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ABSTRACT. We study the distributions Fp,p of the random sums E:o enl", whereei, ez, ...
are i.i.d. Bernoulli-p and 6 is the inverse of a Pisot number (an algebraic integer 3 whose
conjugates all have moduli less than 1) between 1 and 2. It is known that, when p = .5,
Fsp is a singular measure with exact Hausdorff dimension less than 1. We show that
in all cases the Hausdorff dimension can be expressed as the top Lyapunov exponent ofa
sequence of random matrices, and provide an algorithm for the construction of these matri-
ces. We show that for certain 8 of small degree, simulation gives the Hausdorff dimension
to several decimal places.

1. INTRODUCTION

Let €1, ¢€3,... be independent, identically distributed Bernoulli-p random variables, and
consider the random variable X defined by the series
o0
X = Z €, 0"
n=1

where § € (0,1). By the “Law of Pure Types” the distribution F = Fyp of X is either
absolutely continuous or purely singular (but of course nonatomic). Erdds proved (a) that
1

there exist values of @ larger than 3, e.g., the inverse of the “golden ratio”, such that F'

is singular [5]; but (b) that there exists ¥ < 1 such that for almost every 0 € (v,1), Fy, L
is absolutely continuous [6]. ! Erdés’ argument shows that in fact F'is singular whenever
0 is the inverse of a “Pisot” number. Recall that a Pisot number is an algebraic integer
greater than 1 whose algebraic conjugates are all smaller than 1 in modulus (see [18]) and
an algebraic integer is a root of an irreducible monic, integer polynomial. There are in fact

infinitely many Pisot numbers in the interval (1,2): for example, for each n = 2,3,... the
largest root G, of the polynomial
(1) pn(m):x”—w"—l—m”—z—---—m—l

is a Pisot number: see [19]. We will call these the simple Pisot numbers.
One may ask for those values of § such that F' = Fy, is singular: is it necessarily the case
that F is concentrated on a set of Hausdorff dimension strictly less than 1, and if so, what
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1



2 STEVEN P. LALLEY PURDUE UNIVERSITY

is the minimal such dimension? (we shall call this minimum the Hausdorff dimension of
F). Przytycki and Urbanski [16], enlarging on an argument of Garsia [11], showed that if 6
is the inverse of a Pisot number between 1 and 2 then in fact Fy 5 has Hausdorff dimension
less than 1. Unfortunately, their method does not give an effective means of calculating it.
Recently, Alexander and Zagier [2] showed how to calculate the “information dimension” in
the case where 8 =1/golden ratio and p = % As it turns out, the Hausdorff and information
dimensions coincide for the measures we consider here, but Alexander and Zagier did not
prove this. Their argument is very elegant, relating the dimension to properties of the
“Fibonacci tree” and thence to the Euclidean algorithm, but it does not seem to generalize
easily. (Although the authors claim that “it seems likely that the particulars will extend to
B;1” for B, as defined above, this is not readily apparent.)

The purpose of this paper is to characterize the Hausdorff dimension of Fj, as the
top Lyapunov exponent of a certain natural sequence of random matrix products. This
characterization is quite general: it is valid for every 6 such that 8 = 1/6 € (1,2) is a Pisot
number, and for all values of the Bernoulli parameter p. (The method is applicable even
more generally when the process €;,¢€,... is a k—step Markov chain taking values in an
arbitrary finite set of integers, but we carry out the details only in the case of Bernoulli
processes.) Moreover, although the matrices involved may have large dimensions (typically
increasing exponentially in m, where m is the degree of the minimal polynomial), they
are sparse, so numerical computation of the Lyapunov exponent masy be feasible for 1/6
of moderate degree. Small simulations give “nonrigorous” estimates that agree with the
estimate of Alexander and Zagier (which is accurate to the 4th decimal place) to 3 decimal
places, and for values of p ranging from .1 to .5 give estimates with accuracy to +.005.
Some of these numerical results are reported in section 8 below.

