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2 NONINFORMATIVE PRIORS IN GROUP MODELS

1. INTRODUCTION

There has been some recent interest in noninformative priors which are often used in
Bayesian analysis, at least as a first step, vide Berger and Bernardo (1992a). We study
various noninformative priors when there is a group G that leaves the model invariant and
the parameter of interest is a scalar maximal invariant. Our focus is on probability match-
ing properties of posterior credibility regions of the parameter of interest upto O(n™!) as
in Peers(1965), Stein (1985), Tibshirani (1989) and Ghosh and Mukerjee (1992a) just to
name a few. We also examine issues related to the marginalization paradox, treated in
Dawid et al. (1973), the order in which the Berger-Bernardo (1989, 1992a,b) algorithm is
to be implemented (i.e., whether one should have reference or reverse reference priors, see
Berger (1992)), and the choice between nuisance parameters taken in a single group or in
multiple groups (vide Berger and Bernardo (1992a,b)).

Our main interest is in studying the properties of the Berger-Bernardo reference prior
in view of the relative ease with which it can be calculated and the many examples such
as product of two normal means (Berger and Bernardo (1989)) where the use of reference
prior can be seen to lead to satisfactory inference. We also study the reference prior
of Chang and Eaves (1990) obtained by applying the Berger-Bernardo algorithm (1989)
starting with a given conditional prior distribution which is given by the right invariant
Haar measure on the group G. Our study indicates that in the present context the Chang-
Eaves reference prior seems to be the most attractive both from the point of view of
eliminating marginalization paradox (Dawid et al., 1973, p 198, Chang and Eaves, 1990,
p 1597) and probability matching upto O(n™!), and the Berger-Bernardo reference prior
is very often, though not always, identical with the Chang-Eaves prior. Of course, unlike
the Chang-Eaves prior, it can be applied even when there is no group leaving the model
invariant.

The paper is organized as follows. In Section 2 we make assumptions similar to those in
Dawid et al. (1973) that the group G acts transitively and freely on the parameter space
and obtain a simple structure of the information matrix of the parameter by identifying the
group element as the vector of nuisance parameters. Using this structure of the information
matrix we derive in a fairly direct way the Berger-Bernardo, Chang-Eaves, Ghosh-Mukerjee -
and the reverse reference priors. The original Chang-Eaves computations are much more

delicate but do not involve the strong assumptions of Section 2. Among other results we
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also show that the Berger-Bernardo reference prior, when maximal invariant parameter in
the group model is the parameter of interest and all the nuisance parameters are taken
in a single group, takes the left invariant Haar density on the group G as the conditional
distribution of the nuisance parameters given the parameter of interest. In fact one of the
advantages of taking nuisance parameters in multiple groups instead of in a single group in
the Berger-Bernardo algorithm is to get a unimodular group (of transformations) at each
stage so that the algorithm leads to the Chang-Eaves reference prior. For parameter group
ordering one may, for example, refer to Berger and Bernardo (1992a,b).

In Section 3 we compare different noninformative priors by using the marginalization
paradox and probability matching criteria. In Section 3.1 we show by examples that the
marginalization paradox may occur if the Berger-Bernardo reference prior is used with
all the nuisance parameters forming one group. However multiple grouping of nuisance
parameters in the same examples will lead to a Berger-Bernardo refernce prior free from
the paradox. In Section 3.2 we present the probability matching equation upto O(n™!) for
our parameter of interest. We also derive a set of equations for the right invariant Haar
density which implies that the Chang-Eaves reference prior, unlike the Berger-Bernardo
reference prior, always satisfies the probability matching equation. It is also clear that in
a certain sense the converse is true.

In Section 4 we indicate why under the present assumptions the Berger-Bernardo ref-
erence prior is to be preferred to the reverse reference prior. Several other interesting
examples, including the Hotelling’s 72 and the two others due to Stein, are treated in
Section 5.

2. REFERENCE PRIORS IN GROUP MODELS
2.1 Notations, Assumptions and Information Matrix

Suppose X;’s 1 = 1,...,n are independently and identically distributed with density
fo (with respect to the Lebesgue measure) = (61,0(3)) € ©, and 85y = (62,...,0;) €
Oy (C RP7Y), 6; € ©1(C R) and © = ©1 x O(;). We assume that there is a group of
transformations I on range of X; which induces a group of transformations G = {g}
on ©. We assume that G is a Lie group, and the given decomposition of © is such that
O(2) = G and G acts on O freely and transitively by left multiplication in G. Then it
follows from Dawid et al. (1973) that 6; is maximal invariant and 85y is equivariant under

G, and the group element g may be taken as identical to 6(,). We also assume that 6; is
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our parameter of interest and 8(3)= g is the vector of nuisance parameters. We also make
the same assumptions as in Ghosh and Mukerjee (1992b, p 868).

