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1. INTRODUCTION

The preferred method of randomizing a deck of N cards is the riffle shuffle—
cut the deck into two stacks, then riffie the two stacks together. A number of
mathematical models have been proposed for this process. The model which has
received the most attention, and about which the most is known, is the GSR (for
Gilbert, Shannon, and Reeds) shuffle. In this model, all permutations with exactly
one or two rising sequences are equally likely (a rising sequence for a permutation
7 is a maximal sequence of consecutive integers ,7 + 1,...,Jj such that 7(?) <
w(i+1) < w(i+2) < --- < m(j) An alternative description of the shuffle is as follows:
break the deck at an integer k chosen from the Binomial (N, 1) distribution, then
perform an “unbiased” riffle of the two stacks. (In an unbiased riffle of two stacks
of sizes A, B, cards are dropped one at a time from the bottoms of the stacks; at
any step, if the two stacks have A’, B cards, respectively, then the probability that
the next card is dropped from the stack with A’ cards is A’/(A’ + B’).)

Bayer and Diaconis (1992) gave an intriguing “dynamical” description of the
GSR shuffling process. In this representation, the individual cards are represented
by points of the unit interval; these points are gotten by taking a sample of size
N from the uniform distribution. The assignment of points to cards is such that
the original order of the N cards in the deck agrees with the natural order of the
corresponding points in the unit interval. The evolution of the deck is determined
by the motion of the N points under the action of the doubling map T : ¢ — 2z
mod 1: the order of the cards in the deck after n shuffles is determined by the
order of the (marked) points in [0,1] after T has been applied n times. Using this
representation, Bayer and Diaconis obtained the following exact expression for the
probability that the deck is in state 7 after n shuffles:

0 (2"+J.\/[V——r>,

where r is the number of rising sequences in the permutation m. From this they
deduced an improvement of Aldous’ (1983) theorem on the rate of mixing in the
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GSR shuffle, which states that for any ¢ > 0,
. 3 . 3
(2) I\{ll_r}go dn((1- 5)5 logo N) =1 and Nh—l:réo dn{(1+ €)§ logo N) =0

where dy(n) is the total variation distance between D(X,,) and the uniform distri-
bution, and X, is the state of the deck after n shuffles.

The purpose of this paper is to show that there is an analogous dynamical de-
scription for a large class of models for riffle shuffles, and to show how the associated
dynamical system constrains the rate of convergence to uniformity. The GSR shuf-
fle is but one of a multitude of interesting models for riffle shuffles. It may be
generalized in a number of obvious ways, for instance: (1) Instead of breaking the
deck at k with a Binomial (N, 1) distribution, one might break it at k with a Bi-
nomial (N, p) or a uniform distribution, or at a nonrandom k. (2) Instead of using
an “unbiased” riffle, in which all riffies with given stack sizes are equally likely,
one might use a “biased” riffle, in which cards from the left stack (say) are more
likely to drop. than cards from the right stack. For instance, one might consider the
(u, v)-weighted riffle, in which the chance that the next card is dropped from the
left stack is uA/(uA + vB), with A, B being the sizes of the left and right stacks,
respectively. (3) Instead of riffling all the stacks, one might use a more complicated
rule for combining stacks. For example, keep two stacks, a “top” ¢ and a “bottom”
b. On each shuffle, break the bottom stack into two substacks, b and bp; riffle
t and bp to obtain a replacement for b, and replace ¢ by by. Each of these is an
interesting model for card-shuffling.

The associated dynamical system for a riffle shuffle may be roughly described
as follows (see sec.2 for a more precise description). In any riffle shuffle there are
finitely many “stacks”, which may be combined in various ways. Let A be a finite
alphabet indexing the set of available stacks. If the shuffle is repeated infinitely
many times, each card will have an “orbit”, an .A—valued sequence describing
which stack the card visits at each time. The join of the N orbits is the associated
dynamical system; the time evolution is described by the unilateral shift operator.
The orbit of a single randomly chosen card will be called the associated marginal
process. We will show (sec. 3)that for many interesting shuffling models, the
associated marginal process has (at least asymptotically as the deck size N — 00)
a simple form, which in a number of cases may be described as the motion of a
randomly chosen point of the unit interval under a deterministic map. But we
will also show (sec. 4) that in general the orbits of the different cards are not
independent — the GSR shuffies are exceptional in this regard. Finally, we will
show (sec. 5) that the limiting form of the associated marginal process constrains
the rate of convergence to uniformity in a rather simple way: namely, for any € > 0,

dn((1—¢e)h~llog N) — 2

as N — oo, where h is the “fiber entropy” of the limiting dynamical system. Aldous’
result for the GSR shuffle suggests that for many of the riffle shuffles considered
here there is a rapid transition to uniformity at about Clog N repetitions, with C
depending on the details of the shuffling process. Our result shows that if this in fact
true, then h~! is a lower bound for C. The GSR shuffle, where C = %h‘l, shows
that in general C > h™!; but in general the cutoff phenomenon seems rather difficult
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to establish, and it appears that the constant C' may depend on the parameters of
the shuffling process in a complicated and mysterious way.

2. THE ASSOCIATED DYNAMICAL SYSTEM

2.1. The Canonical Dynamical System. Every stochastic process X, taking
values in the permutation group Sy has a natural representation as a discrete-time
particle system on the unit interval. Represent the “cards” {1,2,..., N} by “parti-
cles” situated at the points {0, N—l_l-, T\fz—_v ..., 1}; at time 0 the particle representing

card ¢ is situated at the point —1(—,‘:1—1 At any time n thereafter, the particle repre-

senting card 7 is located at X—;‘V(i_)l_—l Clearly, X,, is completely determined by the
history of this particle system. We will refer to this particle system as the canonical
assoctated dynamical system.

The canonical dynamical system is not the only or even the most natural dynam-
ical system associated with the shuffle. For riffle shuffles, a more useful dynamical
system is gotten by “symbolic dynamics”, in which one marks the “orbit” of a card
by the sequence of “stacks” it visits. The remainder of this section is devoted to
a description of this system, which we shall call the associated symbolic dynamical
system.

2.2. The GSR Shuflle. Consider first a riffle shuffle that cuts the deck into just
two stacks and then riffles them together, e.g., the GSR shuffle. Suppose that
the shuffle is repeated infinitely many times; then each card will have an “orbit”,
specifically, the sequence of zeroes and ones recording which of the two stacks (top
= 0, bottom = 1) the card visits at each step. What characterizes a riffle shuffle
is that the original order of the cards in the deck agrees with the lexicographic
ordering of their orbits . This is because if card b lies below card a originally, then
card b will continue to lie below card a for as long as their orbits agree; and thus,
at the first time their orbits disagree (if there is such a time), card b will be in the
bottom stack and card @ in the top. If the shuffling process is ergodic, then the
orbits of cards a and b cannot agree forever, so the pairing of cards and infinite 0-1
sequences is injective.

Hence, for an ergodic shuffling process, the history of the deck is completely
determined by the NV infinite 0-1 sequences giving the orbits of the different cards.
To determine where card i is at time n, mark sequence z*; apply the unilateral
shift o to each of the N orbits n times; then determine where o”z¢ lies in the lexi-
cographic ordering of o”z!,o"z?%,-.. oz, Observe that if the shuffling process
is invariant under relabellings of the cards (as for the GSR shuffle and its natural
generalizations) then the process

A
Y, = {o"z!,0"2?, ..., 0"z}

is stationary.

