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SUMMARY

From k independent normal populations with unknown means and a common known
variance; Bayesian selection procedures are considered for finding that population which
has the largest mean. Suppose that a first stage has been completed already, where k
samples have been observed, which may be of different sizes. Let there be m additional
observations allowed to be taken at a future second stage. The problem of interest treated
here is how to allocate these m observations in an optimum way among the k populations,
given all of the information, prior and first stage observations, gathered so far. This
allocation problem will be formulated and discussed in a more general framework, and
specific results will be presented for the normal case with independent conjugate priors

under linear loss.

Abbreviated title. Bayesian Sampling Allocations.



1. Introduction

Let P1,...,Px be k > 2 given populations which are associated with unknown real
parameters 0;,...,0r € R from a common underlying exponential family F. Suppose
we want to find that population which has the largest 6-value, using a Bayes selection
rule which is based on a known prior density 7(8) for 8 = (61,...,6k), and a given loss
function L(8,1) for selecting ¢ € {1,2,...,k} at 6 € R¥. The purpose of this paper is
to provide an introduction to and an overview of multi-stage selection procedures in the
Bayesiaﬁ approach. Recent results on Bayesian look ahead one-stage selection procedures
for means of normal populations are described in details, and directions of future research

are indicated.

Multi-stage selection procedures have been studied extensively in the past. In their
pioneering monograph, Bechhofer, Kiefer, and Sobel (1968) derived, in the frequentist
approach, similar to Wald’s SPRT, optimum sequential rules based on vector-at-a-time
sampling, the natural terminal selection, and an optimum stopping rule. However, elimi-
nation of populations, i.e. excluding populations from further sampling and selection, at
the intermediate stages were not allowed there. Later work, which includes elimination,
was done in the Bayesian approach by Gupta and Miescke (1984), this time, however, only
for truncated sequential procedures, which are procedures with a predetermined maximum
number of stages. Overviews of this area are provided by Gupta and Panchapakesan (1979)
and by Miescke (1984). The spirit behind all these efforts is to select the best population
most efficiently in terms of both, risk and sampling costs. The vehicle that allowed to
derive strong results was ’symmetry’, delivered through vector-at-a-time sampling of not

yet eliminated populations and permutation symmetric priors.

Elimination of populations, as defined above, can lead to a conflicting situation when
the data collected from a population before it was eliminated later make it look better
again, after further sampling has been done from other populations which then turn out to
be not so favorable for those. Especially in the Bayesian approach, since Bayes procedures
make use of all the data collected, this is a realistic possibility. Elimination of populations

from future selections is thus seen to possibly have undesirable effects. Therefore, not
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incorpdrating elimination but considering instead allocation of unequal sample sizes at
various stages seems to be more appropriate. The latter acts like temporary eliminations,
but leaves all k populations in the pool for the final selection decision. This approach
allows also the use of nonsymmetric priors, which occur in a natural way as updated priors

at various stages.

Getting unequal sample sizes at some stage of an ongoing experiment is a matter of life.
Beit a patient who does not return to a scheduled exam, a laboratory animal which is lost,
a testing equipment that breaks down, a shortened deadline for the experimental phase -
symmetric models often are hard to enforce. To deal with such situations, let us assume
that k independent samples of sizes ny,...,nk, respectively, have been observed already at
the first stage, say, which may represent the combined outcomes of several previous stages,
and that m additional observations are allowed to be taken at a future second stage. The
problem of interest treated here is how to allocate these m = my +- - - +my observations in
an optimum way among the k populations, given all the information, prior and first stage
observations, gathered so far. This was done previously by Gupta and Miescke (1993) for
simultaneous selection and estimation in the binomial case, including costs of sampling.
For simplicity of presentation, the latter, which would involve stopping rules, will not be
considered here. It should be noted that the special case of n; = --- = ny = 0 represents

the analogous problem of how to allocate m = mj + - - - + my observations at a first stage.

Looking ahead one stage using the expected posterior Bayes risk, given the prior and
all the observations collected so far, and then minimizing it, does not only provide an
optimum allocation of observations in the future. It also allows to assess how much better
the final decision can be expected to be after further sampling has been done, following
this optimum allocation. If costs of sampling at the second stage would be incorporated
in the loss, an optimum stopping rule would have to be implemented, too. Modifications
of the allocations considered later on to this case are straightforward and thus omitted in

the discussions for brevity.