Acknowledgments. Thanks to IRENE HUETER for help with some of the numerical com-
putations and valuable conversations. Thanks to YUVAL PERES for the reference to [2],
and to BoRrIs SOLOMYAK for pointing the author to [9] after seeing an earlier version of
this manuscript.

2. DIMENSION AND ENTROPY: INFINITE BERNOULLI CONVOLUTIONS

For any probability distribution F’ on a metric space, one may define its (Hausdorff)
dimension §(F) to be the infimum of all d > 0 such that F is supported by a set of
Hausdorff dimension d. There is a simple and well known tool for calculating 6(F’), which
we shall call Frostmen’s Lemma.

Lemma 1. (Frostman) If for F—almost every =

rl0 logr
then 61 < 6(F) S (52.

Here B,(z) denotes the ball of radius r centered at z. The proof is relatively easy: see
[7], ch.1, problem 1.8 , or [22].

Application of the Frostman Lemma to a probability measure on the real line requires
a handle on the probabilities of “typical” small intervals. In our applications F' is the
distribution of a random sum X = ¥_¢€,0", and the value of X is (roughly) determined to
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within r by the sum of the first n terms of the series, where r =~ ™. Henceforth, for any
infinite sequence € = £1£5 ... of 0s and 1s we will write

(oo} n
z(e) = > exb* and zn(e) = Y exb”,
. k=1 k=1

and for any finite sequence € = 1€ .. .6, of length n > 1 we will write z,,(¢) = 3.7, €x6*.
Observe that for any n > 1 and every infinite 0-1 sequence ¢, z(¢) — z,(¢) < 6"+ /(1 - 6).
Consequently, if z,(e') = zn(¢) then [z(¢') — z(e)] < "1 /(1 — 6). In general, the converse
need not be true; however, if § is the inverse of a Pisot number then there is a weak
converse, discovered by Garsia [10]. Because this result is of central importance in the
ensuing arguments, and because the proof is rather short, we include it here. For the
remainder of the paper, the following assumption will be in force:

Assumption 1. § = 87! for a Pisot number 8 € (1,2) with minimal integer monic poly-
nomial p(z) of degree m.

Lemma 2. [10] (Garsia) There ezists a constant C > 0 (depending on ) such that for
any integer n > 1 and any two sequences € = €1,¢2,...,6, and &' = €}, €,,...,¢€, of zeroes
and ones, either
2n(€) = Tn(€)
or
|z, (e") — zn(€)] > CO™.

Proof. Suppose that ¢, ¢’ are 0-1 sequences such that 3%, ex8* # Y 7, €46%. Then F(8) #
0, where F(z) = Y.7_; 62" % and 8 = ex—e}. Note that F is a polynomial with coefficients
0,x1. Let 3; be the algebraic conjugates of 3; then for each ¢, F(5;) # 0, and

F(B) [1 F(8:) € 2.

Since each |B;| < 1 (8 is a Pisot number) and the coefficients of F' are bounded by 1 in
modulus, |F(8;)| < 1/(1—|B;|). Consequently,

1F(8) > JI(1 - 18) = C.
O

It follows from this lemma, that if z(¢') € B,(z(¢)) for r = 7*1/2(1 — 6) then there are
at most 2C + 1 possible values for z,(g’). There are, in general, many pairs of sequences
for which z,(¢) = z,(¢'): the separation bound in the lemma implies that there are only
O(6~") possible values of the sum, but there are 2" sequences of zeroes and ones of length
n (and 8~ < 2.) For each n the possible values of 2, (¢) partition the space ¥ of all infinite
sequences of Os and 1s: for any two sequences ¢,&’ € X, € and ¢’ are in the same element of
the partition iff z,(¢’) = z,(¢). Call the resulting partition P,. For any € € X let U(Pn,¢)
be the element of the partition P, containing £. Then for each € € ¥ and each value of the
Bernoulli parameter p the set U(P,,¢€) has a probability m,(¢) (for notational simplicity,
the dependence on p is suppressed). In the subsequent sections we will prove the following

Theorem 1. Foranyp € (0,1), if €1, €2, . .. are iid Bernoulli-p random variables then with
probability 1

2) a = lim (m(€))"
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ezists, is positive, and is constant.