For the GSR shuffle, the join of the N orbits has an appealingly simple interpreta-
tion. Identify each orbit with a point of the unit interval [0, 1} by binary expansion.
Then the joint distribution of the set of N points so obtained is identical to that
of a sample (unordered) of N i.i.d. random variables, each uniformly distributed.
This was apparently first noticed by Diaconis (1988) although the interpretation of
the time-reversed orbits as Bernoulli processes was known to Reeds [?] and further
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exploited by Aldous (1983). Thus, the GSR shuffle admits the following descrip-
tion: Start with a sample of N uniformly distributed points, and attach indices
1,2,---, N to the points in accordance with their relative orders. Multiply by 2
and reduce modulo 1; then the GSR, shuffle is the random permutation induced by
the reordering of the points.

2.3. Riffle Shuffles in General. We shall consider in this paper riffle shuffles
in which the deck is cut into a finite set of stacks, labelled by a finite alphabet
A = {ay,a3,...,ar}. The alphabet A is ordered a; < ay < --- < ay; this order
determines how the stacks are put back together after the shuffle has been executed
a finite number of times — stack a; is on top, stack as is just below aj, etc.
Recombination of stacks is governed by a routing mairiz, an irreducible 0-1 matrix
R on A x A: on each shuffle, the stacks that are “riffled” to obtain the next stack
b € A are precisely those stacks a € A such that R(a,b) = 1. The orbit of any card,
i.e., the sequence of stacks that the card visits, is an element of the sequence space

Y =% ={z125... € A% : R(z;,zi11) = 1 Vi}.
The main law governing the riffles is as follows:

Assumption 1. In each riffle, the relative order of the cards in each stack a € A
s preserved.

By the same reasoning as used above for the GSR shuflle, Assumption 1 implies
that the order of cards in the deck is the same as the lexicographic ordering of their
orbits. Consequently, if the deck starts in the totally ordered configuration, then
the state of the deck at any time n is completely determined by the (unordered)
set Y, of orbits

3) Y, =YY 2 {62,022, ..., 0"z}

We shall call {Y;, }5>0 the associated symbolic dynamical system. The orbit {£,}n>0
of a randomly selected card will be called the associated marginal process. In gen-
eral, the N sequences in ¥ representing the orbits of the N cards need not be
independent. For the GSR model, and a number of others, the orbits are indepen-
dent, but as we will show later, this is exceptional.

Let Z,, denote the vector recording the composition of the stacks after n shuffles
(the composition of any particular stack is the ordered list of cards in the stack).
We will henceforth refer to {Z,}n>0 as the shuffling process. Clearly, {Z,}n>0
completely determines {Y,}n>0 and hence also the state X,, of the deck at each
time n > 0. (Note that Z, cannot in general be recovered from Y,, because
Yo contains no information about the initial ordering of the deck. The sequence
{Zn}n>0 can, however, be recovered from (Zo,Ys).)

Assumption 2. The process {Zn}n>0 is an ergodic Markov chain whose law is
invariant under relabellings of the cards.

Here the term “ergodicity” means that the transition probability matrix for the
process Z, is aperiodic and irreducible. Since the state space is finite, 1t follows
that there is a unique invariant probability distribution v, and that regardless of
the law of Zy, D(Z,) — v as n — oo. Since the law of the process is invariant under
relabellings of the cards, it follows that the invariant distribution » also has this

e



RIFFLE SHUFFLES AND DYNAMICAL SYSTEMS 5

property; thus, v is determined by the induced invariant measure v* on the vector
of stack sizes. In section 3.1 below, we will provide an example of a shuffling process
(the perfect shuffle) which satisfies all of Assumptions 1 and 2 but the ergodicity
requirement,.

If D(Zo) = v, then {Z,},>0 and all induced processes (including the associated
symbolic dynamical system and the associated marginal process) are stationary
and mixing. In fact, since the associated symbolic dynamical system contains no
information about the original ordering of the cards in the deck, it will be stationary
provided the distribution of Zj is such that the distribution of the stack sizes agrees
with v*, e.g., if the deck starts in a completely ordered state, but the initial division
into stacks is done according to v*. Unless otherwise indicated, assume that this
is the case: thus, the associated symbolic dynamical system and the associated
marginal process are stationary, and the deck is initially in a totally ordered state.

The associated symbolic dynamical system Y, induces a random process X,, on
the permutation group Sy, X, being the permutation describing the state of the
deck after n shuffles. In detail, {X,}n50 is determined by {¥,}n>0 as follows:
Xo =identity, and for each n > 0, X,,(7) is the rank of the n—shifted orbit 6™z* in
the set of all n—shifted orbits {o"z!, o™z?, ..., 0"z}, where Yy = {21, 22,..., 2V}
and ', 2%, ... are listed in lexicographic order. If Y, is assumed to be a stationary
process, then so is the sequence of “increments” x1 = Xi,x2 = X2 X7 lxs =
X3 Xy 1 . ... The stochastic process X, on Sy is not necessarily a random walk (i.e.,
the increments x1, X2, ..., although stationary, are not necessarily independent).
An example will be given in section 3.4 below. Note, however, that the uniform
distribution on Sy is an invariant measure for the process X,,, since the law of
{Zn}n>0 is invariant under relabellings of the cards. The standing hypothesis that
the deck is in a totally ordered state is equivalent to the statement X, =identity.

Note that the sequence {Z;}n>0 cannot in general be recovered from {X,}n>0,
because several different stack configurations might represent the same permutation
(e.g., in a shuffling process with just 2 stacks, the configurations (a) stack a; empty
and stack a; = (1,2,3, ..., N) and (b) stack a; empty and stack as = (1,2,3,...,N)
both represent the identity permutation). In fact, the induced process {Xn}n>0
does not uniquely determine either the shuffling process {Z, }»>0 or the associated
symbolic dynamical system {Y;, }n>0. Consider, for example, the GSR shuffle. The
natural shuffling process Z,, associated with the GSR shuffle maintains 2 stacks, a
top stack ¢ and a bottom stack b, as described earlier. But a model that maintains
3 stacks, £;, %5, b may also be given: this model is derived from the 2-stack model by
the device of artificially dividing the top stack ¢ into 2 substacks, t; and ¢ (e.g., by
choosing the top Binomial (|t], 1) cards of ¢ for substack ¢;), but then ignoring this
subdivision in the next riffle (thus, before the next riffle, ¢; and ¢; are recombined
in their original order, and the reconstructed stack ¢ is then riffled with & as in the
natural model). It is clear that the induced process { X}, }, is not affected. However,
the state space for Z, is different, and the alphabet 4 for the associated symbolic
dynamical system has 3 letters instead of 2.

2.4. Dynamical Systems on [0,1]. The associated symbolic dynamical system
has an equivalent description as an N —particle system on the unit interval. (This
is not the same system as the canonical dynamical system.) This representation
is gotten by mapping the sequence space X g onto the unit interval in the natural
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way:
271122...L>P{6152...S121:82...}

where the implied ordering of sequences is the lexicographic order. The mapping
7 is clearly measure-preserving and order-preserving. Assumption 2 implies that
7 is continuous, because ergodicity of the shuffling process guarantees that the
distribution of £ has no atoms. In general, 7 will not be one-to-one; but the set
of “intervals” [z, 2] C £g that are mapped to points by 7 is countable, and their
union has measure 0, so with probability 1 sequences y from these “bad spots”
will not occur as orbits in the associated marginal process. Thus, orbits ¢ € g
are effectively identified with points of [0,1] in a one-to-one manner, and hence the
associated symbolic dynamical system may be viewed as a particle system on [0,1].
We will not always distinguish between the associated symbolic dynamical system
and its m—projection to the unit interval.