In many empirical studies in marketing research (e.g. direct marketing), medical re-
search (e.g. clinical trials, cf. Whitehead 1991), and social research (e.g. survey sampling,

cf. Govindarajulu and Katehakis, 1991), there are interim analyses performed at certain
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stages to decide if sampling should be continued, and if so, how to allocate new observa-
tions. The latter cannot be done before it is known which terminal selection rule will be
used at the end. Thus, the first optimization step is to find optimum (Bayes) single-stage
selection rules under unequal sample sizes. This has been done for the binomial case in
Abughalous and Miescke (1989), and for the normal case in Gupta and Miescke (1988).
Once the optimum terminal selection rules are fixed, however, one can look ahead with
various sampling allocations, compare the associated expected posterior risks, and then go
for the smallest possible value. There is, however, one more complication that has to be
taken care of. Why allocating all m observations at once, rather than allocating only a
few (or just one), learning more through them (it), and then having a stronger basis for

the remaining allocations?

In a fully sequential approach, the optimum allocation could be constructed, at least in
principle, by finding first the Bayesiaﬁ terminal selection rule for every possible allocation
m =mq+ -+ - +my, and then use backward optimization (or possibly backward induction)
to optimize successively every single allocation before. Although the former are not too
hard to find, the latter appears to be infeasible to be carried out in practice. Therefore, one
reasonable procedure proposed in this paper later on is to allocate in an optimum way one
observation at a time, pretending that it is the last one to be drawn before final selection,
and then iterate this process until m observations have been taken. Allocating more than
one observation at a time, on the other hand, appears to be less appealing since with each
new observation more is learnt about the unknown parameters, which improves the basis
for further decisions. In certain applications (e.g. in some clinical trials) it may be desired,
or even mandatory, to choose each next observation (treatment) according to the ”state-
of-the-art”. This would require to select the best population first, and then allocate the
next observation (treatment) to it, with iterations of this process. This policy is different
from the present one under consideration, where emphasis is made on optimum terminal
selection;s. Look ahead procedures, which have been utilized previously by Govindarajulu
and Katehakis (1991) in survey sampling, and which are described and discussed in various

other settings in Berger (1985), Chapter 7.4, will be considered in Section 2.



For the normal means case, under the assumption of k independent normal priors, and
either the linear loss or the 0-1-loss, a solution to the problem has been obtained previously
by Gupta and Miescke (1994) for the case of ¥ = 2, which turns out to be already rather
involved. It allocates the m = mjy + mgy observations in such a way that the posterior
gets as close as possible to being decreasing in transposition (D'T). Moreover, somewhat
surprising, it does not depend at all on the observations gathered so far at the first stage.
This fact implies that one can allocate, in an optimum way, one new observation at a
time, until all m have been drawn, thereby arriving at the same allocation as in the former
approach. For k£ > 3 populations, this is no longer true! It turns out that the observations
from Stage 1 are relevant for further allocations, and this in an interesting manner. This
will be shown and discussed in Section 3. Similar considerations for the 0-1-loss will not
be pursued in this paper, since they are much harder to make, and since this loss has the

undesired discontinuity property around parameter configurations with ties.

Selecting the population with the largest (overall) sample mean is usually called the
natural selection rule, since it is the uniformly Best permutation invariant selection proce-
dure, in the frequentist sense, for a general class of loss functions, provided that the sample
sizes are equal. However, for unequal sample sizes, the natural selection rule loses much of
its .quality, although it still remains intuitively appealing. Because of the latter, optimum
sample size allocations for the natural selection rule have been considered in the frequen-
tist approach by Bechhofer (1969), Dudewicz and Dalal (1975), and Bechhofer, Hayter,
and Tamhane (1991). On the other hand, Bayes selection rules with normal priors have
complicated forms which typically cannot be represented in closed form, except for those
situations where the posterior is DT, as it has been shown in Gupta and Miescke (1988).
Bayes rules for similar but more involved models have been studied by Berger and Deely
(1988) and Fong and Berger (1993). Earlier ideas of sampling allocations for Bayes rules
under normality and linear loss have been presented and discussed thoroughly by Dunnett

(1960).

For the present setting, it has been recommended previously by Gupta and Miescke
(1988) to plan the experiment’s sampling allocation in such a way that the posterior is

DT. For the normal means case, this is corroborated by the optimum allocation for k = 2.



However, for more than two normal populations, it turns out that there is some tradeoff
necessary between this suggestion and the values observed at the first stage, except for
those two populations which have yielded the largest two posterior means. This will be

explained and discussed in Section 3.