We will now derive a simple structure of the information matrix in (6;,9) parametriza-
tion as a consequence of our assumptions. Let Iy be the per unit observation information
matrix of @, a p X p positive definite matrix for all §. For g € G and ¥ = (¥1,9(2))
€ O, consider the transformation 6 to 1 defined by the group action 8§ — g8 where
Y1 = 61,9 = g0z). Let Jy(6 — o), given by ((%{i))i,jzl,,_,,p, be the matrix of Ja-
cobian of transformation § — % and Iy be the information matrix of . Denoting the
(p—1) x (p— 1) matrix of Jacobian of transformation 8(5) — gf(2) by Jy4(8(2) — g8 2)), we
have

Jg(8 — ) = Block diagonal(l,Jg(a(z) — ga(z))>. (2.1)

We make conforming partition of the information matrix Iy of (61,8(2)) as

I [Iu(o) Ilz(o)}
In0) 1.6
Transforming the information matrix of 8 to that of ¥ as in Berger and Bernardo (1989),

for example, we get after some simplifications

B Li(¥1,97 " (2)) T2 (1,97 (2)) (L (B(2)))
BLP@) = | gt o) Lo (01,97 ) Iy (o) Taa (b1, 9~ ) (T (hcay))

! is the group inverse of

where, for brevity, Jy(1(2)) = Jg(0(2) = 90(2))6(2y=g-19 2y a0 g~
g. If we take 8(3) = e, the group identity, we have 13y = g. Now if we replace 1 by 61,
from the information matrix given above we get the information matrix of (61,9). From

now on we represent the parameter vector by (61,¢) whose information matrix is given by

I1(6:1,e) 112(91’6)(‘]}(9))_1 } (2.2)

)= [J;I(gﬂn(ehe) T (@) (61,€) (T (9))

where Jg(g) = Jy(0(2) — ge(z))|o(2)—_—e.
Remark 1. We will see later in our examples that it is always advantageous to compute
the information matrix I(6,, g) by using equation (2.2) since it is much easier to compute

I(61, €), and the matrix J,(g) is easy to find.
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2.2 Different Noninformative Priors

We will now derive from the information matrix given above the Berger-Bernardo,
Chang-Eaves and Ghosh-Mukerjee reference priors, treating 6; as the parameter of in-
terest and ¢ as nuisance parameter vector. Due to the special structure of the information
matrix in (2.2), in each of Berger-Bernardo, Chang-Eaves and Ghosh-Mukerjee reference
priors, the marginal prior density function of 6; does not depend on the given conditional
prior density function m2(g|61). We thus have the following simple proposition which fol-
lows immediately from Ghosh and Mukerjee (1992a, p 197).

PROPOSITION 1.

For any given conditional prior density function wy(g|61), the marginal prior density
function 71(6;) of 81 which asymptotically maximizes the expected Kullback-Leibler di-
vergence between the marginal posterior and the prior density functions of 6, is given
by

m(61) o< 11175 (61) (2:3)

where I11_2(91) = _[11(91,6) - I12(91,6)I2_21 (91,6).[21(01,6).

Before we find the Berger-Bernardo and the Chang-Eaves reference prior we will define
the left and the right invariant Haar density on G. When the group G is Euclidean,
as assumed by us, it follows from Berger (1985, pp 408-409) that the left and the right
invariant Haar densities h!(g) and h"(g) on G are respectively given by

1 1

l _ T _
"0 = e "9 T @) (24)

where Jg(z) is the (p — 1) x (p — 1) matrix of Jacobian of transformation ¢ — zg.
In Berger-Bernardo reference prior, the conditional prior density function mz(g|6;) is
given by
m2(g161) o | Io2(61,9)['? o< abs|Jy(g)| 7" (2.5)

From (2.3) — (2.5), the Berger-Bernardo reference prior 7pp(6:1,9) is given by
1/2 1
mBB(61,9) < I115(61) x h'(g). (2.6)