The proof will exhibit the limit & = a(p) as the top Lyapunov exponent of a certain
sequence of random matrix products, providing an effective means of calculation. Note
that when p = %, the probability m,(e) is just 27™ times the cardinality of the equivalence
class. In this case the matrices may be chosen to have all entries 0 or 1, so numerical
computations are easiest in this case.

Using the close connection between the partitions Pr and the neighborhood system
B.(z(¢)), r = k8", we will prove the following formula for the dimension of the measure
Fyp.

Theorem 2. The Hausdorff dimension of Fyp is

(3)

This formula is an instance of the by now well known general principle “dimension X
expansion rate = entropy”: see [22] for more. However, the proof is not entirely trivial, even
given the result of Theorem 1: it relies on Garsia’s lemma, and therefore on the algebraic
nature of the ratio 8 = 1/6. In the special case p = %, Przytycki and Urbanski proved the
inequality & < log a/log8 and used it to deduce that 6 < 1, but did not establish equality.
Alexander and Yorke proved, again in the special case p = 1, that log a/log8 equals the
“information dimension” (also called the Renyi dimension) of F, which always dominates
the Hausdorff dimension, but did not prove equality with the Hausdorff dimension. Theorem
2 follows directly from Theorem 1 and Propositions 3-4 below.

It is worth noting here that the dimension 6(Fy;), considered as a function of p, is

symmetric about 1/2, i.e.,

log o
6= .
log 6

6(F0,p) = 6(F9.1—p)-

The proof is simple: If 1,€z, ... are i.i.d. Bernoulli (p), then €h,eh, ... are ii.d. Bernoulli
(1 — p), where & = 1 — ¢;. Consequently, if X = z(¢) has distribution Fy, then Y =
0/(1 — 8) — X has distribution Fy1_p. But the distributions of X and Y clearly have the
same dimensions, because Y is obtained from X by an isometry of the real line.

Proposition 1. If Fy, is singular with respect to Lebesque measure, then § < 1.
In fact this holds in even greater generality — see Proposition 5 below.

Proposition 2. If 8 is a Pisot number between 1 and 2, then Fy, is singular for every
p€ (0,1).

Proof. This follows by Erdés’ original argument. The Fourier transform of Fp, is easily
computed as an infinite product:

Foglt) = [ 64 Foplie) = TL(1+ plexplitt*} - 1)
k=1

Tt is obvious from this that for every ¢ € (—o0,00) and every n > 0,

Fop(871) = TT(1 + plexp{itB™™*} — ) Engld).

k=1



RANDOM SERIES IN POWERS OF ALGEBRAIC INTEGERS 5

Since 3 is a Pisot number, distance(8",Z) — 0 as n — oo at an exponential rate (see, e.g.,

[18], ch. 1). Consequently, for any t such that Fj,(¢) # 0 and such that exp{ét8"} # 1 for
all n >0,

Tim Fpp(87) = T] (1 + plexp{it8*} — 1) Fop(t) # 0.
k=0
Therefore, by the Riemann-Lebesgue lemma, Fy, is singular. O

Theorems 1-2 reduce the problem of computing the Hausdorff dimension of Fp, to that
of computing the “entropy” loga. This will be carried out in sections 4-8. It should be
noted that the entropy arises in connection with several other dimensional quantities, such
as the “information dimension”: see [1] and [2] for more on this. Before coming to grips
with the entropy, however, we will prove Theorem 2 and discuss certain generalizations of
the results of this section to a class of measures Fy , including the Fp .

3. DIMENSION AND ENTROPY: STATIONARY MEASURES

Let p be an ergodic, shift-invariant measure on the space X of infinite sequences €3, €2,...
of 0s and 1s. Define Fp , to be the distribution under p of X = }~22 ; £,0". Observe that
if p is the Bernoulli-p product measure, then Fy, = Fj,. The Bernoulli measures are not
the only measures of interest, however—for instance, there are measures p for which Fp ,
is absolutely continuous relative to Lebesgue measure. These measures were discovered
by Renyi [17] for the case § = 1/golden ratio and by Parry [13], [14] for the other Pisot
numbers.