2. Bayesian Look Ahead Sampling Allocations

After a standard reduction of the data by sufficiency, the model assumptions can be
summarized as follows: At 8 = (61,...,6;) € RF, let X; and Y; be sufficient statistics of
the samples from population P; at Stage 1 and Stage 2, resp., ¢ = 1,..., k, which altogether
are assumed to be independent. A priori, the parameters are considered as realizations of
a random variable @ = (@1, ..., O) which follows a given prior distribution. Let the loss
for selecting P;, at both stages, be L(8,:), at 8 € R¥, i = 1,... k. Costs of sampling,
which would require the incorporation of a stopping rule, are not included in the loss in
favor of a simpler presentation of basic ideas. Modification of the allocations discussed

below to this more general setting are straightforward.

Having observed X = 2 € R* at Stage 1, based on samples of sizes ny,...,ng, every

(it may not be unique) Bayes selection rule dj(x) satisfies
E{L(®,d{(2)|X ==} = min E{L(@,:)|X ==} (1)
Likewise, after Y = y € R has been observed at Stage 2, every Bayes rule d}(z, y) satisfies
B{L(©,dj(z,v)X =2,Y =y} = min B{L(O,)X=2Y=y}. ()

There will be no need to consider randomized Bayes selection rules in the following, since
minimaxity and invariance concepts will not be used here. Whenever at least one Bayes

rule exists, one can choose a nonrandomized version.

Many results for Bayes selection rules in symmetric models can be found in the liter-
ature. An overview is provided by Gupta and Panchapakesan (1979, 1991). Only recently,
however, attention has been given also to nonsymmetric models. The binomial case has

been treated in Abughalous and Miescke (1989), the normal case in Gupta and Miescke
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(1988), and more involved models have been considered in Berger and Deely(1988) and in
Fong and Berger (1993). Rather than studying the properties of such Bayes selection rules
d} and d} in more details, let us assume here that they have been derived already, ready
to be used by the experimenter, and that all that is left to do is to allocate sample sizes

in an optimum manner.

Let us now consider fixed total sample size allocation problems. Before entering each
of the two stages, similar allocation problems of this type arise, which are closely related.
Before entering Stage 1, by looking ahead one stage, we would like to minimize the expected
posterior risk subject to ny + ...+ ng = n, where n is the total number of observations

allowed to be taken at Stage 1. This leads to the following criterion for ny,...,ng.
min  E( __r{xinkE{L(@,iﬂX}). (3)

Likewise, at the end of Stage 1, the criterion for ms,...,m, with a total number of m

observations allowed at Stage 2, is the following.
min . E{ nllinkE{L(@,i)]X =2z, Y}|X ==z}, (4)
i=1,...,

where the outer expectation is with respect to the conditional distribution of Y, given

X ==z

Formally, or by using a standard sequential updating argument as it is described
in Berger (1985) on page 445, one can get solutions of (3) from those of (4) by setting
ny = ... =ng = 0 and then relabel m; by n;, : = 1,...,k, and m by n. Thus, we need to

consider only criterion (4) in the sequel, since it is more general.

Taking into account that optimum future sampling allocations do depend on the past
observations, it seems more appropriate to break down the allocation of m observations
into more than one step. Several sampling allocation schemes are reasonable. Let R, for
t<m, denote the fixed total number ¢ of observations allocation determined by (4), with
m replaced by ¢ there. Furthermore, let R;; allocate any one, but only one, observation
to one of the populations suggested by R:. Finally, let B; stand for the optimum alloca-

tion of one observation, knowing all future actions, whatever they may be in a particular
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.situation. The allocation rule which allocates the last m — 1 observations using (4), with
m replaced by m — 1 there, and the first observation through backward optimization, can
thus be represented by (B1, Rm—1). Likewise, (B1, Rm—1,1, Rm—2) allocates the last m — 2
observations using Rp,-2, the second observation to one of the populations suggested by
Rm—1 after the first observation has been drawn, and the first observation by backward
optimization. It should be pointed out that R; and R, are stand-alone procedures, i.e.
procedures which can be can be used directly without knowing future actions, whereas B;

is only meaningful in connection with completely specified future actions.

The best sampling allocation of m observations is determined by an optimum allo-
cation of the m-th (i.e. the last) allocation, and then by using backward optimization
(or if possible backward induction), i.e. the procedure (By,Bi,... ,B1,R1), with m — 1
repetitions of Bj. For the purpose of comparisons, let us consider the following partial
ordering of allocation schemes: let S < (=) 7 mean that procedure 7 has a smaller (the

same) overall Bayes risk than (as) procedure S.