It will sometimes (but not always) be the case that the motion of particles
in the w—projection of the associated symbolic dynamical system will be via a
deterministic map, as for the GSR shuffle (where particles move by the £ — 2z mod
1 map). Interesting examples where this is not the case are the Borel and GSR-F
shuffles discussed in section 3. If this is the case, then the mapping 7" : [0,1] — [0, 1]
must be a measure-preserving mapping; and its restriction to each of the intervals

J(a;) E =nXR(a;) must be nondecreasing and continuous. (Here L g(a;) is the set
of all sequences in ¥p with first entry ¢;. T is monotone on J(a;) because o is
monotone on Xg(a;), by Assumption 1, and T is (semi-)conjugate to o.) It follows
that T' is absolutely continuous and a.e. differentiable. A necessary and sufficient
condition that T' be measure-preserving is that for a.e. y € (0,1),

(4) Y. YT'(@)=1

z€T~(y)

The entropy of the measure-preserving system ([0, 1], T', Lebesgue) is given by

(5) h= /0 log |T"(2)| dz

(See, e.g., Mane [1987]).

What makes the associated symbolic dynamical system and the associated marginal
process useful constructs is that for many interesting classes of shuffles the marginal
process &N has a limiting form as the deck size N — oo, and this limiting form
itself has a simple description as the orbit of a randomly chosen point of [0, 1] under
the iterates of a measure-preserving map. The simplest instance of this is the GSR
shuffle: in this case the marginal process £ has the same law for all N, and the
associated symbolic dynamical system Y, is the join of independent copies of £ .
In the next section, we shall discuss a number of other examples.

3. EXAMPLES

3.1. Perfect Shuflles. A perfect shuffle of a deck of 2N cards breaks the deck
into two stacks of size N, then perfectly interlaces the cards in the top stack with
those of the bottom stack. This shuffle is completely nonrandom, so the “motion”
of the deck under repeated applications of the shuffle is periodic. The orbits of
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individual cards may be described as follows. Represent the cards by the 2N points
0, 57— 58— - - -» 1, with the natural ordering of the unit interval determining the
order of the cards in the deck. Then the perfect shuffle is nothing more than the
2zmod 1 map. The orbit of any particular card : may be deduced from the motion
of the corresponding point as follows: the ntPentry of the sequence is either 0 or 1,
depending on whether the corresponding point has moved into [0, %) or [%, 1) after
n applications of the doubling map. This sequence is, of course, nothing other than
the binary expansion of the point Ii,;_ll initially representing card i. Therefore, the
period of the shuffle (the number of perfect shuffles needed to restore the deck to
its initial configuration) is precisely the period of the binary expansion of ﬁ
See Diaconis and Graham (1985) for more.

Observe that the associated symbolic dynamical system is an ergodic transfor-
mation of a finite measure space, hence has entropy 0 and fails to be mixing. It is
interesting to note, however, (and this is our main reason for discussing this par-
ticular model) that as N — oo, the orbit of a randomly chosen card converges in
distribution to a Bernoulli—% sequence, and in fact the joint distribution of the or-
bits of any k£ randomly chosen cards converges to that of k independent Bernoulli—%
sequences. In this sense the perfect shuffies are “asymptotically indistinguishable”
from the GSR shuffles. This should serve notice that the mixing properties of a
sequence of riffle shuffles are not determined solely by the limiting form of the
associated marginal process.

3.2. Borel’s Shuffle. In this shuffle, a packet of cards is randomly selected from
the middle of the deck, then moved to the top. It is usually assumed that the
packet is selected by choosing two of the “spaces” between cards at random, i.e.,
as a sample of size 2 from the uniform distribution on N + 1 spaces, and letting
the cards between these two spaces be the packet. Thus, the shuffling process
maintains 3 stacks (top, middle, bottom), with the relative order of each preserved
in each repetition of the shuffle. The associated symbolic dynamical system admits
an interpretation as a “random interval map” as follows. The cards are represented
by the points 0,%, %, . ,% Two independent uniform (0,1) r.v.s Uy, Us are
selected and ordered: U1y < Ufg). The unit interval is then broken at the points
%, -'1% to the immediate left of U(;) and Uys), respectively. The middle stick and the
left stick are then interchanged. The orbit of a particular card is just the sequence of
1s, 2s, and 3s recording which of the random intervals (0, Utyy), (U1), Uay), (Ucay, 1)
the corresponding point falls into at each time n. (The author is indebted to T.
SELLKE for the details of this representation.)

The associated marginal process clearly converges as N — oo to the orbit of
a randomly chosen point of the unit interval under the random interval map in
which the unit interval is broken at two uniforms and the left and middle sticks
are interchanged. Iteration of this procedure results in an ergodic, mixing, but zero
entropy motion of the unit interval. Entropy here is fiber entropy, i.e., conditional
entropy given the o—algebra generated by the sequence of uniform rvs determining
the locations of the breaks. The rationale for this particular entropy will become
clear in section 5. The formal definition is as follows. Let P, be the partition of
the unit interval induced by the first n iterations of the map (thus, there are 2n+1
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atoms, each a [possibly degenerate] interval). Then

h2 lim SH(P,)
n—oo n

where H(Pn) = ) gcp, —|A|log|A] with |-| denoting Lebesgue measure. This limit

is zero because the partition P, has only 2n + 1 atoms. {Unconditionally, there

are 2" possible orbits of length n; however, conditioning on the sequence of break

points limits the set of possible orbits to 2n + 1.)

It is known (see Diaconis and Saloff-Coste [1993]) that order N log N Borel shuf-
fles are needed to randomize a deck of N cards. This is consistent with the random-
ization principle discussed below (section 5), that at least on the order of log N/h
shuffles are needed to randomize a deck of N cards.

3.3. Modified GSR Shuffles. The GSR shuffle may be modified by changing
the distribution of the break point from Binomial (n, %) to Binomial (n, p) or to a
mixture of Binomial (n, p).

The GSR-p Shuffle If the break point distribution is Binomial (n,p) then the
associated symbolic dynamical system has a simple structure— it consists of N in-
dependent sequences of iid Bernoulli- ¢ = 1 — p random variables. This system has
an alternative geometric description. Start with a sample of N iid uniform-(0, 1)
random variables, each representing a card; split the unit interval into the subin-
tervals [0, p], (p, 1], and map each onto [0, 1] by a monotone increasing affine trans-
formation. The (random) permutation induced by the reordering of the “cards” is
one repetition of the shuffle. The entropy of the measure-preserving transformation
Tis h = H(p) = —plogp — qlog ¢ (Shannon’s entropy function).

The GSR-Uniform Shuflle Next consider the modified GSR shuffle where the
break point is chosen from the uniform distribution on {0,1,2,..., N}. Since the
uniform distribution on {0, 1, ..., N} is the mixture (over p) of the Binomial (N, p)
. distributions with mixing measure uniform on [0,1], the associated symbolic dynam-
ical system consists of N sequences that may be generated as follows: Choose N iid
uniform rvs Uy, Uy, ..., Unx on [0,1]-these will represent the individual cards. The
N points undergo random transformations determined by an independent sequence
V1, Va, . .. of iid uniform rvs on [0,1]. At time n the unit interval is broken into the
two subintervals [0, V,,] and [Vy, 1], and each of these is mapped linearly onto [0,1].
The orbit of each of the N points Uy, Us,...,Un determines a 0-1 sequence— the
nth entry just records whether the point has moved into the left interval [0, V,,] or
the right interval [V, 1] at time n.