Even if G is not Euclidean but only locally so, one can show that the Berger-Bernardo con-

ditional distribution of g is invariant under the one-to-one transformation of the nuisance
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parameter and in particular under g — hg for h € G. Hence it must be the left invariant
Haar density.
The Chang-Eaves reference prior m¢g(61,g) uses the right invariant Haar density A" (g)

on G as the conditional prior density function of g given 6; and is given by
mop(f1,9) o« [{5(601) x 1 (g). (2.7)

Ghosh and Mukerjee (1992a) obtained a reference prior by maximizing the Kullback-
Leibler divergence mentioned earlier less a penalty term for the deviation of the condi-
tional prior density function from a uniform prior. This reference prior, to be denoted by
mam(61,9), is given by

mam(61,9) o 15 (61) (2:8)

Remark 2. From the discussion of Dawid et al. (1973, p 197) it follows that statisticians
will often want their prior probability density function to factorize into 71 (61) and w3 (g),
where m(g) is at least relatively invariant. From (2.6) — (2.8), we see that in each case
the reference prior factorizes as mentioned above. Also note that while the Chang-Eaves
reference prior uses the right Haar density as the conditional probability density function
of g, the Berger-Bernardo prior uses the left Haar density and the Ghosh-Mukerjee refer-
ence prior uses the uniform density which is often relatively invariant, vide Dawid et al.
(1973, p 196). In our subsequent discussion we will assume this structure for our prior
probability density function. Incidentally, we should mention that Jeffreys’ prior in group

model, given by, w;(61,9) « |I(61,€)|*/2h!(g), also has this structure.

3. COMPARISON OF DIFFERENT NONINFORMATIVE PRIORS
We will compare our different noninformative priors by using marginalization paradox
and the probability matching criteria.

3.1 Marginalization Paradox

It is well known from Dawid et al. (1973) and Chang and Eaves (1990) that for any prior
7(01,g) of the form 7(6:,g) x 71(61) X h"(g), and in particular the Chang-Eaves prior, does
not suffer from marginalization paradox. However, the following examples show that this
may not necessarily be true for the other reference priors when the nuisance parameters

are taken together in a single group.
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Example 1. X; = (X1;, X2:)T,i=1,... ,nareii.d. Na(u, 02I;) where p = (ug, p2)?
and I, is a 2 x 2 identity matrix. Let 6, = (41 — p2)/0 be the parameter of interest, and
6, = pp and 03 = o. For the group of transformations H = {g|g = (g2, ¢3),—00 <
g2 < 00, g3 > 0} in the range of X; defined by ¢X; = ¢3X1 + ¢21, the induced group
of transformations on the parameter space is G = {g} with the transformation defined
by g8 = (61, g3 62 + g2, g3 65). The maximal invariant parameter is 8;. For g =
(92,93),h = (ha,h3) € G, the group operation is defined by gh = (gsh2 + g2,93hs3). Since
our assumptions about G are satisfied, we can identify s = g2 and 63 = gs. It can be

checked that
1 1 61

I(61,e) = | 1 2 6 (3.1)
61 0, 4+ 62

and the per unit observation information matrixis I(8y,92,9s) = Diag(1,9;5',95 *)I(61,€)
Diag(1,95 7,95 "), and I11.2(61) = 4/(8 + 6?). Thus the Berger-Bernardo and the Ghosh-
Mukerjee priors for the parameter grouping {61, (g2,93)} are given by

78B(01,9) x (8 +62)7Y?% x 972, mom(61,9) o« (8 + 62)71/2 (3.2)

none of which takes h"(g) « g; * as the conditional probability density function of g.
Define X; = n™ Y0 Xji, 7 = 1,2, §? = (2n — 2)7! Z§=1 Y (Xji — X;)? and t =
i=1
(X1 —X3)/S. Then it can be shown that for priors of the form 7 (6;) x g; ', the marginal

posterior density function of 6; depends on the data only through ¢ and is proportional to
m1(61) X Aw u2"+r_3exp[—{(n — u? + %(tu — 6,)*})du. (3.3)

It can also be shown that the sampling density of t is proportional to
/0 2 2egplf(n — 1)u? + g(tu — 6:)?}]du (3.4)

From the last two equations it is obvious that only priors of the form 7;(6;) x g3 * will be
free from the paradox. In particular, the Berger-Bernardo and the Ghosh-Mukerjee prior
will generate the paradox.