Using the basic fact that, except for trivial cases where equality may occur, every rele-
vant (conditional) expectation of a minimum is smaller than the minimum of the respective
(conditional) expectations, some interesting chains of preferences can be established. The

proofs are straightforward and therefore omitted.

Lemma 1. The following chain of preferences holds.

(Rm) < (Rm,1, Rm—1) < (B1, Rm-1) < (B1, Rm-1,1, Rm—2) < (5)
=< (B],Bl,Rm_z) ~<... = (Bl,Bl,... ,Bl,Rl).

Since backward optimization, i.e. using By, appears to be infeasible in most situations,
one may be inclined to capitalize on one of the following sampling allocation rules, which

may have good performance characteristics:

Lemma 2. The following chain of preferences holds.
(Rm) - (Rm,l,Rm_l) =< (Rm,l,Rm—l,l,Rm—z) ~<...=< (6)
- (Rm,l ) Rm—l,l, e ,'R,z,l,Rl).
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There is one problem, however, that arises when one attempts to use procedure R ;.
It is not clear from which one of the populations, suggested by R, the next observation
should be drawn. The natural alternative is to use instead one of the following simpler

allocation rules, which are easier to determine:
(Rl,Rm—l) ) (RI,RDRm—Z) y vy (Rl’Rl’ s ?R1)7 (7)

where the last allocation rule consists of m repetitions of Ry. Also here some conflict
arises. Whenever an R is replaced by an R, it remains unclear whether the latter picks
one population from those available for R;; from Ry, i.e. whether R; is a version of R¢a.
This conflict, however, appears to be minor, considering the simplicity in usage one has
gained. Further research in this direction, however, seems to be appropriate to corroborate

this standpoint.

The allocation rule (Ry,R1,...,R1) allocates at each step one more observation in an
optimum manner, pretending that it would be the last one before final selection. Thus for
every single new observation (treatment), it ”selects” that population (treatment) which
appears to be the best to improve the pretended final selection decision after it has been
drawn (applied). As it has been mentioned already in Section 1, this allocation policy
is different from the "state-of-the-art” allocation, which would first select that population
which appears to be the best at the present moment, and then allocate the next observation

(treatment) to it.

3. The Normal Case Under Linear Loss

Let Pi,...,Pr be k > 3 given normal populations with means 6;,...,6; € R and
a common known variance o2 > 0. For convenience, and to facilitate comparisons with
Gupta and Miescke (1994), the same notation used there will be also adopted here. After a
standard reduction of the data by sufficiency, the model assumptions can be summarized as
follows: At 8 = (0y,...,0;) € R%, X; ~ N(6;,p;) with p;! = 0?/n;, and ¥; ~ N(6;,q; ")
with ¢;' = 0% /m;, are the independent sample means of the samples from P; at Stage 1
and Stage 2, respectively, ¢ = 1,..., k, which altogether are assumed to be independent. A

priori, the parameters ©® = (01,...,0}) are considered to be random and follow a given
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prior distribution where ©; ~ N(u;, v 1, i =1,...,k, are independent. We assume
from now on that the loss is of the following form: L(0,:) = 6 — 6;, i = 1,...,k,
0 € R*, where Ox) = max{6;,...,6;}. Although it is not a linear function of 8 € R¥, it
is traditionally called linear loss, cf. Gupta and Panchapakesan (1979). Costs of sampling
are not incorporated into the loss to simplify the presentation of basic ideas. The stopping
rule is considered here to be deterministic: the sampling process stops after m observations

have been drawn.

To evaluate the inner conditional expectation of (4), note that the conditional distri-

bution of @, given X =z and Y = y, has to be used, which is:

0;~N (ai,u,-(a:) +qiyi, L ) , 1=1,...,k, independent, (8)
: i+ ¢g; o; t+q;

where a; = p; + v; represents the relative combined (prior plus sampling) information
gained from population P;, and where pi(2) = (vipi + pizi)/(vi + pi), represents the
relative strength or quality of population P; at the present moment, ¢ = 1,...,k. The

latter would be the criterion used for ”state-of-the-art” allocations.