Although the points of the unit interval representing the cards (in their original
positions) are iid uniforms, the 0-1 sequences making up the associated symbolic
dynamical system are not independent. In fact, it is easily verified that the asso-
ciated marginal process is unconditionally a Bernoulli—% sequence. If the different
sequences were independent, then the shuffling process would have the same law as
the GSR shuffle, which is obviously not the case. What is true in this case is that
conditional on the sequence V1, Vs, ... the orbits of different cards are iid. The ap-
propriate entropy for this example (again, see section 5) is the conditional entropy
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given the o—algebra generated by Vi, Va,.... By formula (6) below, it is given by

! 1
0

The GSR-F Shuffle The general case, where the distribution of the break point
is

/ Binomial-(¢) F(dp)

for some mixing distribution F, is similar. The associated symbolic dynamical
system has the following description. Let R, Rz, ... be a sequence of iid random
variables with distribution 7. Conditional on the values of Rj, Rs,..., generate
N independent sequences of Bernoulli random variables, with the ntfentry of each
sequence having the Bernoulli-R,, distribution. Then the superposition of these N
sequences is the associated symbolic dynamical system for the modified GSR shuffle
with “parameter” F. Observe that the law of the associated marginal process is
the same as that of the modified GSR shuffle with break point distributed as Bi-
nomial (N, [ ¢ F(dp)). The fiber entropy (conditional entropy given the c—algebra
R generated by R;, Ry,...) is given by the formula

(6) h= / H(p) F(dp),

where H(p) is the Shannon entropy function. To see this, note that n—orbits
(sequences of 0s and 1s of length n) are in one-to-one and measure-preserving
correspondence with the atoms of the partition P, of [0,1] defined inductively by
(1) splitting [0,1] at R1; and (2) for n > 1, splitting each atom of P, _; into intervals
of relative lengths R,, and 1 — R,,. The entropy of the partition P, is by definition
>_p, |Allog|A|, which by an easy calculation equals ), H(R;). Dividing by n,
letting n — oo, and using the SLLN, one obtains the advertised formula for h.

Multistack GSR. Shuffles One may also consider generalizations of these models
in which more than 2 stacks are maintained. For example, let p = (p1,p2,...,pL)
be a probability distribution in the L—simplex with all entries positive. Consider
the shuffle in which there are L stacks; on each shuffle, each of the L stacks a; is
broken into L substacks a;jaccording to the multinomial M(p) distribution, and
then corresponding substacks (those with the same second index j) are riffled to
form the next stack j. The riffies are unbiased, i.e., given the substack cardinalities
|aij|, all possible (order-preserving) riffles are equally likely. Call this model the
“GSR-p” shuffle. For this shuffle, the associated symbolic dynamical system is
the superposition of N independent multinomial M(p) sequences. The associated
marginal process may be modelled as the orbit of a randomly chosen point under
the action of the piecewise linear mapping whose restriction to each of the intervals
(ti,ti41) is an increasing linear homeomorphismonto (0, 1), where t; = p1+pa+-- -+
pj. For future reference (sec. 4 below), note that a shuffling process that maintains
L stacks and whose associated symbolic dynamical system is the superposition of
N independent multinomial M(p) sequences is a GSR-p shuffle.
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Formal proofs of the representations are easy to give. The two essential ingredi-
ents are: (1) In a random sample of size n from the uniform distribution on [0,1],
the distribution of the number of points to the left of ¢ is Binomial (N, ¢); and (2)
the superposition of distinguishable independent uniform samples of sizes N; and
N3 gives a “marked” sample of size N1 + N, in which the distribution of the marks
is the same as that obtained in doing an unbiased riffle of two card stacks of sizes

Ny and N5.

3.4. The Fibonacci Shuffle. This is the shuffle mentioned in the introduction.
The rationale for the term “Fibonacci shuffle” will become apparent shortly. At
each time n, there are two stacks ¢, 5. Stack b is broken into top and bottom stacks
br,bp by selecting the top k cards of b for by, where k has the Binomial (]b], p)
distribution and |b| is the number of cards in b at time n. Then stacks ¢ and bp are
riffled to obtain the next b, while b7 becomes the next ¢t. Assume that the riffle is
unbiased, i.e, that all riffle permutations of stack ¢ and stack bg are equally likely.
The alphabet A for this shuffle is {0, 1} (0=t, 1=b), and the routing matrix is

R=<(1) })

Thus, orbits of cards are restricted to those sequences of 0s and 1s such that every
0 is followed by a 1. (There is a close connection between the matrix R and
the sequence of Fibonacci numbers: for instance, the entries of R**+2 are the nth,
(n+ 1)%, and (n 4 2)™4 Fibonacci numbers. Hence the term “Fibonacci shuffle” )

Proposition 3.1. The associated symbolic dynamical system consists of N iid
copies of the stationary Markov chain on the state space A with transition proba-
bility matriz

%) (2 11})).

Proof. Consider the superposition of N iid copies of the Markov chain, the realiza-
tion of each copy an infinite sequence of 0s and 1s. Identify these sequences with
cards, with the order of the N sequences determining the labels of the correspond-
ing cards at time 0. The order of the cards at any subsequent time n is the relative
order of the n—shifted sequences.

At any time n, the top and bottom stacks will be determined by the ntPentries of
the sequences representing the cards. For each sequence with a 1 in the nthcoordinate,
the {n + 1)%tcoordinate is Bernoulli-g, with the Bernoulli variables independent of
each other and conditionally independent of the past, by the Markov property. For
each sequence with a 0 in the n*hcoordinate, the (n + 1)tcoordinate is necessarily
1. Thus, the “top” and “bottom” stacks are broken according to the same rules as
for the Fibonacci shufile.

Now consider the “riffle”. The cards that make up the bottom stack at time
n+1 may come from either the top or the bottom stack at time n. By the previous
paragraph, all cards from the time-n top stack go to the bottom stack at time n+1,
while cards from the time-n bottom stack are selected for the time-(n + 1) bottom
stack by independent Bernoulli-p variables. All cards chosen for the time-(n + 1)
bottom stack have a 1 in the (n + 1)Stcoordinate, however. Hence, by the Markov
property, the futures of these sequences (after time n + 1) are exchangeable. It
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follows that all possible arrangements of the cards from the time-n top stack and
cards from the time-n bottom stack that preserve the relative orders in these two
stacks are equally likely. Moreover, the choice of an arrangement is uninfluenced by
the histories of the sequences up to time n — 1. Thus, the riffles are unbiased. [

The stationary distribution of the two-state Markov chain with transition prob-
ability matrix given in the preceding proposition is v* = (p(1 + p)~*, (1 + p)~1),
and the entropy is

» o HG)

T l+p
where H(p) = plogp+ qlogg. The chain may be represented a measure-preserving
transformation F' of Lebesgue space (the unit interval with the uniform distribution)
as follows:

F(z) ==z/p, 0<z<p/(2-p);
=z+(1-p)/(2—p), p/(2—-p) <z <1/(2-p);
=(z-1/2-p))p/(1-p)), 1/2-p)<z<1l

Observe that F' is piecewise linear. The identification of sequences with points is
made by examining orbits: the ntcoordinate of the sequence is 0 or 1 according as
the point is in [0, (2 — p)~1] or [(2 — p)~1, 1] at time n.

Proposition 3.2. For the Fibonacci shuffle with p = %, the induced process X, on
the permutation group Sy is not a random walk.

Note: It is assumed here that the shuffling process {Z;},>0 is such that (a) the
initial state X of the induced process X, is X =identity, and (b) the distribution
of the stack sizes [¢], |b] at time 0 is

* 1 1 -1 1 -1
(the steady-state distribution of stack sizes).

Proof. We shall only prove this for large N.

Consider first the following two procedures for constructing a random permuta-
tion in Sy: (1) Break the deck into a top stack ¢ and a bottom stack b in such a
way that the distribution of |t| is F'; then break the bottom stack b at Binomial
(|b|,%) into a top substack by and a bottom substack bg; put by on top; riffle ¢
and by and put the resulting stack on the bottom of the deck, below br. Call the
resulting permutation II. (2) Same as (1), but in the initial division of the deck,
the distribution of |t| is G # F. Call the resulting permutation II'. Assume that
F,G are such that P{byr =Qort =0} — 0 as N — oo. We claim that, at least for
large N, the distribution of II' is different from that of II. To see this, condition
on the event A that the top card of the deck after II (or II') is not the same as
the original top card 1. Since by # 0,t # 0 implies that A occurs, P(4) — 1 as
N — o0, If A occurs, the “rising sequence” in II (or II') beginning with card 1 (i.e.,
the maximal sequence 1,2,3,...,k of cards that remain in their original relative
order after II or II') is just the top stack ¢; thus, on the event A, the composition of
the top stack ¢ is observable from II (or II'). (NOTE: In general, the stacks ¢ and
b cannot be reconstructed from the permutations II, II'.) But the distributions of
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|t| are different in the constructions of II, I’. Since D(|¢|) and D(|t|||A) differ only
slightly for large V for both constructions (recall that P(4) — 1), it follows that
II and I’ cannot have the same distribution.