Remark 3. For the one at a time parameter grouping {61, 92,93 } or {61, 93,92}, Berger-
Bernardo refence prior will be identical to the Chang-Eaves prior. Since the groups are

commutative, the left and the right Haar densities will be identical and at each stage the
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conditional probability density function will come out as the Haar density. Finally when
combined together they will give the right Haar density as the conditional probability
density function for the nuisance parameter vector.

Example 2. X; = (X1;,X2:)7, 1 = 1,... ,n are i.i.d. Na(p,Z) where p = (p1,p2)T

2
and ¥ = [p:la PUO:-dez] . Let 6; = p be the parameter of interest, and 0y = pq,03 =
102 2

2,84 = o1 and 65 = o2. Consider the affine linear group of transformations on R? denoted
by H = {g|g = (a,A)} in the range of X1, where g consists of the pair (a, A) described
by a = (g2,93), a 2-vector and A = Diag(gs,gs5), & 2 X 2 matrix where —oo < g3 <
00,—00 < g3 < 00,0 < g4 < 00,0 < g5 < oo, and the group action is gX; = AX; +a.
Induced transformation on the parameter space is G = {g} defined by g0 = (61, gs02 +
g2, 503 + g3, gabs, g505) and the 6, parameter is maximal invariant. For g,h € G, the
group operation is defined by gh = (gaha+ 92, gshs+9s, gaha, gshs). Since our assumptions
about G are satisfied we can identify 6; = g¢2,03 = g3,04 = g4 and 65 = ¢gs. It can be
directly found that

10, 0 0 —6; 6,
0 ! 1 —91 0 0
I61,e)=(1-62)"1 | ¢ —6; 1 0 0 . (3.5)
—6, 0 0 2 — 62 —62
—6, 0 0 —63 2 — 63

Then by (2.2) and (3.5) the per unit observation information matrix is I(61, g2, 93,94, 95)
= Diag(l,g[l,ggl, g4_1,g5_1) 1(91,e)Diag(l,ng,g5_1,g4_1,g5—1). Also note that Iy 2(61)
= (1 —-65)72, h"(g) = (gag5)~! and h'(g) = (gags)~2. So the Chang-Eaves prior is
given by (1 — 62)"1h"(g), the Berger-Bernardo reference prior for the parameter grouping
{61,(g2,93,94,95)} is given by (1 — 62)71h!(g) and the Ghosh-Mukerjee reference prior is
given by (1 — 6%)~1.

Let r denote the sample correlation coefficient. It can be checked that for priors of the
form 71 (61)(gags5)~°, the marginal posterior density function of #; depends only on r and

is proportional to
m (61)(1 — 63)(nt2e-3)/2 / ” dz—z(z — 2047 4 z71)(nte=2), (3.6)
It can be found from Muirhead (1982, p 1053) after simpliﬁéations that the marginal sam-
pling probability density function of r is proportional to
(1 —62)(m=1/2(] _ p2)(n=2)/2 /oo d—z(z — 20,7 4 z7H)~(r7Y), (3.7)
0

z
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From the last two equations it is obvious that for s = 1 in the given class of priors there will
be no marginalization paradox. In particular, the Berger-Bernardo reference prior which,
in this case, is same as the Jeffreys’ prior, and the Ghosh-Mukerjee reference prior will all
generate the paradox.

Remark 4. The Chang-Eaves reference prior is identical to the prior proposed by Lind-
ley (1965) and Bayarri(1981). A different prior for this problem, proposed by Geisser (1965)
and Dawid et al. (1973), expressed in our notations, is proportional to (1 —62)~3/2g;1g=1
and avoids the paradox. However, we prove in Section 3.2 that among all these priors only
the Chang-Eaves prior satisfies the probability matching equation for 6, .

Remark 5. It can be checked that for the parameter grouping {61, (92, 93),(94,95)},
or any other grouping with 8; as the first ordered group and any permutation or further
splitting of any one or both the groups (g2, g3) and (g4, g5), the Berger-Bernardo reference

prior will come out same as the Chang-Eaves reference prior.
3.2 Probability Matching of Noninformative Priors