To evaluate the outer conditional expectation of (4), the conditional distribution of

Y, given X = x, has to be used, which is:

1412

Y;~N (,u,-(:v), @i + qi) ,i=1,...,k, independent. (9)

Under the linear loss, criterion (4) reduces to minimize as a function of m,...,mg,

subject to my + ... + my = m, the look ahead expected posterior risk

E{Oy|X =2} - E{'_nllaxkE{@dX =2, Y}X =a}. (10)

This criterion reduces further, by using first (8) and then (9), to maximize, subject to

). @

where Ni,..., N are generic independent standard normal random variables. The quan-

the side condition m; + - -+ + my = m, the following quantity:

oaipi(E)+aYi o . _ % :
B e = ida X% =F (z‘fllf.)-{,k [’“(w) " (ai(ai + ‘Zi)) s

Nl

tity in (11) will be called "look ahead expected posterior gain’ in the sequel.
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Let us recall that a distribution with density (conditional density) h(u|v), u € R¥,
where v € R* is a parameter (value of a random vector), is said to have the decreasing in
transposition (DT) property if the following two conditions hold: A(w(u)|w(v)) = h(u|v)
for every permutation 7, and h(u|v) < h(ulr(; jyv) if (u; — uj)(v; —v;) < 0 and 7(; 5
is the permutation which exchanges the i-th and j-th coordinate. Functions decreasing

in transposition have been studied thoroughly by Hollander, Proschan, and Sethuraman

(1977).

Now, the posterior distribution of @1,..., 0 at Stage 2, as given by (8), can be seen
to be DT if and only if

o+ =art+q@=..=ap+q. (12)

It was recommended by Gupta and Miescke (1988) to plan the experiment in such a that
ai + q1,...,0r + g are equal. The Bayes rule is then in a simple and closed form, and
the posterior information about 6y, ...,0; is equally balanced. The solutions of criterion
(4) for k = 2 under linear and under 0-1-loss, as shown in Gupta and Miescke (1994),
turn out to be the same: Choose m; and ms in such a way that |a; + q1 — as — ¢2]
is minimum, subject to m; + ms = m. This solution does not depend on any previous
observations, and it coincides with both, the rule (R, Ry,...,R1) and the optimum rule

(B1,B1,...,B1,R1). As it will be seen below, this is no longer true for £ > 3 populations.

To study the properties E(mazi=1,... k[ai + b;iN;]) as a function of a; € R and b; > 0,

i =1,...,k, it proves useful to introduce the following auxiliary function T, given by

w

T(w) = w ®(w)+ p(w) = / ®(u) du, w€R, (13)

—00

where ® and ¢ denote the standard normal c.d.f. and density, respectively. This function
has been introduced and studied previously in Miescke (1979), but there only for the case
where by,...,b; are equal. T is positive, strictly increasing, and convex. Moreover, it
has the following basic properties, which can be verified easily: T(w) > w , for w > 0
T(w) = T(—w) +w , forw € R; v T(w/v) is strictly increasing in v € R for w € R,
with a discontinuity jump from 0 to w (from wto 0 )at y =0if w >0 (w <0 );
T(w) = E(maz[N1,w]), for w € R. To simplify notation, let My = mazi=1,... k@i + biNi]
witha; € Rand b; >0, i =1,...,k, in the following,. |
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Lemma 3. The following equations hold.

() E(T(M)) =8 +1)"? T(ar/(8] +1)'/?).
(i) E(Mz)  =ai+ (0] +5)" T((az — a1)/(8] +83)'/?).
(iii) E(Mk) =ar + bkE(T((Mk_l — ak)/bk > ar + ka((E(Mk_l) — ak)/bk).

(iv) E(My) is increasing ina; € Rand b; >0, :1=1,...,k.

Proof: Let Mi,..., M} be as given above.

(i) Let a3 = a and b; = b for brevity. Then one can see that

E(T(My)) = a/R ®(a + bz) p(z) dz + b/R O(a+ bz) z p(2) dz
+ [ pla+ ) oe) az

=a ®(a/(B? + 1))+ (b? + 1) /R wla+ bz) p(z) dz.

Using integration by parts, the second integral could be brought into the form of the third.
Combining now the two ¢-functions into one exponential function, standard calculations

show that (i) holds.

(iii) From the representation My = ai + br E(maz[Ng,(Mr—1 — ax)/bx]) and the iden-
tity T(w) = E(maz[Ny,w]), one can see that the conditional expectation of My , given
Ny,...,Ni—1,is equal to ar + by T((Mr—1 — ar)/bx). The inequality follows from Jensen’s

inequality applied to the convex function T
(ii) This is seen by applying (i) to the equation in (iii) with k = 2.

(iv) The monotonicity with respect to ai,...,ax is obviously correct. As to by,..., bt ,
consider without loss of generality by. We know that v T'(w/+) is increasing in -y for every

w € R. An application of this fact to the equation in (iii) completes the proof. [J

Remark 1. The equation and the inequality in (iii) of the lemma can be used iteratively
to get lower bounds on E(M}) in terms of E(M,) for r =2,...,k—1. E(M;) has a closed

form representation given by (ii) in the lemma.