As in the previous section, for each n let P, be the partition of X induced by the equiv-
alence relation ¢ ~ ¢’ iff 2,(¢) = z,(¢’). Note that these partitions are not nested. For
any sequence € let Uy(¢) be the element of P, that contains ¢, and let m,(¢) = p(Uyn(€)).
Similarly, for an arbitrary measurable partition P let U(P,¢) be the element of P that
contains ¢, and let 7(P,e) = u(U(P,¢€)). Define the entropy of the partition P by

H(P) = ~E,logn(P,e) = 3" ~u(F)log u(F).
FepP

Lemma 3. lim,_,., H(P,)/n = —loga exists.

Proof. For any integers n,m > 1, the partition P, V 6~"P,, is a refinement of P4, (here
o is the shift), because the values of z,(¢) and z,,(c"¢) determine the value of z,4m(€).
Hence, as a refinement, it has the larger entropy. But by an elementary property of the
entropy function,

H(P,V o™ "Pp) < H(Pp)+ H(Pn)
(see [21], sec. 4.3). Thus, H(P,) is a subadditive sequence. O

Lemma 4. For every n > 1, liminfj_, Wnk(e)% > e HPn) ge. p.

Proof. First, recall that the entropy h(¢™,P,) of the partition P, with respect to the
measure-preserving transformation o™ is defined by
1

h(o™,Pa) = lim ZH (Vi o™P,) < H(Py);

see [21], ch. 4. for details. By the Shannon-MacMillan-Breiman theorem ([15], ),

Jim L log w(ViSo TPy, €) = h(o™, Py)
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a.e. (u). But Vf;(}o_"i'Pn is a refinement of Py, so

Tnk(€) > W(Vf'&a""i'Pn,a),

proving the lemma. (.
Conjecture 1. For any ergodic, shift-invariant probability measure p on %,
(4) lim rn(a)% = a almost surely(u).

For the special case in which y is the product Bernoulli-p measure, this is Theorem 1, and
will be proved in sections 4-8 below. A modification of the argument (which we shall omit)
shows that the conjecture is also true for any u making the coordinate process €1,¢2,... a
stationary k—step Markov chain.

Proposition 3. For each ergodic, shift-invariant probability measure p on X, the dimen-
sion § of Fy , satisfies

log a
< .
bs log 6
Proof. By the Frostman lemma, it suffices to show that for z in a set of Fy ,—measure 1,
. . olog Fy (B, (z)) loga
2 <
(5) ]'Hrn-+1(1)1 f logr = log8’

and, by a routine argument, it suffices to consider only r = k0™ for some fixed constant
k > 0, a fixed integer n, and k = 1,2,---. If ,£' are in the same element of the partition
Pk, then |z(e) — z(e')| < 9™+ /(1 — 6); consequently, if kK = 26/(1 — ) then for every €’
in U(Ppk,¢), 2(¢') € B(z(g)). Therefore, Fy ,(Br(z(€))) > mni(e), and so (5) follows from
the two preceding lemmas. O

Proposition 4. For any ergodic, shift-invariant measure p on X for which (4) holds almost
surely with respect to p, the Hausdorff dimension of Fy , satisfies

_loga

b= log 6"

Proof. The inequality § < loga/log# has been proved in Proposition 3 above. Thus, it is
enough to prove the reverse inequality. By Frostman’s lemma, it suffices to show that for
all z in a set of full Fy ,—measure,

(6) lim inf log Fy,,(B-(2)) > loga'
r—0 logr log 8

By a routine argument, it suffices to prove this for the sequence r = §".

Let ¢,¢’ be arbitrary sequences of Os and 1s. In order that z(¢’) € B,(z(¢)) for r = 67,
it is necessary that |z,(¢') — z,(¢)| < k0", where Kk = 1+ 2/(1 — 6). Consequently, for any
fixed sequence ¢ = €1€5... of 0s and 1s and for any r = ™,

Fy,u(Br(2(€))) < pale),
where
pn(€) = ple’ ¢ |zn(e') — @n(e)] < KO}
Here ¢ is fixed (nonrandom). Note that pr(e) > mn(e).