In this section we study the probability matching properties of the noninformative priors
considered in the previous section. A prior density 7(6:1,9) which matches the posterior
and frequentist probabilities of the set {ﬁ(\%—:ﬂ < z} for all z upto Op(n™!) and for
all @ = (61,9) in compact sets is called a probability matching prior for ;. Here é is the
MLE or the posterior mode of @ corresponding to the prior m and b; is the asymptotic
posterior variance of /n(6; —6;), upto O,(n~1). Such a prior may be sought in an attempt
to reconcile a frequentist and Bayesian approach as in Peers(1965), or to find or in some
sense to validate a noninformative prior as in Ghosh and Mukerjee (1992a) and Tibshirani
(1989), or to construct frequentist confidence sets as in Stein (1985). Berger and Bernardo
(1989) and Ye and Berger (1991) use simulations instead of probability matching equations
to compare different noninformative priors. Under the regularity assumptions of Section

2, it follows that 7 will be probability matching for 6; if and only if

0 11 . 9 m _
8—‘%(\/.7_(01,9)77(91,g)> + iz:;agi (\/Il_l(el,g)w(&,g)> =0

where I'7(6,,g) is the (i, j)th element of I71(61,g). This equation is due to Peers (1965).
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Now define a(6;) and s;(61,9) for i=2,...,p by
p
a(61) = (a2(61),- - ,ap(61))7 = I, (61,€)I21(61,€), 5i(61,9) = Y a;(61)Jgjilg). (38)
j=2

By (3.8) and the fact that I'1(61,g) = I;;',(61), the last differential equation reduces to

a;zl ( I (6 91,9) Z o ( 142(6) Si(el,g)ﬂ(Gl,g)).

For priors of the form 7 (61 )m2(g), this equation simplifies to

3;; (1'1_112/2 (61)m1(61)m2 (9)) = ; I;11.2/2 (61)71(61)a;(61) Z 3%], (Jgj,-(g)m (g)) (3.9)

In particular, since for Berger-Bernardo or Chang-Eaves or Ghosh-Mukerjee priors 7 (6; )

is proportional to I 111/ ?2(91), the last equation reduces to

™~

%m§j£#Mwwm»=o- (3.10)

j=2 1=2

A sufficient condition for (3.10) to hold is that the following (p — 1) equations hold.

p

6 .
) @(Jgﬁ(g) 7T2(g)) =0 for j =2,...,p. (3.11)
=2 ?

We now show that (3.11) holds when m3(¢g) = h"(g9). For h € G and for any smooth

function ¢(g) vanishing outside a compact set, define a function on G by

:/wwww@
G

Note that u(h) is a constant and consequently its derivative with respect to any component
of h vanishes everywhere and in particular at A = e. Since this is true for all such ¢
mentioned above, one can show by integration by parts that m3 = A" is a solution of

(3.11). We can summarize this result in the following theorem.

THEOREM 1. The Chang-Eaves reference prior ncg(61,9) given in (2.7) is a probability

matching prior for 6.

Remark 6. The only solution of (3.11) is h"(g) by reversing the steps above. By

Theorem 1, for any family of distributions remaining invariant under a group H with the



NONINFORMATIVE PRIORS IN GROUP MODELS 11

induced group G on the parameter space, the Chang-Eaves reference prior will always be
probability matching for ;. On the other hand, if a prior of the form _7111/ % (61) m2(g) has
to be probability matching for 6; for all families of distributions remaining invariant under

- a group H with the induced group G on the parameter space, then (3.10) will imply (3.11)
and so it must be the Chang-Eaves reference prior. In particular, the Berger-Bernardo
reference prior for parameter grouping {61,9} and the Ghosh-Mukerjee prior may not
always be probability matching for 6;. We have the following examples.

Example 1(continued). Here p = 3 and from Example 1 we get a(f;) = (8 +
62)~1(4, 61)T and Jy(g) = gslz. The probability matching equation for priors of the
form Illl/.22(91 Ym2(g) is

4i (ggﬂ'z(g)) + 6, i (gng(g)) =0 forall 6 (3.12)
092 0gs
and it is solved only by h"(g). In particular, the Berger-Bernardo and the Ghosh-Mukerjee
reference priors are not probability matching.
Example 2(continued). Here p = 5 and from Example 2 we get a(6;) = — l—feLf(O 011)T
and J,(g) = Diag(gs, g5, 94, gs). The probability matching equation for priors of the form
1{5(6)m(g) is

8ig4 <g47T2 (9)) + 5igs (95772(9)) =0 (3.13)

which is solved by m2(g) = h"(g)d(gz, g3) where d(gs, g3) is arbitrary. In this example nei-
ther the Berger-Bernardo nor the Ghosh-Mukerjee reference prior is probability matching.
Also since the Chang-Eaves reference prior is probability matching for 6y, it follows easily

that the prior (1 — 9%)"3/ 29, ! gs ! in Remark 4 is not probability matching.
4. REVERSE REFERENCE PRIORS