11



The remainder of this section is devoted to a detailed study of the properties of the
allocation rule Ry, and finally to some discussion of optimum allocations for an experiment
which is planned for a total of n observations. R; is found by maximizing the look ahead
expected posterior gain given in (11), subject to one of the values ¢; = m;/o0?,i =1,...,k,
being equal to ¢ = 1/0? and all others being equal to zero. All of the results derived
below are given in terms of ¢, but it should be pointed out that they also hold true for
any ¢ = h/o? with 1 < h < m, i.e. for the analogous allocation rule which optimizes
allocation of h observations to exactly one population, where h € {1,...,m}. For this
case, the formula for the look ahead expected posterior gain given in (11) simplifies to a
closed form as given in the following lemma, which will serve as the main tool to set up a

useful algorithm for finding the desired optimum sampling allocation.

Lemma 4. Forq;=gq, forq; =0, j#1i, and? fized, we have

as,us(w) + qus _ _ . . . .
E{ max P X =2} = pi(e) + 0T (Ai(z)/0:) (14)

= pi(x) + E(maz{pi(e) + 0iNi, maz jzi[p;(2)))),
where o; = (E?(fﬁ)i , and Ay(x) = mazjzi(pi(e) — pi(e)]

Proof: Under the assumptions above, the left hand side of (11), after some standard
calculations, can be seen to be equal to u;(x) + o; E(maz[N;, Ay(x)/0;]). The rest follows
from the identity T(w) = E(maz[Ny,w]). O

In the sequel, let pry(®) < ppgy(®) < ... < pw(e) denote the ordered posterior means
from Stage 1. Let P(;) be the population which is associated with u;j(2), and let a(;,
o(i), and A;)(x) be defined analogously. Furthermore, let R()(z) denote the rule which

assigns, at X = @ , the next allocation to population P(;y , ¢ =1,..., k.

First, let us consider the two populations P(;_qy and Py, , since they turn out to play
a very special role in this situation: these are the only two populations between which a

»

preference in terms of the order relation ” < ” can be established which does not depend
on pi(z),...,pr(x). In fact the following theorem shows that the next allocation is not
assigned to that one of the two population for which more prior plus sampling information

has been gathered so far.
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Theorem 1. At every X = x, the following holds.

ag—1) > (=,<) awr) if end only if RED() < (=,>) RP(x) .

Proof: Consider the look ahead expected posterior gain, given X = @ , of rule R () ,
which is based on one more observation from population P(zy. Let it be denoted by gx(z).

Starting with its representation given by (14), we can see that it satisfies

ge(2) = py(2) + o) T(Awy(®)/ o)) = pr-11(2) + o)y T(Ag-1)(2)/ o)) »  (15)

where the second equation follows from Aggy(2) = pr—1)(2) — pp(e) = —Ag-n(=) ,
and from the identity T(w) = T(—w) + w. On the other hand, the look ahead expected

posterior gain gr—_1 (@) of rule R*=1(z) is seen to be

gr-1(2) = pr-1)(®) + 0—1) T(A-1)(®)/ T (k-1))- (16)
The rest follows from the fact that YT(A/«) is strictly increasing in v for every A € R. I

Let R™(x) be the better of the two rules R*~1(z) and R¥)(z) at X = z , as
determined by Theorem 1, and let oy = min{a(k—1), o)} and o(x) = maz{o_1),04)}
be the parameters associate with that population P(,y, say, which is chosen by R™ ().

This rule has the look ahead expected posterior gain

g«(®) = pe—1)(2) + o) T((m) (=) — pp-1)(®))/7(x)) (17)

which has to be compared now with the maximum look ahead posterior expected gain

rules RV (2),...,R*=2(z), ie. with the maximum of

gi(z) = u[t](m) + a(t)T((p[k](:c) — p[t](m))/a(t)) ,t=1,...,k—2. (18)

Comparing any two rules R()(z) and RV (z) with 1 < i < j < k — 2 will necessarily
involve pp;(2) , ppj)(2) , and ppy(x). This situation is summarized in the next theorem.
For brevity, the argument & will be suppressed in Theorem 2, in its proof, and in the

subsequent Corollary.
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Theorem 2. For 1<:<j<k—2 the following holds at every X =z .
(1) If o2 agy, e if o) S0 then RO <RG |
(ii) If ag<ag, and o <(=,>) 0y then RO < (=,=) RO |

~where 0;; 18 determined by

v + o) T(um — pup/oGy) = w + o5 T((pE — pr)/ois) - (19)

Moreover, the threshold o;; for o(;) satisfies

AU

o < 055 < . 20
) (O (20)

Proof: Let X = x be observed, and let ¢ and j satisfy the assumptions of the theorem.