Now consider the permutation = that moves the top card to the bottom of the
deck and leaves the relative order of the remaining N — 1 cards unchanged (thus,
all of the cards below the top card move up 1 notch). Under the Fibonacci model
with p = %, the event X; = 7 has positive probability, but occurs only if the
initial composition Zy = (t,b) of the stacks is t = (1), b = (2,3,..., N) (because if
the top stack ¢ had more than the top card 1, card 1 could not be moved to the
bottom of the deck by Xi). Thus, given that X; = , the composition Z; = (¢, %)
of the stacks after the first shuffle must be such that the cardinality [#'[ of the top
stack has the Binomial (N —1, 1) distribution. But this implies that the conditional
distribution of X2 X! given the event X; =  is not the same as the (unconditional)
distribution of X; (by the previous paragraph); hence, the sequence X,, does not
have iid “increments”, and therefore is not a random walk. [

3.5. The General Unbiased Riffle Shuffle. The two preceding examples may
be generalized as follows. Maintain a finite set A of stacks. Break each stack a
(from top to bottom) into [A| substacks of sizes K,(b),b € A, where the vector
{Ka(b)}sca has the multinomial distribution M(|al|; {Pss}ses). Here |a| denotes
the number of cards in @, and (P,3)a,5e.4 is a stochastic matrix chosen from a mixing
distribution G on the space of all stochastic matrices on .4 x A. Once the stacks
a have been broken into substacks ab, take all substacks with second index b and
riffle them to form the next stack b (these riffles should be unbiased, i.e., all possible
order-preserving permutations should be equally likely).

The associated symbolic dynamical system again has a simple description. Con-
ditional on the sequence P, of stochastic matrices determining the breaks, it is the
superposition of N iid time-inhomogeneous Markov chains with time-n transition
probability matrix P,. The fiber entropy h is determined as follows. Let II,, be
a stationary probability vector for the product stochastic matrix PiP, ... P,; then
by a theorem of Furstenberg (see Bougerol [1985]), as n — oo the sequence II,, of
random vectors converges in distribution to a random vector II, provided the mixing
distribution G is sufficiently diffuse. Let P, be a copy of P; independent of II. Then

(8) h=E | Y H,Py(a,b)logPo(a,b)
a,beA

In the special case where P, = P is nonrandom, the Markov chain is time-
homogeneous with transition probability matrix P, and the entropy b is just the
usual entropy for a Markov chain. In this case the associated marginal process has a,
representation as a piecewise-linear measure-preserving transformation of Lebesgue
space.

3.6. The (u,v)—Weighted Riffle. In this shuffle the deck is divided into two
stacks which are then riffled; however, this riffle is biased so that cards from one of
the stacks are more likely to drop than cards from the other. Specifically, if at some
stage of the riffle the top stack has A cards remaining and the bottom stack has B
cards remaining, then the probability that the next card dropped comes from the
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top stack is wA/(uA + vB). Assume for the sake of discussion that the division of
the deck into two stacks is such that the number of cards in the top stack has the
Binomial (N, p) distribution.

The associated symbolic dynamical system for this shuffle seems not to have
a simple structure—it is not, for instance, the superposition of N iid sequences,
nor (apparently) is the law of the associated marginal process independent of N.
However,

Proposition 3.3. As N — oo, the associated symbolic dynamical system converges
in distribution to the superposition of the orbits of countably many independent
uniform-(0,1) random variables under iteration of the map

©) Gp(@) = Hy o My o L(*—=)  if 2 € [0,]
(10) Gyl@) = Hy o Myyuo L(T—2)  if € (p,1]
where
L(y) = -logy,
Ma(y) = ay,
Ha(y) = 1—-pe™™¥ —(1-pBe ™.

Note: (1) Denote by Y the infinite particle system with particles moving deter-
ministically under the action of G = G, and with particles located at iid uniform-
(0,1) random points at time (. Convergence in law to Y™ means that for any & > 1,
the joint distribution of the orbits of ¥ randomly selected cards converges to that
of the orbits of % iid uniform-(0,1) random variables under the mapping T'.

{2) As usual, the orbit of a point under 7' determines a 0-1 sequence, the
ntBcoordinate recording whether the point is in [0,p] or (p,1] at time n. Note
that for all but countably many points of [0,1] (namely, those whose orbits hit one
of the points 0, p, 1), the orbit is uniquely determined. (The assignment of orbit to
point is the inverse of the natural projection 7 : ¥ — [0,1] introduced in section
2.4, and 7 [semi-]conjugates o : ¥ — X with 7" : [0,1] — [0,1].) Consequently, to
prove the proposition, it suffices to show that the canonical associated dynamical
system converges in law to Y.

As usual, the orbit of a point under this map determines a 0-1 sequence, the
n*hcoordinate recording whether the point is in [0, p] or (p, 1] at time n. Conver-
gence in distribution means that for any k > 1, the joint distribution of the orbits
of k randomly selected cards converges to that of the orbits of k iid uniform-(0,1)
random variables under the mapping T. The entropy of the mapping T may be
computed from (5) above.

Proof. Here is a useful model of the (u,v)— weighted riffle. Given stack sizes
A, B, choose A points from the exponential distribution with mean 1/u, and mark
them 1,2,..., A in accordance with their relative order in the sample. Similarly,
choose B points from the exponential distribution with mean 1/v, and mark them
A+1,A+2,..., A+ B, again in accordance with their relative order. Now superpose
the two samples.
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Claim: The random permutation that maps i to the number of points in the
combined sample to the left of or equal to the point with mark 7 has the same
distribution as the permutation determined by the (u,v)— weighted riffle shuffle.

Proof of Claim.. This is an easy consequence of the memoryless property of the
exponential distribution. The distribution of the leftmost point in the combined
sample is exponential with mean 1/(Au+ Bv), and the probability that the leftmost
point comes from the sample of A exponential-u~! rvs is u4/(uA-+vB). Condition-
ing on this point and the “stack” (top or bottom) from which it came, and using
the memoryless property reduces the problem to the similar problem for stacks of
sizes A—1 and B or A and B — 1, to which the same argument may be applied.
This process may be continued until one of the “stacks” is empty. [

The proposition follows routinely from this model, using the WLLN and the
(weak) Glivenko-Cantelli theorem. In the weighted-(u,v) riffle shuffle, the cardi-
nality |t| of the top stack ¢ has the Binomial-(N, p) distribution; by the WLLN,
as N — oo, [t|/N — p. By the Glivenko-Cantelli theorem, the empirical distribu-
tions of the two exponential samples converge to the exponential distributions with
means u~ 1, v~} respectively. Therefore, by an easy calculation, for any z € [0,1]
bounded away from p the position of the particle representing card i = [zN] in
the canonical associated dynamical system after the shuffle converges to Gp(z) as
N — oo. It follows immediately that the canonical associated dynamical system
converges in law to the process Y. [1

Remark: Here is a related model for the shuffle. Start with a random sample
of N iid uniform-(0,1) rvs, labelled 1,2,..., N in accordance with their relative
order in the unit interval. Split [0,1] into [0,p] and (p,1]; this selects Binomial
(N,p) for the top stack 0. Map each of these two intervals onto the half-line
(0, o) by the appropriate logarithmic transformation: — log((p—=z)/p) for [0, p] and
—log((1 — z)/(1 — p)) for (p,1]. (Note that these maps are monotone increasing,
so the relative order of “cards” in each of the two piles is preserved.) This creates
two independent samples of exponential-1 rvs, one corresponding to the top stack,
the other to the bottom. Multiply the first by 1/u and the second by 1/v, then
superpose the two. This has the effect of “riffling” the two stacks in the desired
fashion.

