.e., the original 7}V is the reference prior), then 7; and 7r1?
are themselves the reference priors, and we saw in Section 3 that this seems
to provide a type of predictive “calibration” for any location-scale models.
Thus our argument that IBF’s correspond to sensible real Bayes factors is
strongest if the IBF is defined for reference 7}, which occurs in either the
“reference prior case” or the “modified Jeffreys prior case.” (In fact, we will
see that an “adjustment” of 77(8,, 0;) is needed for the Jeffreys prior case.)

Using (35) and (36) and recalling that 7¥(8;,0;) = aj—(lﬂ"), (34) can
be rewritten

* i—4q; . 1 Z
(8180, 5) = of ™ - Jim + 3~ B (D). (37)
1

i=
Unfortunately there is ambiguity in taking this limit when the y; are not
exchangeable, but one can consider replications of the full y (i.e., imagine
ii.d. vector replications of Y from M,, with the given X,). Then, under

mild conditions, the limit in (37) can be replaced by expectation, yielding
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the final defining equation
. ) 1@
w818y 05) = o) 3 EG B DL (38)
I=1 L

Note that expectations in (38) were computed in Section 4.4; indeed,
one can see that the above argument would also apply to providing an
“intrinsic prior” rationale for the expected intrinsic Bayes factor. Using
the expressions in Section 4.4, the “intrinsic priors” in (38) can be written
as follows. (We also include the result for the known variance case; the
analogue of (38) for this case is easy to derive.)

Unknown o7 and o7:

Je—er L 1 (1)]1/2
1) = S I w00, (@)

=1

where C* is defined in (26) and ¥(A(l),0;) is either (28), (29), or (30),
depending on the default prior used. From (27), it is straightforward to

show, in the nested case, that
A1) = o728 X (1)1 - Xi(NIX; (XD X)X (1B, (40)

Known o} = 0} = 0?: Defining p = k; — ki,

L
BB = iy 1 o [ PO/ (@
Of course, we have not yet answered the big question: is 7;(8%|8,, g;) a
proper distribution? If so, we have established the Bayesian correspondence
of IBF’s.

Consider, first, the case of known ¢? = 0? = ¢2. It is straightforward to

i =

show that
()= X0 - XSOOSO X)X 1) e? (42)
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has determinant
1= ()] = | XD X(DI/1X;H X5

Hence (41) can be written

T(B18:) = 7 Som(B) (43)

where the m; are N, (0,3 X (1)) distributions. Thus 7} is a mixture of normals,
and is trivially a proper distribution.

Establishing that (39) defines a proper distribution is considerably more
difficult, and is considered in the Appendix. Interestingly, (39) is proper
for the reference prior and modified Jeffreys prior cases, but is not for the
Jeffreys prior case; it is off by a constant, C; (see the Appendix). This
suggests that our choice of m;(3;, 0;) = o; ***) and 73(By,05) = crj_(l'”") for
the Jeffreys prior IBF are not properly “calibrated”; choosing 77(8,, ;) =
Ciloj (+9) would ensure that 7;(B"|By,0;) is then proper, and is hence
perhaps the correct calibration of 7":?'

The nature of 7r}(,3*|ﬂ°,aj) is of considerable interest in providing in-
sight into the behavior of the associated IBF’s. In the known variance case,

(B |8°) is rather simple, and clearly has mean 0 and covariance

L1
= =ﬁ§2(1). (44)

Note that, in balanced cases where the X (I) are equal, 7;(8%|3,) is just a
single normal prior, and is similar to the prior used for model comparison by
Zellner and Siow (1980). Seeing how X* differs from the Zellner and Siow

covariance matrix in unbalanced cases would be of considerable interest.
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The behavior of 7}(8"|B,,0;) in the unknown variance case is more
difficult to ascertain. For the modified Jeffreys prior case and p = (k;—k;) an
odd integer, simple closed form expressions are available, as shown following

(29). For insténce, when p = 1, using (39) and (40) yields

B o) = L L IXKOXOM 1 YOV
080 = =7 S waxar wt")
= —szv (ﬂ*z/V(l)) (1= e7IY0), (45)
where

V(1) =20} /[X*(1)'( - Xy(NX1(O X (D)) X1 (D)X (D).

Each of the densities in this mixture is very similar to a Cauchy (0, v/V (1))
density (never differing by more than 15%). This Cauchy density is similar
to that recommended by Jeffreys (1961) or Zellner and Siow (1980).

In general, it can be shown (for the reference and modified Jeffreys cases)
that 7;(8"|B,, ;) is a mixture of densities that behave like 7,(1,0, =*(1))
densities: p-variate t-densities with 1 degree of freedom, location 0, and

scale matrix
= () = 207 [X*()'(I - Xo()(X(O) X (D)) X)X ()7

The fact that the degree of freedom here is minimal, seems related to the
fact that minimal training samples were used.

As a final comment, note that an analogous derivation of intrinsic priors
for geometric IBF’s can be performed. However, the analogous expressions
for w}(B*LBO, ;) are considerably more involved, and also do not appear to

be proper distributions.
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5 Conclusions

(i) The IBF seems to be a general, Bayesianly justifiable tool for dealing with
normal linear models and -generalizations. In particular, we saw that it is
effective in difficult scenarios of high colinearity and moderately small sample
sizes, and for non-normal error structures (with fixed linear structure) and
hierarchical models. Most other automatic Bayes factors are comparatively
limited in applicability.