Note, that in particular we have u; < ppj) < pr-1) < KK -

(i) Suppose that o(;y > a(;). Then the following can be shown to hold true:

gi(®) = pp + o)y T((lpw — pigl + e — ral)/oG)
< iy + (pg) = pi) F oo T((m — 1)/ oG))
= i) + o) T((m — v/ o)
< p) + o) Tew — wid/og) = gi(=).

The first inequality follows from the fact that

‘ utv
T(u+v)—T(u)=/ ®(z)dz<v, for v>0 and u€R.

u
The second inequality follows from o(;y < o(;) and from the fact that yT(A/7) is increasing
in 4. This completes the proof of (i).

(ii) Suppose now that a(;y < a(;) , and consider the following difference as a function of
O‘(i) s
9i(2) — 9i(®) = [p) + o) T((kwy — 1)) o )] = [ + o0 Ty — pa)/o))] 5 (21)

which is positive (negative) if o(;) tends to o(;) (infinity) , strictly decreasing in o(;), and

equal to zero at o;;, say, which is determined by (19).
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Finally, we have to show that the threshold o;; for o(;) is located in the range given
at the end of the theorem. As mentioned above, if o(;) tends to o(;) then (21) is positive,
and thus o;; > o(;). On the other hand, if oy = o) () — w)/(r — pj)) then (21)
reduces to
Pls) — KL

oGy Tk — pud/oG)
1K — F0] () [k] 1)/9(3)

9i() — 9i(®) = ppj) — 1y —
which is negative, since T(w) > w for w € R. This completes the proof of the theorem. {1

Let R(*)(x) be the best of the rules R®)(x) for t = 1,...,k~2at X = & , as
determined by Theorem 2, which has to be compared now with R™ (). Let Q(e), T(e)>
and p.)(x) be the parameters associated with that population chosen by R() (). This

rule has the look ahead expected posterior gain

go(2) = pro(®) + o T((pw(2) — p(2))/ o)) - (22)

This has to be compared now with (17). The result is summarized in the following.

Corollary. The comparison of the look ahead ezpected posterior gains of procedures R(*)
and R™ is the same as (i) and (i) in Theorem 8, with (i), (5), 0ij, pi)» and ;) replaced
by (e), (*), Tex, Ke]> AN pir_1], Tespectively.

Remark 2. To apply allocation rule Ry at X = @, a quick and simple algorithm is to
just find the maximum of (15), (16), and (18), i.e. the maximum of the values in (14) for
t=1,...,k, and then to take the next observation from that population which has yielded
the maximum. The results presented in the two theorems and in the Corollary are not

needed for this purpose.

Remark 3. The importance of the two theorems and the Corollary is the insight which
they provide into how and why the k populations are ordered with respect to 7 < ”.
Interpreting a; = v; + n;/o? as the total of prior plus first stage sampling information
gathered from population P; , ¢ = 1,...,k, we can see that the allocation rule R; favors
populations P; which have, at Stage 1, larger yields u;(#) and smaller sampling information

a;, t=1,...,k. One exception, as revealed by Theorem 1, is that for the two populations
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P(k-1) and P(y) with the largest yields ppx_1j(=) and ppg(2), that one with the smaller of
the two values o (x_1) and «z) is preferred. Besides this exception, however, both goals
cannot always be met simultaneously: there is a tradeoff between the two goals which is

provided by Theorem 2 and by the Corollary.

Example. To illustrate the use >of allocation rule Ry, consider the data given in
Table 7.3.3. on page 282 of Bickel and Doksum (1977). Blood cholesterol levels of men in
three different socioeconomic groups Py (high end), P, (middle group), and P; (low end)
are listed there with respective sample sizes n; = 5,n = 10,73 = 6, and sample means
zy = 315.6,z, = 320.1,z3 = 302.3333. It may be worth noting that the p-value of the
one-way layout analysis of variance F-test is 0.8823, and that none of the standard multi-
ple comparison procedures (Duncan, LSD, Tukey-HSD, Student-Newman-Keuls, Tukey-B,
Modified LSD, Sheffe’) detect a difference between any two of the groups at significance
level a = 0.05.