The superposition of the two samples is a random sample of N iid rvs from the
p, ¢ mixture of the exponential distributions with means 1/u, 1/v, respectively. Ap-
plying any monotone increasing transformation will preserve the relative ordering
of the sample, resulting in a (u, v)—weighted riffle. The appropriate transformation
for our purposes maps the halfline [0, 00) monotonically onto the unit interval [0,1]
in such a way that conditional on the riffle the resulting set of points in [0,1] has
the same law as a sample of N iid uniform-[0,1] rvs. Repetition of the whole proce-
dure will then result in independent (u,v)—weighted riffle shuffles. The monotone
transformation T : [0, co] — [0, 1] with the advertised property is easily described.
Condition on a given riffle, e.g., 01011. Then the sample of N = 5 points consti-
tutes a point process in [0, co) with (predictable) intensity Ao1011 (see, e.g., Bremaud
(197 ) for the definition). The transformation T = Ty101; is that which maps this
intensity onto the intensity for a uniform sample of size N on the unit interval.
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Although the transformation T depends in general on the riffle, for large NV it
converges in probability to the nonrandom transformation Hp. (This follows from
the weak law of large numbers.) This proves again that the orbit of a randomly cho-
sen card will have distribution close to that of a randomly chosen point of the unit
interval under the mapping G,. It also shows that the associated symbolic dynami-
cal system is tantalizingly close to the superposition of N independent copies of the
limiting marginal process {({0, 1], Gp, Lebesgue). But not ezactly— the conditional
intensities given the riffies are not identical with the unconditional inteusities.

3.7. Shuffles Made to Order. Given a measure-preserving, expanding map T
of the unit interval onto itself, one may construct (a sequence of) riffle shuffles for
which the associated marginal processes converge (as the deck size N — o0) to T
The models introduced above for the (u, v)— weighted riffle shuffles suggest how this
may be done. Rather than attempt to formulate a general theorem to this effect,
we shall limit our attention to 2-1 mappings T' with the following properties: (1)
There exists p € (0, 1) such that the restriction of T' to either of the intervals [0, p)
or [p, 1) is an increasing, C? homeomorphism onto [0, 1) with bounded derivatives;
and (2) For every y € (0,1), T'(z1)~! + T'(z3)~! = 1, where z; = « — 1(y) and
zo = z2(y) are the two points of (0,1) that T' maps to y (this guarantees that T is
measure-preserving).

The random permutation determining the shuffle is constructed as follows. Drop
N points at random into the unit interval (according to the uniform distribution)
and mark the points 1,2, ..., N in accordance with their order in [0, 1]. Then apply
the transformation T to each of the N points—this results in a new ordering. The
random permutation 7 determining the “shuffle” is the permutation defined by the
new ordering of the points after the transformation T is applied (thus, 7(7) is the
relative position in the post-T sample of the point with mark ¢, i.e., the number of
points in the post-T" sample to the left of or equal to the point with mark ¢).

Proposition 3.4. As the deck size N — oo, the associated marginal process con-
verges in distribution 1o the orbit of a randomly chosen point of the unit interval
under iterates of the transformation T.

The proof is similar to that given for the similar result concerning the (u, v)—weighted
riffle shuffle, using the WLLN and the weak form of the Glivenko-Cantelli Theorem,
but is even simpler, and is therefore omitted.

Several points are worth noting in this construction. (1) The random permuta-
tion 7 has either one or two rising sequences: the points in (0, p) (the “top stack”)
have their relative order preserved by T', as do also the points in (p,1). Moreover,
the size of the top stack has the Binomial (N, p) distribution. (2) The pre-T sample
consists of N iid uniformly distributed random variables, and so does the post-T'
sample, since T is a measure-preserving map. However, conditional on 7, the post-
T sample is not an iid uniform sample unless T" is linear on each of the intervals
(0,p) and (p,1) — see section 4 below.

The entropy h of the measure-preserving transformation T is given by (5) above.
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4. INDEPENDENT SUPERPOSITION SHUFFLES

We have discussed several models for which the associated symbolic dynamical
system is the superposition of N independent copies of the associated marginal
process. Diaconis (1988), discussing the dynamical model for the GSR shuffle,
suggests that it might be possible to “take other measure-preserving systems ...
and convert them to other shuffles”. The next result suggests, however, that the
possibilities are quite limited, if one insists that the orbits of cards are independent
and that the induced process { X, }» >0 on the permutation group is a random walk.
For simplicity, we will consider only riffle shuffles for which the routing matrix R
has all entries 1, and such that all possible transitions have positive probability.
More precisely,

Hypothesis 1. For every finite sequence x123...%, with entries in the stack al-
phabet A,

P{£ :€1€2 . 6 = 212 .. .(L'n} > 0.
Recall that £ is the associated marginal process.

Proposition 4.1. Let {X,}n>0 be an ergodic random walk on Sy induced by a
riffle shuffle satisfying Hypothesis 1, with N > L. Assume that the associated sym-
bolic dynamical system is the superposition of N independent copies of the orbit of a
randomly selected point of the unit interval under tlerates of @ measure-preserving
map T : [0,1] — [0,1]. Then T is piecewise linear; more precisely, there exist
O=to <ty <ta< - <tr_1 <t =1 such that the restriction of T to each of the
intervals (t;-1,t;) is an increasing, linear homeomorphism onto the unit interval
(0,1).

Remark: This implies that the shuffle is a GSR-p shuffle, where p; = ¢; — t;_;.

Proof. (1) First we will show that under Hypothesis 1, there exist 0 = {, < 11 <
ty < -+ < tp_1 < t; = 1 such that the restriction of T' to any of the intervals
Ji; = (ti—1,%;) is an increasing homeomorphism onto the unit interval (0,1). The
hypothesis that the associated symbolic dynamical system is the superposition of N
independent copies of 7" implies that the associated marginal process is just T'; more
precisely, there is an order-preserving, measure-preserving mapping a : £ — [0, 1]
such that T is (semi-)conjugate to the shift by «, i.e., T o o = a0 0. Consequently,
there exist 0 =1 <t; <ty <-.-<itr_3 <# =1 such that for each ¢ the interval
[ti_1,t) is the image of the set ¥(a;) of sequences with first entry a;. (NOTE:
The endpoints are included because X(a;) contains minimal and maximal points.)
Hypothesis 1 implies that each of these intervals has positive measure. Since both «
and o|X(a;) are order-preserving, T'|J; is nondecreasing. Moreover, since o|X(a;) is
a homeomorphism onto ¥, and since by Hypothesis 1 all cylinder sets have positive
measure, T|J; must also be a continuous mapping of J; onto the whole unit interval
(0,1). (If T were not continuous, there would be a jump discontinuity in one of
the intervals J;, which by the conjugacy T o @ = @ o 0 would imply that the image
of o|X(a;) omits a cylinder set, namely one whose a—image is contained in the
interval excluded by T'|J;.) Finally, since T' is measure-preserving, its restriction
to each of the intervals J; must be strictly increasing (otherwise, there would be a
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point y € [0, 1] whose inverse image T~!(y) would contain an interval of positive
length, contradicting the assumption that 7' is measure-preserving).

NoOTE: Since the restriction of T to each of the intervals is an increasing home-
omorphism, T is a.e. differentiable.

