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A PURELY PROBABILISTIC METHOD FOR FINDING
DETERMINISTIC SUMS

Abstract

Consider an infinite series with positive terms which is summable. We give a method
for finding the numerical value of the sum, to any degree of accuracy, by using only a
simulated sample from an appropriate multivariate normal distribution. This is done by
identifying the required sum as the trace of a kernel of an integral operator and using the
Karhunen-Loeve expansion of an associated Gaussian process. An appropriate SLLN is
proved which guarantees that the partial sums of the Gaussian process converge almost
surely to the trace of the kernel. Examples are provided for the Brownian bridge and
motion, the Riemann zeta function and for the eigenvalues of the logarithm of the Poisson

kernel for Harmonic functions.

1. Introduction.

The purpose of this note is to point out a method of solving a purely deterministic
problem by using purely probabilistic methods. It should therefore be viewed as a result
on connections between various branches of mathematics, some of which are far from clear
until pointed out. The problem we look at is that of finding the sum of an infinite series
of positive numbers. As such, it is a problem purely in the domain of analysis. We use
facts from the theory of Fredholm integral equations, from the theory of Gaussian pro-
cesses and from the theory of numerical analysis to give a method for finding this sum by
only simulating from a finite dimensional multivariate normal distribution. Our method
essentially shows that a certain partial sum of samples from appropriate normal distribu-
tions converges almost surely to the deterministic sum. The dimension of the appropriate
multivariate normal distribution depends on the accuracy with which one wants to find
the sum and since in real life only finite simulations can be done, the deterministic sum

can only be found numerically (to any degree of accuracy) by this method.

Section 2 gives the heuristic of the proof and then the formal proof itself; as is clear,

the result is essentially a strong law. Section 3 gives a number of examples. Some brief
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remarks are made in Section 4 and Section 5 is a technical appendix.

2. 2.1. Notation.

{ar} will denote a summable positive sequence; note that it follows that.{ax} is also
square summable. X; will denote a real valued Gaussian process, and C(s, t) its covariance
function. The variance C(t,t) of X, will also be denoted by o%(¢). The time interval is

assumed to be [0,1]. For m,n > 1, we will also use the notation

1 & . j
Yim = — sz(z, =)
J=1
where {X(¢,j/m)}, ¢ = 1,2,...,n are independent replications of the time evolution

(X1,X2,...,X1). Finally, we will use the notation

fm = = 3" C(i fm,fm).

2.2. The Heuristic.

The heuristic comes from recognizing that the sequence {ay} forms the eigenvalues of
a kernel C(s,t) defined as
C(s,t) = Darpr(s)pi(t)

with orthonormal eigenfunctions {p}.

Therefore, [ C(t,t)dt should equal the infinite sum Say. If now X; is a real Gaussian
process with covariance kernel C(s,t), then, by the usual strong law 1/n i Y; m should
be approximately equal to p,, for large n, and this should be approximatell;lequal to the
Riemann integral of C(¢,t) for large m, and hence approximately equal to the infinite sum
we want to evaluate. The proof rigorizes this heuristic. Notice that the Riemann integral
of C(t,t) can be approximated by many other numerical methods such as the Simpson
rule, and these would correspond to a different kind of partial sum constituted from the
process X; in order to approximate the required infinite sum ay; see Powell (1981) for a

catalog of such numerical integration procedures.
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2.3. Main Result.

Theorem 1. Let X; be a real Gaussian process with covariance kernel C(s,t). Assume
o®(t) = C*(t,t) is integrable on [0,1]. Let {1/ax} be the eigenvalues of C(s,t) with

corresponding eigenfunctions {px}. Then,

1 m n j
— E E X2(i,~) — Za; a.s., as m,n — co.
mn m

7=1 =1

Remark. In actual applications, one would start with the sequence {a;} and construct
a kernel.C(s,t) = Zarpr(s)pr(t); the orthonormal sequence {px} should be judiciously
chosen such that C(s,t) can be found in closed form. A closed form is necessary because
the subsequent simulation will require the covariance structure exactly specified. We will

see a number of examples.

Proof of Theorem 1. First, note that since C(%,t) is Riemann integrable,

1 m . .
E(Yim) = EEC(%’% = fim — [ = Lag as m — oo.
Jj=1

We assume m is such that |gm — | < €, when € > 0 is arbitrary but fixed. The proof of
n

the theorem rests on showing that P(|2 > Yim — p| > 2¢) is O(:%) and therefore, with
=1

n

probability 1, |1 3 V; ,, — u| < 2¢ for all but finitely many values of n. Since ¢ > 0
=~

is arbitrary, that “will complete the proof. In the following, also assume m is such that

1S4, 1) < [ O¥t, 1)dt + 1(< o0). Now,

j=1
1 « 1 —
P(=Y Yim = >2) =P(= Y (Yim = fim) + i — p > 2€)
i=1 =1
1 n
< P(= Y (Yim = pm) > €)
i=1

E{g(m,m — )}

nict

<



E ; (Yim — i) + 65 32 (Yim ~ pim)2(¥im — firn)?