RANDOM SERIES IN POWERS OF ALGEBRAIC INTEGERS 7

Now let € = g1€2--- € X be random, with distribution u. By the Chebyshev inequality,
for each 7 > 0 and each n > 1,

n -n n 2
plon(®) 2 (L4 10 ma(e)) < (14 ) "B (25,
We will argue below that there is a constant C, < oo such that for all n, E,(pr(€)/mn(€)) <
C«. It will then follow that for every > 0, 3., p{pn(€) > (1 + n)"7r(€)} < oo, and
consequently, by the Borel-Cantelli lemma, that with u—probability 1, p,(e) > (1+9)"T,(€)
for at most finitely many n. But this will imply that, with probability 1,
nh—rn(}o pn(e)l/" = nl-l—yngo ””(8)1/71 =
Since p,(¢) is an upper bound for Fy ,(B,(z(€))), r = ", this will prove (6).
So consider E,(p,(g)/mn(€)). By definition of p,(e),

E, (Pn(g)) — Z E (),

™)) L) ener

where the outer sum is over all possible values of z,(¢) and the inner sum is over those
values of z,(¢') such that |z,(¢') — zn(€)| < k0" (only one representative sequence ¢’ is
taken for each such value). But by Garsia’s lemma, each value of z,(¢’) appears in the
inner sum for at most C, distinct z,(¢), for some C, < oo independent of n. Therefore,

E, (””(5)> <C. 3 ale) = Cu

() Zn(e)

O

Proposition 5. Let p be an ergodic, shift-invariant probability measure on X. If Fy, is
singular with respect to Lebesgue measure, then § < 1.

Proof. This is an adaptation of the arguments of [11] and [16]. By Proposition 3, it suffices
to show that —loga < —log#. For this it suffices to show that for some n > 1,

H(Pn)/n < —log,

because (see Lemma 3 and its proof) H(P,) is a subadditive sequence such that H(P,)/n
converges to —loga as n — oo.

Recall that the elements of the partition P, are in 1-1 correspondence with the possible
values of the sum z,(¢) = -7 g;07, where €163 . .. &y, is a 0-1 sequence. Hence, by Garsia’s
lemma, there are at most C'8~" elements of P,, for some constant C’ < oo independent
of n. Now the hypothesis that Fy , is singular, together with Garsia’s lemma, implies (by
the same argument as in [16]) that the probability measure p|P, is highly concentrated on
a subset of P,, of much smaller than the cardinality of P,: in particular, for every n > 0
there exists an n and a subset Q, C P, such that

#Qn/#Pr <7
and
p(Ure@ F)=1-p>1-1.
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Consequently, with = 1 — p,

H(Po)=— Y w(F)logu(F)— Y, p(F)logu(F)
Fe@n FEPn—Qn

< plog(#Qy) — plogp + plog(#(Pn — Qn)) — plogp
<log#~" 4 plogn + log C' — plogp — plogp.

Here we have used the estimates #P, < C'6~™ and #Q, < C'707", and also the fact
that for a given partition, the probability measure that maximizes entropy is the uniform
distribution on the partition. Now p < 1 and # > 0 may be chosen arbitrarily small. Since
zlogz + (1 — z)log(l — z) — 0 as ¢ — 0, the last two terms of the upper bound may be
made arbitrarily small. The term log C’ is independent of 1 and p. Hence, by choosing
0 < p < n very small, we may make plogn + log C’ much less than 0. It follows that for
sufficiently large n, H(P,) < —nlog#. O

4. EQUIVALENT SEQUENCES

In section 2 we reduced the problem of computing the Hausdorff dimension of the mea-
sure Fy, to that of computing the entropy «, which is essentially the same as problem
of estimating probabilities of equivalence classes. Thus, we must find an effective way to
tell when two sequences are equivalent. Recall that for fixed @ the equivalence relation is
defined as follows: two sequences € and € of zeroes and ones of length n are equivalent
iff z,(e) = z,(¢'). More generally, say that two length-n sequences ¢,¢’ of integers are
equivalent iff "7, 8% = Y7 €, 6%.