(2) Next, let {€1,£2,...,£N} be the orbits of the N cards, and let {¢*,¢3,. . ., M}
be the corresponding points of the unit interval. By hypothesis, {¢!,¢{?,.. LC¢NYis
a sample (unordered) from the uniform distribution. We claim that for each k > 1,

{T*¢H, T*¢?,..., T*¢N}

is, conditional on X1, Xs,..., Xy, distributed as an iid sample from the uniform
distribution. By hypothes1s {X }n>o is a random walk on the group SN, this
implies that, conditional on X1, Xs, ..., Xi, the “future” Xk+1Xk X;H.sz yeen
is an 1ndependent replica of the process X 1,Xo,.... It follows that the post-k future
Y;: of the associated symbolic dynamical system is, conditional on X;, Xa, ..., Xk,
a replica of Yj.

To see this, observe that one may construct a version of the process {X,}n>o0
as follows. Construct a version {Z},}n>0 of {Z,}n>0 and an independent copy of
{ X1 Yo<n<k, with X, =identity and ZJ such that (a) the induced order of the deck
is the identity, and (b) the distribution of the set of initial stack sizes is »*. Each
variable Z!, is an assignment of ordered sets of cards to the members of the stack
alphabet .A Create a new sequence {Z}}n>0 by relabellmg all the cards in {Z] }n>0
according to the permutation X5 (i.e., conjugate with Xk) Let Xg, Xk+1, ... be
the permutations induced by the stack compositions Z{, Z{,.... That the whole
sequence X, n > 0 we have just defined is a version of the original process X, n >
0 follows from the hypothesis that X, is a random walk on Sy, together with
Assumption 2. Now the post-k future Y; of the associated symbolic dynamical
system is a function only of {Z/}n>0 (the ordering of cards in the deck after k
shuffles does not affect Y3 since Yy is the unordered set of orbits); consequently, by
construction, Y is independent of {X,}o<n<k. Finally, {T*¢, T*¢2, ..., T*¢(V} is
a function of Y%, so it too is independent of {Xn}OSnSk; so our claim is proved.

NoTE: It may not be clear why the hypothesis that X, is a random walk is
needed in the above construction, since Assumption 2 states that the future Z,, n >
k is conditionally independent of the past Z,, n < k given the present Z;. The
subtlety is that Z,, n > k need not be conditionally independent of X,, n < k
given Xy. Moreover, one cannot construct a version of {Z,} by welding a copy
{Z!} onto an initial segment {Z, }o<n<k, because the stack cardinalities in Zy and
Z} may not be the same; one can only hope to weld a copy {Z,} of {Z,} onto an
initial segment of the X,, process, and this requires the random walk assumption.

(3) Consider the permutation 7 satisfying 7(¢) =i+ L—~1for 1<i< N—-L+1
and (N —i) =i+ 1for 0 <i < L —2. This describes the shuffle in which the
top N — L + 1 cards are moved to the bottom of the deck, and the bottom L —1
cards are arranged in reverse order at the top of the deck. In order that X; = =,
the points ¢1,¢?,...,¢V~L*! must be arranged in increasing order in the interval
Jq; the points ¢V=L+2 . ¢N must be arranged in order in Ja, J3, ..., Jr, one to
an interval; and the arrangement must be such that

T(CM) < T(EVH) <o < TEVTEH) < T < TED < - < TV,
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Conversely, if these conditions on the arrangement of ¢1,¢2,...,¢Y are met, then
X1 = 7. Thus, conditioning on the event X; = 7 is equivalent to conditioning on
the particular arrangement of points in the unit interval just described: call this
event A.

NoOTE: This is the part of the argument where the hypothesis that N > L is
used: N > L guarantees that each of the L intervals J; has at least one point.

Set 2 = T¢!, i = 1,2,...,N. By (2) above, conditional on A the distribution
of {z},2%,...,2N} is that of a uniform sample. But the conditional distribution
of the set {¢1,¢2,...,¢N} given the event A is uniform on the subset of (0, 1)V
consisting of points satisfying the restrictions described above, and the mapping
T x T x --+x T is one-to-one on this set, so the Jacobian transformation formula
implies that the joint density of 21, 22,..., 2N given A is

N .
HT’((’).
=1

This must be constant, since the conditional joint distribution is uniform. Clearly,
it follows that 7 must be constant on each of the intervals J;. [

5. FIBER ENTROPY

Henceforth, we will only consider shuffles for which the associated symbolic dy-
namical system Y,V is mixing, as we are primarily interested in convergence to uni-
formity. Because we are interested in asymptotic theory as the deck size N — oo,
we must consider a sequence of shuffling processes Z2, one on each permutation
group Sy. Let Y,V be the associated symbolic dynamical system: thus, Y,fv con-
sists of N sequences of stationary 0-1 sequences, labelled ¢}, &2, .. ., &N and these N
component processes are exchangeable. A minimal precondition for an asymptotic
theory is

Assumption 3. The sequence Y,V converges in distribution as N — oo to a pro-
cess Y, such that (i) Y,° is stationary and mizing; and (ii) the component se-
quences in Y,>° are ezchangeable.

The implied topology is that of coordinatewise convergence. Thus, we are assuming
that Vk,n < oo the joint distribution of the rvs E;:, 1<i<kand0<j<mn,
converges as N — oo to the joint distribution of the corresponding rvs for the
process Y, .

This assumption is not sufficient to guarantee a satisfactory asymptotic theory:
for instance, the associated symbolic dynamical system for the perfect shuffle on a
deck of size N converges in distribution as N — oo to the same limiting process
as the GSR shuffle. It is easy to modify the perfect shuffles (e.g., allowing an “im-
perfect” shuffle with probability a(N), where a(N) — 0 extremely rapidly) so that
they become mixing, but nevertheless have an arbitrarily slow rate of convergence
to uniformity.

The limiting process Y,>° consists of an exchangeable sequence of stationary
A-valued sequences, with Y,>° = ¢"Y7°. By DeFinetti’s theorem, these are condi-
tionally iid given the o—algebra U of exchangeable events.
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Lemma 5.1. Let uy be the empirical distribution of the N orbits €1,€2,... €,
considered as a random measure on the space of all A—valued sequences. As N —
m’

D(uw) — D |U).

Proof. By Assumption 3, the joint distribution of the first & sequences of Y con-
verges as N — oo to that of the first k sequences of ¥,>®. But the distribution
of the first k sequences of Y,V is the same as the distribution of any set of k se-
quences chosen without replacement from Y;V, by exchangeability. As N — oo, the
difference between sampling without replacement and sampling with replacement
disappears; hence, the k—fold tensor product of un converges in distribution to
the joint law of the first k sequences of Y,®°. In particular, for any k continuous
real-valued functions g; on sequence space Xg,

k k ]
E (H/gz dNN) — FE (H gz‘(f*(f)))
i=1 =1

k
= E (E (II 5ie?) | u))
k
E (H B(gi(&) | u) :
i=1

the second equality by DeFinetti’s theorem. The result is easily deduced from this
by the method of moments. O

Define the fiber entropy (of the limiting marginal process &) by

(11) h = entropy (& |U),
lLe.,

.1
(12) h= lim ~H(Pa )

where P,, is the partition of sequence space AZ+ determined by the first n coordinate
variables. That h is well-defined and constant follows from the assumption that ¥,
is mixing (and therefore ergodic). See, e.g., Walters (1982) for a comprehensive
discussion of conditional entropy. It is easily verified that this definition of A is
consistent with each of the entropies introduced in the examples of section 3. (Note
that for the perfect shuffles the entropy of the associated marginal process is zero
for each finite deck size N, but that the limiting process consists of a superposition
of independent Bernoulli—% sequences, so that h = log2.)
The main result of this section is

Theorem 5.2. If the fiber entropy h of the limiting process is positive then for
every € > 0,

. log N
(13) Jim dy ((1—5) gh ):1.
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If the fiber entropy of the limiting process is 0, then for any C > 0,
(14) lim dn(ClogN) =1.
N—o0

The proof depends on lemmas which show that fiber entropy is the quantity
that controls the rate at which the orbits of distinct cards “separate”. Say that
(the orbits of) two cards are separated by time n if at some time before time n + 1
the two cards are in different stacks, i.e., if the sequences describing their orbits
differ in a coordinate between the Oth and the nth. Say that a card is isolated by
time n if it is separated from every other card by time n, and that it is k—clumped
if there are at least k — 1 other cards form which it is not separated. For any € > 0
and any integers N,n > 1, let Ay . be the event that at least N (1 — 2¢) cards are
k—clumped at time n.