The reverse reference prior, to be denoted by mrr(61,9), for the parameter groﬁping
{61,4g} is obtained by reversing the ordered group parameters to {g,6;} and applying the
Berger-Bernardo algorithm for the new grouping (vide discussion of Ghosh and Muker-
jee (1992a) by Berger (1992)). It can be checked that for a general information matrix.

structure
TrR(61,9) < I}{*(61,9) x m2(g)- (4.1)

This is probability matching by equation (4) of Tibshirani (1989), provided #; and g are

orthogonal in the sense of Cox and Reid (1987). Also-examples of orthogonal parameters
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are known for which the Berger-Bernardo reference prior is not probabilty matching. These
two facts together appear to make the reverse reference prior a reasonable competitor to
the Berger-Bernardo reference prior. We discuss this issue of choice below.

In the present setup for group model it can be easily checked that

mrr(61,9) < I1{2(61,€) x Rl(g), (4.2)

which, like Berger-Bernardo reference prior, uses the left invariant Haar density for g.
Note that while the refence priors of Berger-Bernardo, Chang-Eaves and Ghosh-Mukerjee
all lead to the same marginal probability density function for 6y, namely, m;(61) o< I 11 1/ 22 (61),
making this an attractive and probably the right choice, the reverse reference prior, fails
to pick it up and, instead, leads to a different marginal probability density function for 6;,
namely, m;(6;) 1%1/2(91,6).

Also, the reverse reference prior, in general, will neither be probability matching (with-
out orthogonality) nor eliminate the marginalization paradox, as evident from Examples
1 and 2. In Example 1, the reverse reference prior for parameter grouping {6:, (g2,9s)} is
same as Jeffreys’ prior and is given by g5 2. In Example 2, the reverse reference prior for
the parameter grouping {61, (g2,...,9s)} is given by (1 + 62)/2(1 — 62)~(gags)~2. The
reverse reference prior in both the examples generate marginalization paradox and are not
probability matching.

It can further be checked that in these examples with multiple (in particular for one
at a time) parameter grouping of the nuisance parameters, the reverse reference prior,
like the Berger-Bernardo reference prior, will have 75(¢) « h"(g) and hence be free from
marginalization paradox. However, it can be seen from (3.11) and (3.15) that, unlike the
Berger-Bernardo reference prior, this in general can not be probability matching since
it has the marginal probability density function of 6, #1(6;) Illl/ 2(91,6). However,
if I11(01,€) o< I11.2(61) then these two reference priors will be identical (in none of the
examples this is true). This condition holds if the parameters §; and g are orthogonal.

On the basis of these results and similar results in many other examples, the Berger-
Bernardo reference prior seems preferable to the reverse reference prior at least when
orthogonality does not hold. Also we should note the odd fact that the Jeffreys’ prior is
proportional to the geometric mean of the Berger-Bernardo reference prior and the reverse

refrence prior.
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5. MORE EXAMPLES

Example 3. As in Example 2, X; = (X145, X2:)T,i=1,... ,n are i.i.d. Nao(p,T). Let
6; = (uTS'p)'/? be the parameter of interest. Reparametrize (u,%) to (61, B) where

ba1 b2
of B. For |B| > 0, the transformation (,%) to § = (61,B) is one-to-one. Under

B — [bu 512] is non-singular with g = 61b;, ¥ = BBT and b, is the first column

the group of transformations on R? denoted by H = { g |[¢ = A, |A|] > 0}, a sub-
ail a2 . the
Q21 Q22

induced group of transformations on the parameter space of § is G = {g} defined by

group of non-singular transformations, in the range of X; where A =

g6 = (61, AB). The group operation is matrix multiplication and maximal invariant pa-
rameter is 61. Note that this group is not amenable. Write 85y = (62, 63, 04, 05) where

8, = b1, 03 = b1, 04 = ba1, 05 = byp. Alsowrite g2 = a11, g3 = a12, g4 = a21, g5 =

aq2. Since our assumptions about G are satisfied we can identify g; as 6;, 1 =2,...,5. It
3
can be found by direct computation that I(61,e) = & (D;) where D; = [6} g2 e_ll_ 2] ,
=1 1 1