_ 1<j=2
- niegt
_ nEMi,m — pm)* + 3n(n — )EX1,m — pm)?)?
- niet
(3n2 - 2n)E(Yl,m - ,um)4
- ntet ‘
4
(Bn? —2)E [ L 5 {X%(L1)-0o%(L)}
J=1
= niet
(3n? —2n)E 3 {X%(L) - 02(L)}*
< =1
= mniet
60(3n? —2n) 3" o¥(L)
_ J=1
- mntet

60(3n 60(3n® —2n) 1 o7 7
C nfet ZC (m m)

1 ‘ (3n* —2n)
< S ([ et r) )

P(L Z:l Yi,m — p < —2¢) is handled similarly. This completes the proof.

A moment argument as above for the usual strong law can be seen in Ross (1994).

3. Examples. 1. Brownian Bridge. Consider the summable sequence ap = ﬁ;

these are the reciprocals of the eigenvalues of the Triangular kernel
C(s,t) =t(l—3s), ift<s
= s(1—-1), if s <t
with associated eigenfunctions pi(s) = V2 sin (kns); see Tricomi (1985). The infinite

sum Yay equals 1/6.

The following is a report of simulations for approximating this sum by the partial sum

of Theorem 1.

m n Partial Sum Error
10 1000 167436 .4616%
50 1000 167127 .2762%
50 2000 .164292 —1.4248%
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Notice the interesting fact that increasing n (the number of simulations) did not do any

good if 1/m (the fineness of the grid) was already small.

2. The Riemann Zeta Function. Consider the sequence ar = 1/k*; the infinite sum
Yay equals ((4) = 7*/90, where ((-) denotes the Riemann Zeta function. The choice of 4

in the argument is completely arbitrary.

Choose the specific orthonormal sequence py(s) = v/2 sin (kns). For this choice of an

orthonormal sequence, the kernel
C(s,t) = Zaxpx(s)pr(t)
can be evaluated in a closed form. Indeed,
C(s,t) = 7—;;[23t(1 —s)1—t)—(s—t)’ (L —sVit)s At

where ‘A’ and ‘V’ denote minimum and maximum respectively; see the appendix for a

derivation. Again, some simulations give the following:

m n Partial Sum Error
5 5000 1.0932 1.005%
10 3000 1.07823 —.3778%
10 5000 1.11138 2.6854%

3. The Poisson Kernel. Consider the sequence a; = r* /k, where 0 < r < 1. The

infinite sum Xay equals log (1/(1 —r)).

Consider the orthonormal sequence
pr(s) = V2 sin (kms)

With this choice, the kernel C(s,t) equals

1 —2r cos (m(s +1)) +r?
1 —2r cos (mw(s —t)) +r2’

C(s,t) = %log

again see the appendix for a derivation. In particular, for r = %, one has

1 % — cos (m(s + t))
Cls,t) = 2 log 5 — cos (m(s — 1))
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Here are some simulations:

m n Partial Sum Error
6 5000 .68503 —-1.17%

10 2000 .703330 1.47%

20 5000 .690885 —.326%

4. Standard Brownian Motion. Consider the covariance kernel C(s,t) = min(s,t)

having elgenvalues (proportional to) 1/ay = (k — 1 /2)? and associated eigenfunctions

pr(s) = 22 sin ((k — $)ms). Note that the sum Say equals .5.

Some simulation results follow:

m n Partial Sum Error
20 100 542293 8.4586%
50 1000 .502123 4246%
100 10000 509721 1.9442%

4. Concluding Remarks. We are not recommending our method for serious practical
use; it is the probabilistic connection that is interesting. Finally,all of our simulation results
indicate that if m is about 20 and n about 3000, then one already gets a fairly accurate

approximation to the exact sum.

Acknowledgement. Steve Lalley was a patient listener and helped the first author with

Mathematica programming. For all of these, we are thankful.

5. Appendix.

i. C(s,t) = Zakpk(.s)pk(t)
= 22F sin (k7s) sin (kwt)
= 2—[cos kn(s —t) — cos k7r(s + t)]
(s +1)° - —(s +6)°+ (s +)°

- E(s —t)? + (s — t)3 — ——(s —t)4,



1r22 3

(using 20%4’” = gg -5+ 55— Z—; for 0 < z < 27; see Gradshteyn and Ryzhik (1980))

which on algebra reduces to

4(1 - s)t
C(s,t) = %3—)(23 — 5% —1?),
for s > t.
rk
ii. C(s,t) = 227 sin (k7s) sin (krt)
rk
= Ef[cos km(s —t) — cos km(s + t)]
1 L lo !
=lo —
g\/1—27'cos7r(s—t)—|-r2 g\/1—27'cos7r(s—}—t)—f—r2
(using E% = log it éosz_{_rz; see Gradshteyn and Ryzhik (1980))

1 1 —2r cos w(s +t) +r?

2 %81 2r cos (s —t) +r2’

which equals
1. 5—4cosn(s+t)

Cls,t) = §log 5 —4 cos w(s —t)

for r =

BN =
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