(ii) We recommend use of the GIBF only with reference priors (¢; = ¢; = 0).
It appears to be quite unstable for other priors and small sample sizes. The
AIBF is fine for either reference or modified Jeffreys priors (¢; = 0,¢; =
k; — k;). We do not recommend use of the AIBF with the Jeffreys prior
(¢ = ki, g¢; = kj), however.

(iii) For very small sample sizes, we recommend use of the expected intrinsic
Bayes factors. Indeed, these are fine for any sample size, and are only slightly
more difficult to use. (It is necessary to compute (29) or (30).)

(iv) If comparing multiple models, we recommend use of the encompassing
model approach in Section 4.2. This approach is well-defined for linear
models.

(v) The existence of intrinsic priors provides one of the central justifications
of AIBF’. There are, in addition, several potential uses of the intrinsic
priors. One is to provide insight into the comparison of AIBF’s with other
Bayesianly justifiable methods, such as that of Zellner and Siow (1980).
Another possibility is to actually use the intrinsic prior as a default prior
distribution to compute an actual Bayes factor for model comparison. Both

of these uses deserve further exploration.
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Appendix

For the technical proofs of results in Section 4, the resulting standard facts
are repeatedly used; all notation is taken from Section 4.

(i) Under M;,

w = E";—(gl—)~x?,
v = BOZRQ ana),

j
where x2 denotes the central chi-square distribution with v degrees of free-
dom, and x2(A(1)) is the noncentral chi-square distribution with p = k; — k;

degrees of freedom and noncentrality parameter A(l). Also, W and V are

independent.

(i) . o
M(a,b,2) = 583 2 ?EZIQ . j—J'

(i)

BRG] = 3o A eR 2

j=0 j!

* E[h(X} 42:)]-
(iv) With obvious abuse of notation,

E [(X_) ] _ T(s+ /2 +1)/2)
Kt/ |~ TN+ (v +1)/2)

providing x? and x2 are independent.
(v)

Elexp{~3x3(V)}] = 277124
(vi)

T(1+p/2)T((P+1)/2) _ 5y
T(1/2)T(p+ 1) '
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Proof of (28): Using, in order, Facts (i), (iii), and (iv), we obtain

EMa [(Z”—Ell;) (k,-+1)/2] _ 5 [(WVZ V)(k,-+1)/2]

_ o (AD)/2Y exp{=2(D)/2} | 2 \Ere
_jgo g (X%+X3+2i)

7!
o § OO Tk +2)/200(p4 25 +1/2)
2 TN+ ks +25 D)
Using Fact (ii), (28) follows immediately.
Proof of (29): Identical to that of (28), but also using Fact (vi). The

explicit forms given for p = 1, 3,5 follow from representations of M.

Proof of (30): Using, in order, Facts (i) and (iii) yields

(B; ()2 | & (MD)/2Y exp{-A(1)/2} N
E [_( R,.(z))(p—+1)/z] = JE_:O io? E [ ST /2] :

Defining
¢;t = 20+ VDN ((p + 25)/2),

E X3 0 oo cjy(j—1+p/2)e-(a:+y)/2d p
O3 + X,2;+2j Y1)/ B /0 ./0 (z + y)e+1)/2 zay

= ¢ 20YDT(5 + 1/2)/(5 + p/2)-

Algebra, together with Fact (ii), yields the result.

Proof of (31): This is Fact (v).

Lemma Al. For the reference prior and modified Jeffreys prior cases,
w}(ﬂ*lﬁ",aj) in (39) is a proper density. For the Jeffreys prior case,

L((k: + 1)/2)T((p+1)/2)
L((k; +1)/2)L(1/2)

/ (38", 0;)dB" = Co =

Proof. For the Jeffreys prior case,

L
BB 05) = 7 L a8,

34



_ e IXjOXMOM e p+1 ptk+2 M)
a(f) = @rad)r? [ XH DXV € 'M( 2 2 2 )

The transformation 8* — A(l) has Jacobian

X} (OX.(7 (wa?yrl?
IX:(OX;(1)[V2 T(p/2)

so that (writing A = )\(l))

. A([)(p—2)/2,

1 ki+2 A
/gz(ﬂ Yag* = T (p /2)/ A(p-2)/2 —A/zM(p+ p+ : + )d,\

Using Fact (ii), and integrating term by term yields
% (p=2)/2,-A/2 P+1 pt+ki+2 é
/0 No-23gp 2y (BT PR TE 2y
_ _TIl(p+k; + 2)/2) Z TG+ (p+1)/2) _ ./°° AG=1+p/2) =212 g,
s TG + (p+ k; +2)/2)(31)2
_T((p+k+2)/2) & > (5 + (p+1)/2)T( + p/2)2/
L((p+1)/2) & TG+ (+k+2)/2)GY)

R R L A RN R R

_ 2PL(p/2)T((p+ k; + 2)/2)T((k: + 1)/2)
- T((k; + 1)/2)T((k; +2)/2) ’

where F is the hypergeometric function, and we have used 15.1.20 of Abramowitz

and Stegun (1970). Combining terms and simplifying yields Co.
The identical argument works for the reference and modified Jeffreys

prior cases, but now the integral equals 1.
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