1 1
Da = {1 62 + 1
equation (2.2), the per unit observation information matrix is 1(6;, g) = Block diagonal
<1, Jg_l(g)> I(61, e) Block diagonal <1, (J_"f(g))_1> where J;(g) = AT Q@ L; ®
is the Kronecker product. Here I112(81) = 2/(6? +2). In this case, the left and

3
] ,Ds = (2) and @ D; = Block diagonal(Dy, Dy, D3). Hence by
i=1

the right Haar densities on G are identical and are given by |A|™2. Consequently, the
Berger-Bernardo and the Chang-Eaves reference priors are identical and are given by
m8B(01, 9) = wce(61, g) < (62 + 2)~1/2|A|~? whereas the reverse reference prior
is given by FRR(Gl, g) o |A|72%, the Ghosh-Mukerjee prior by mga (61, g) o (62 +2)71/2
and Jeffreys’ prior by 77(61, g) o 61 |A]72. All of the above priors except the Ghosh-
Mukerjee prior use the right invariant Haar density, and so will be free from marginalization
paradox. It can be checked that Ghosh-Mukerjee prior will generate the marginalization
paradox. The Berger-Bernardo and Chang-Eaves priors are probability matching by The-
orem 1. However, it is easy to see that the reverse reference, Jeffreys’ and Ghosh-Mukerjee
priors are not probability matching. This and the last two examples amply demonstrate
the superiority of the Berger-Bernardo and Chang-Eaves reference priors over the other

noninformative priors.
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It can be checked that for n > 2 all these priors will lead to proper posterior. In the
original parametrization, these priors are given by
2|2 (WIS w) "' dp d% 2|72 du dS
(pTE_ly + 2)1/2 (”T2—1#)1/2 ’

dy d%. S|~ (W75 )72 dp d%
T e ) X TS
pTS1p

Example 4. This example is due to Stein and it has been discussed in Berger (1985,
p 420). We assume that X and Y are independent with X ~ Np(0,%X) and ¥ ~

WBB(“a Z) = 7I-C'E'(/‘lﬂ E) & 5 7"'RR(F‘a E) x

Ti(p, )

Npn(0, AY) where A > 0 and X positive definite are unknown and m > 2. Estima-
tion of A has been considered in Berger (1985) and it is shown there that the Hunt-
Stein Theorem does not apply for the full linear group of transformations. We will con-
sider the problem under the group of transformations H = {g| g = A, Ais m x
m lower triangular matriz with positive diagonals} where the group action is defined by
9(X,Y) = (AX, AY). For a lower triangular matrix L € H, we reparametrize (A,Y)
to# = (0;, L) where A = 6; and ¥ = LLT. Induced group of transformations on the
parameter space 0 is G = {g}, defined by g8 = (61, AL) and the maximal invariant para-

metric function is 6;. The group action on G is matrix multiplication. Note that this group

is amenable. Writep = 1 + m(m+1)/2, 83y = (li1,... ;lm1, 122, ,lma, . .. Amm) 7T

It can be shown that Jy(g) = ® U; where UF = lower (m—i+1)x (m—i+
i=1

1) submatriz of A. Writing g = (g2,... ,9p), since our assumptions about G are satis-

fied, we can identify g; as 6;, ¢« =2,... ,p. We find the information matrix I(6,, g) finding
I(61, e) first and using (2.2). It can be checked that I11(61,€) = m/(26%), I12(61,€) = 01"1
vT where vT = (pf,m, e 7P¥1,1) and p, ; is a i-vector with the first element one and rest
zeroes. It is clear that I55(f1,) = 2 IX where IX is the information matrix of L
based on X evaluated at the group identity L = I,. By direct calculations, we obtain
IX = % H; where H; = Diag(2, 1,...,1)is(m—i+4+1) X (m —1+ 1). It can also be
checkedz;}llat a(f1) = (461)7'v, [11.2(61) = m/(46%). From Berger (1985, p 429), the

left and the right Haar densities are given by

m

Wg) =] ai', 7(g) = [] ai™ Y. (5.1)

=1 =1
Then the Chang-Eaves reference prior is given by mcg(61,9) < 6;' [, ai_i(m_i+1).

Since I11(61,€) o I11.2(61) and |I(6y,€)| o< 672, the Berger-Bernardo and the reverse
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reference prior are identical to the Jeffreys’ prior and are proportional to 6; ! | 1 ai_z-i.