Let p(2) be the minimal polynomial of # = 1/6, and assume that it has degree m and
leading coefficient 1. The relation p(3) = 0 may be rewritten by moving all terms with
negative coefficients to the other side, yielding an identity between two polynomials in 8 of
degree m with nonnegative integer coefficients. This equation translates to an equivalence
between two distinct sequences € and € of nonnegative integers of length m 4 1: we will call
this equivalence the fundamental relation. Thus, for example, if 3 is the golden ratio, the
fundamental relation is

100 ~ 011,

reflecting the fact that the minimal polynomial of the golden ratio is 2 — z — 1. Note that
there are Pisot numbers 3 between 1 and 2 such that the sequences in the fundamental
relation have entries other than 0 and 1: for instance, the leading root 8 = 1.755- - - of the
cubic p(z) = z% — 22% + z + 1 is a Pisot number with fundamental relation 1011 ~ 0200.
But observe that if ¢ ~ ¢’ is the fundamental relation, then the first entry of € is always 1
and the first entry of ¢’ is 0.

Let ¥ = 1172 .. .7 and 4" = 174 ...}, be arbitrary sequences of integers, and let € ~ €’
be the fundamental relation. We will say that 4’ can be obtained from v by applying the
fundamental relation k times in the (m + 1)—block starting at the Ith entry if v; = 7; for
all j except j =1,1+1,...,1+m, and vy + ke, = ], + ke; forall j =0,1,...,m. Here
€ = €gE1...6m and &' = gle} ...€l,, and k may be any integer. In general, if a 0-1 sequence
€ of arbitrary length n > m + 1 may be obtained from another sequence € of the same
length by repeatedly applying the fundamental relation to various (m + 1)—blocks (strings
of m + 1 consecutive entries), then ¢ ~ ¢. For example, when § is the golden ratio the
sequences 100011 and 011100 are equivalent, because one may obtain the second from the
first by the chain of substitutions 100011 — 100100 — 011100.
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Proposition 6. Two sequences ¢ and € of length n are equivalent iff ¢ may be obtained
from € by applying the fundamental relation repeatedly to blocks of length m + 1, starting at
the left and ending at the right.

The stipulation that the substitutions be made left to right will be crucial. However,
it should be noted that in general it is not possible to make the substitutions in order
and have all of the intermediate sequences be sequences of zeroes and ones, even when the
sequences ¢, ¢’ in the fundamental relation ¢ ~ ¢’ are 0-1 sequences. For example, when the
fundamental relation is 100 ~ 011 the sequences 10100 and 01111 are equivalent, the chain
of substitutions being

10100 — 01200 — 01111.

Moreover, the proposition does not state that the fundamental relation is applied only once
at each block of length m + 1: in fact, it may be that one must use it more than once in
a given direction, e.g, changing 200 to 0(-1)(-1). Later we will prove certain restrictions on
the substitutions that can occur at a given (m+ 1)—block. Finally, one should bear in mind
that the sequences are merely shorthand for sums 2?:1 ejej .

Proof. The sequences € and ¢ are equivalent iff § satisfies the polynomial equation
n
Z 5k$k = 0,
k=1

where 6 = € — €,. This happens iff § is a root of the polynomial f(x) = Yk Spam k.
Since p(z) is the minimal polynomial of 8, p divides f in the polynomial ring Z[z], i.e.,
there exists a polynomial g(z) = 372" b;z? with integer coefficients b; such that f = pg.

The coefficients of g(z) provide the schedule of substitutions. The jth coefficient b; tells
how many times to apply the fundamental relation to the (m + 1)—block starting at the
( +m+1)th entry from the right; the sign (+ or —) tells whether the fundamental relation
should be applied in the forward or the backward direction. This is best illustrated by
a simple example: let the fundamental relation be 100 ~ 011 (8 = golden ratio), and
let € = 10100 and ¢ = 01111. Then f(z) = z* — 2% — z — 1 and g(z) = «® + 1. The
quotient polynomial g has coefficients +1 in the 0th and 2nd positions; these indicate that
the substitution 100 — 011 should be made once to the block at the extreme left and once
to the block two positions in, i.e., 10100 — 01200 — 01111.