Proposition 5.3. Suppose that the fiber entropy h of the limiting process is posi-
tive. Then for each k =2,3,4,... and anye >0, tf n=[(1— e)lﬁi%v-], then

(15) lim inf P(Afy,,) > 1 —e.

Proof. (1) Here is a simple heuristic argument for the case where U is 0-1, so
that h is just the ordinary (unconditional) entropy of the limiting marginal process
&,. Entropy determines the growth of the number of high probability orbits—
specifically, for each £ > 0 there exist m > 1 and a set O of m—orbits (sequences
of length m with values in A) of probability at least 1 — € with cardinality on the
order of e, But if m < (1—¢)log N/h then e"™ < N1~¢ so there are not enough
available orbits to accommodate N different cards without “crowding”.

This is not quite rigorous even in the case where U is 0-1, because the orbits
of individual cards in a deck of finite size N are not assumed to have exactly the
same distribution as the component sequences of the limit process Y,2°, but only to
converge in distribution. Thus, we are not justified in letting m — co as N — oo.

(2) We now give a rigorous argument for the special case where the limiting
process Y, is such that the component sequences are independent, i.e., the o—
algebra U is 0-1. In this case h is just the entropy of the limiting marginal process
&,. Consequently, for any § > 0 there is an integer m > 1 and a set O of m—orbits
such that (i) the probability that &€z .. .€m € O is greater than 1—§?; and (ii) the
cardinality of @ is less than exp((h+68)m). By Assumption 3, for all sufficiently large
N the orbit £i£5 . .. of a randomly chosen card satisfies P{£1¢5 .. .6m € O} > 1-6%.
Fix the integer m and the set O.

Let the deck size satisfy N > €™ and set n = [[(1 - ¢)log N/h]]. The n—orbit
of any card may be broken into n/m blocks of length m. Call a block good if it is
an element of O and bad otherwise. By (i) the probability that any given block of
¢! is bad is less than 62, provided the deck size N is sufficiently large; hence, by the
Markov inequality and stationarity, the probability that the fraction of bad blocks
among the first n/m blocks exceeds é is no greater than 6. Thus, with probability
approaching 1 as N — oo, the proportion of the N orbits included in Y,V for which
the first n entries are such that the fraction of bad blocks does not exceed § is less
than §, by Lemma 5.1. The number of such n—orbits may be estimated as follows:
For each good block, there are at most exp((h + §)m) possibilities; for each bad
block, there are at most |A|™ possibilities; and the number of ways to intersperse
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bad blocks and good blocks is at most on the order of exp(nH(6)), where H() is
the Shannon entropy function. Hence, the total number of possibilities is at most
on the order of exp((h + &)n)|A|*® exp(nH(6)). By choosing § < € small, this can
be made smaller than N1~¢, Thus, the number of cards that are not k—clumped
is at most Ne 4+ kN1~¢,

(3) Finally, consider the general case. By definition of the fiber entropy h, for
any § > 0 there exists m > 1 such that with probability at least (1 — &) there
is a (possibly random, but I/ —measurable) set O of m—orbits satisfying (i) the
conditional probability given I that & &, ...&, € O is at least (1—62); and (ii) the
cardinality of @ is less than exp((1 — 6)hm).

Now consider the processes Y,N. By Assumption 3 the empirical distribution
of the component sequences £1,€2,...,éN converges in law to the random mea-
sure D(&x|U) where &, is the first component sequence of the limiting process Y,>.
Moreover, the same is true for the empirical distribution of the component se-
quences of the km—shifted processes o*™Y,N, by stationarity. Consequently, for
each sufficiently large N there exists a sequence 1,0y, ... of random subsets of
A™ such that (i) for every k& > 0 the proportion of the km—shifted component
sequences o*mEL gkme2  g*FmeEN lying in Oy is at least (1 — 62), and (ii) the
limiting proportion of those members of the sequence 0,0y, ... with cardinality
> exp((1 — &§)hm) is less than §. (NOTE: To obtain (i) we have used the ergodicity
of the associated symbolic dynamical system Y,V.)

Fix the deck size N > ¢“™ and set n = [[Clog N]], as above. For each card in
the deck, break the orbit &i£% ...€5 into n/m blocks of length m; for card i call
the j*® block good if that block lies in O; and bad otherwise. Call a card bad if its
fraction of bad blocks exceeds §. Then by (i) of the preceding paragraph and the
Markov inequality, there are no more than N§ bad cards in the deck. Those cards
which are not bad have restricted orbits: the fraction of bad blocks is less than
§. The number of such orbits may be estimated exactly in the same manner as in
the proof of the special case considered earlier—specifically, it is no more than order
e"H(®) exp((1—6)hn)|A|™®. The result now follows as before by taking 6 sufficiently
small and using the pigeonhole principle. [J

The same argument as used in the proof of Proposition 5.3 gives the following:

Proposition 5.4. Suppose that the fiber entropy of the limiting process is 0. Then
foreach C >0, k=2,3,4,... and any € > 0,

(16)

1}\1{11 inf P{at least N(1 — 2¢) cards are k-clumped at time n = [[Clog N]|} > 1 —¢.

Proof of Theorem 5.2:. Consider first the case where A > 0. By the proposition
5.3, with probability in excess of 1 — ¢ at least 99% of the cards are 100-clumped
at time n = [[(1 — ¢) log N/h]]. Now the cards in any k—clump retain their original
order in the deck. Consequently, at least 95% of the adjacent pairs of cards in the
deck are in their original order at time n. But in a random permutation of a large
deck N, the fraction of adjacent pairs that retain their original order is & %

A similar argument applies in the case h = 0. O

There is another well known entropy bound for the speed of convergence to
uniformity by random walks on finite groups. If p is a probability distribution on
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a finite group G, then its entropy H () is defined by H(u) = ) g5 —p(z) log p(z).
The entropy of the n*fconvolution power u” is bounded above by nH(u). Since the
entropy of the uniform distribution on the symmetric group Sy is about Nlog N,
it follows that for a random walk whose “increments” have distribution g, at least
on the order of (N log N)/H(u) steps are needed in order that the total variation
distance to the uniform distribution be less than 1 —¢.

It is interesting to compare this bound to that provided by Theorem 5.2. For
certain of the shuffles we have described in section 2, the two entropies are in fact
the same, e.g., the GSR shuffle and the modified GSR, shuffle with breaks chosen
from the Binomial-(N, p) distribution. It should be noted, however, that even in
cases where this is true, it may be quite difficult to show, as the case of the modified
GSR shuffle makes clear. In others, for example, the (u,v)—weighted riffle shuffle,
it appears to be a formidable task to calculate the entropy of the distribution p of
the “increments” at all, but the entropy of the limiting marginal process is easy
to obtain. Thus, Theorem 5.2 often provides a bound much easier to calculate
than the bound described in the preceding paragraph. Finally, there are some
interesting shuffles that are nof random walks on Sy, for instance, the Fibonacci
shuffle, for which the associated marginal process is a Markov chain. For these
shuffles, Theorem 5.2 gives bounds on the rate of convergence where none can be
gotten by considering convolutions.
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