The Ghosh-Mukerjee reference prior is proportional to 67 1. All these priors are of the
form I, 1/ % (61) x m3(g) and from Theorem 1, we know that the Chang-Eaves reference prior
is probability matching for ;. For the other priors, the probability matching equation is

given by (3.9) and in this example after simplification reduces to

iz m. 85,-,- <772(g) a,-j> — 0. (5.2)

J

Since for w2(g) = hl(g), D af.-j (m2(g) aij) = (m—2j+1) hl(g), for j=1,... ,m,
the last equation is satisfied. However, for m3(g9) = 1, Z:’;J % (772 (9) a,-j) = m—j+1,

1 i=j

for j = 1,... ,m, and the last equation fails. Consequently, except the Ghosh-Mukerjee
prior all others are probability matching.
Definefori=1,... ,m, &; = ((0a,8))a,p =1,...,t. Then in original parametrization,

it can be shown that

mep(A, L) < AT ISl 7BB(A,T) oc AT/,

=1

rem(A,5) o AT 12l 2

i=1

Remark 7. We can alternatively compute the information matrix I% by using the proper-
ties of maximum likelihood estimate (MLE). For independently and identically distributed
Xi~ Nn(0,5), i=1,...,n, MLE of Dis Sy, = nt Y X;XT = W/n (say). Use
Bartlett’s decomposition (e.g., Muirhead, 1982, p100) to V:I;ilte W = TTT where T is an
m x m lower triangular matrix with nonnegative diagonals. Then L = T/+/n is MLE of
L where we recall that LLT = ¥. Under & = I, (equivalently, L = I,), it is known
from Theorem 3.2.15 of Muirhead (1982) that Tz-'js 1 € 7 €1 < m are all independent
with T35 ~ N(0,1) for j < 7 and T2 ~ x%(n —1i+ 1). Noting that asymptotic variance
of /x%(n) is 1/2, we get the asymptotic variance of /n vec(L) under L = I, as ﬁlal H!
where H; is defined earlier. By asymptotic theory of MLE, however, we know that asymp-
totic variance of v/n vec(L) under L = I, is given by (I*)~1. From these two variance
expressions, we get [X = éna H;.

Example 5. This exaz;l;)le is considered in Stein (1985). We assume that X ~
Ny(p,Ip), p>2and 6, = V1T p is the parameter of interest. Under the orthogonal group
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of transformations G, 6; is maximal invariant. In this example G is neither Euclidean nor
does it act freely, but it is compact. The Berger-Bernardo conditional distribution of g is
invariant under one to one smooth transformations and hence of ¢ — hg for h € G, i.e.,
under the orthogonal group. Let the orbit O, = {p : 6; = r}. We define a conditional

prior distribution on an orbit given ¢, = r by lifting the Haar measure from G to O;:
mo{pp € O, NB|0y =7} = v{g: gu(r) € O, N B} (5.3)

where p(r) is a fixed element of O,, v is the Haar measure on G and B is any Borel set.

This conditional distribution induces the uniform distribution for (4*,..., %f—) on the unit
sphere.
Now consider the polar transformation (ui,... ,4p) — (61,92,... ,9p) given by p; =

61cosga, ... ,pup = b15ingy -+ sing,. Using Theorem 1.5.6 of Muirhead (1982, p 37-38)

it follows that (4%,..., %12) have the uniform distribution on the unit sphere if and only
if g = (92,--- ,9p) has the joint density my(g) o SP_Z"'Sp_l where s; = sing;,1 =
2,...,p— 1. For this new parametrization, the information matrix is given by I(6,,9) =

02 Diag(07%,1,53,... ,s35...s2_;) and I11 5(61) = 1. Since G is compact, v is both left and
right invariant; consequently the Chang-Eaves and the Berger-Bernardo reference priors

are identical, and are given by

mep(61,9) = mce(b1,9) P72 Sp—2. (5.4)

It can be checked that the reverse refernce prior will be identical to the one given above.
All these priors are probability matching and free from the marginalization paradox. In
the original parametrization, they transform into a prior proportional to (uTp)=(P-1/2,
which was also obtained by Stein (1985) and Tibshirani (1989). It can also be checked that

the Ghosh-Mukerjee prior is identical to the Berger-Bernardo reference prior for one at a

time parameter grouping {61, gz, ... , gp } which, while uniform in the new parametrization,
p-1 p

is proportional to [] (> x#2)7'/% in the original parametrization. It is well known that
i=1 j=i

Jeffreys’ prior is uniform in the original parametrization.
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