Assume that apriori, ©;,0,,0; are i.i.d. N(u,v~ '), and that the data given in the
Table on page 309 of Bickel and Doksum (1977), which have been drawn from the same
Los Angeles Heart Study, can be utilized to derive estimates for o2, u, and v. Hereby, no
claims are made that this is in fact appropriate for that particular study, it is only done
to dembnstrate how to use allocation rule R;. The estimates turn out to be o2 = 3386.64,
p = 265.97 and v~! = 1508.39. With these parameter values, one can calculate a; =
0021, az = .0036, az = .0024, and p1(x) = 300.2203, po(x) = 310.1751, us(x) = 292.4314.
Finally, formula (14) yields the look ahead expected posterior gains 310.5020, 310.1988,
and 310.1831 for populations Py, Ps, and Ps, respectively. Therefore, the next observation
Y., say, has to be taken from population P;.

This analysis can be carried one step further by considering Y, as part of the sample
drawn from P; at Stage 1, i.e. by updating p; and z; accordingly. Thereby, the following
can be seen to hold: If Y, < (>,=)235.9998 then the next observation Y., say, has to
be taken from population P; ( P1, P1 or P;). That no allocation for these first two
future observations are made in favor of population P,, although it has the largest yield

p2(x) = pz)(x), is due to its relatively large prior plus sampl
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Remark 4. The case of an improper prior distribution can be obtained by letting
the prior variances of ©1,...,0 tend to infinity, i.e. by letting v4,..., vt tend to zero.
Hereby, pi(z) tends to z; and «; tends to n;/o?, 1 = 1,...,k, and the results of the
two theorems and the Corollary can then be interpreted di terms of the sample means

z1,...,¢k and the sample sizes ny,...,n; of the k populations at Stage 1.

To conclude this study, it is natural to consider also the case of an experiment which
is planned for a total of n observations, where the allocation procedure (Rq,R;,...,R1),
listed last in (7), has been chosen to be used. The allocation of the very first observation
is of the type of a Stage 1 allocation. As mentioned below of (4), the results derived in
this section are more general and apply also to this case. All that has to be done is to
set n; = ng = ... = ngr = 0 and then relabel m; by n;, for ¢ = 1,...,k, and m by n,
which is now equal to one in this case. The relevant parameters reduce then to a; = v;
and pi(®) = pi, ¢ = 1,...,k, and the results for allocation rule R; derived above hold

analogously.

The very first observation is allocated by R; to that population which is associated
with the largest of the values E(maz[u; + oiN1,mazj%i{p;}]), ¢ =1,...,k. Especially, in
the case of i.i.d. priors,i.e. where ®; ~ N(u,v~!),i =1,...,k, are independent, R; allows
to start with any of the k¥ populations. However, the second and all consecutive allocations
made by R, are more involved, since updating of the prior has to be performed before the
criterion based on (11), using (14), can be utilized. In other words, allocation of the first
observation is a Stage 1 type optimization, whereas allocation of the s-th observation for
s =2,...,k1is a Stage 2 type optimization, where the first s —1 observations are considered

as data collected at a Stage 1.

Suppose that an allocation of these n observations can be made in such a way that
v1+n1/o? = ... = vt +ni/o? holds, i.e. that the posterior, after these n observations have
been drawn, is DT. Then allocating n times iteratively one observation to that population
with the smallest a-value, without updating the prior, would lead to this configuration.
Iterating rule Ry n times, i.e. using the allocation procedure (R1,Ry,...,R1) considered

above, would of course lead to other configurations, since each newly allocated observation
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would provide additional information which is utilized. However, one might speculate
whether the fixed sample size n allocation rule R, would use here the DT-configuration.
This question can be settled with the method of Lagrangian multipliers. For k = 2
populations it turns out to be true: a fact which has been shown already in Gupta and
Miescke (1994) with a different method. For k£ = 3 , on the other hand, it can be seen
with that method of Lagrangian multipliers that the DT-configuration is not a solution
for R, to the problem at hand, except for the case of i.i.d. normal priors. Dealing with
k > 3 populations turns out to be structurally different and much more challenging than
treating only k = 2 populations, a typical contrast well known for ranking and selection

problems.

The case of k normal pdpulations with known but different variances can be treated
analogously. However, the results will be more involved, since then a(;) > a(;) is no longer
equivalent to o(;) < o(;) for i # j, which has been crucial in the proofs of the two theorems.
The case of a common unknown variance, which requires a proper extension of the prior
to account for a random variance, and similarly the case of k¥ unknown variances, will be

subject to future research.

Acknowledgment: The authors are grateful to two Referees whose comments and sug-
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