That the quotient polynomial g(z) does in fact provide a left-right sequence of substi-
tutions in every case is easily proved by induction on n. We prove a more general state-
ment: if ug, ug, ..., U, and vy,v,..., v, are equivalent sequences of integers (meaning that
f(8) = X3 (u; — v;)™ = 0) then g(z) = f(z)/p(x) provides a correct left-right sequence
of substitutions. The statement is clearly true if n = m, because in this case f is an integer
multiple of p, as p is the minimal polynomial of #. Suppose it is true whenever n < N,
and let wq,us,...,u, and v1,vs,...,v, be equivalent sequences of length n = N. If the
leading term of g(z) is by—m—1 then clearly u; — v1 = by;m—1. (NOTE: Here we use the
fact that G is an algebraic integer — this guarantees that the leading term in the minimal
polynomial has coefficient 1.) Consequently, if one makes b,_r, substitutions of the fun-
damental relation in the leading (m + 1)—block of uy,us,...,u, one obtains an equivalent
sequence wi,ws,...,w, whose leading entry is vi. But wy,ws,...,w, and v1,v2,...,%n
are equivalent sequences with the same first entry, so wg,ws,...w, and vy,vs,...,v, are
equivalent sequences of length n — 1. The induction hypothesis now implies the result. [J
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Corollary 1. Suppose that € ~ ¢ are equivalent sequences of length n. Let f(z) =
Sro1 k™ 7k, where 6k = e, — €}, and let g(z) = i bjz? = f(z)/p(z). Then e may be
obtained from ¢ by applying the fundamental relation b; times to the (m + 1)—block starting
at the (j + m + 1)th entry from the right, in the order j =n—m,n—m—1,...,0.

We will call the sequence of transformations described in this corollary the canonical
transformation taking ¢ to €’. It produces (n — m — 1) intermediate sequences

W @ glnmm-1)

In modifying () to obtain ¢(**1), only entries in the (m 4 1)—block starting at the (i +1)th
entry are changed; since these (m + 1)—blocks move left to right one unit at a time, it
follows that

(a) the first i entries of () agree with corresponding entries of ¢’; and
(b) the final n — i — m entries of () agree with the corresponding entries of ¢.

In particular, only those entries of £® in the m—block starting at the (¢ + 1)th entry can
be different from 0 or 1. Neither Proposition 8 nor Corollary 2 implies that the entries of
m—Dblocks arising in intermediate sequences of canonical transformations are bounded — in
principle, there could be infinitely many possible such m—blocks. In the next section, we
shall show that in fact there are only finitely many possibilities, and give an algorithm for
identifying them.

5. ADMISSIBLE m—BLOCKS

Define an admissible m—block to be an m—block (a sequence of m integers) that occurs
in some intermediate sequence in a canonical transformation of some sequence € of 0s and
1s to an equivalent sequence €’ of 0s and 1s, and define

A = { admissible m—blocks }.

The matrices My, M that will appear in the random matrix products used to character-
ize the entropy « (see Theorems 3-4 below) will have rows and columns indexed by the
admissible m—blocks. In this section we shall verify that A is finite and give an effective
procedure for identifying its elements.

Proposition 7. |A| < co.

We know two proofs, one based on Garsia’s lemma, the other on the following result, a
special case of Proposition 2.5 of [9] (which is attributed to J. P. Bezevin). We reproduce the
proof, because it provides an explicit bound for the size of entries of admissible m—blocks
(see Corollary 2 below).

Proposition 8. Assume that B is a Pisot number. Then there exists a positive inleger
C < oo with the following property: For any polynomial f(z) with coefficients 0,1, —1 such
that p|f in the ring Z[z), the coefficients b; of the quotient polynomial g(z) = f(z)/p(z) =
iso b;z? are bounded in modulus by C. Furthermore, if 8 = B1,P2,.-.,Bm are the roots
of p(z), then we may take C = [C'], where [-] denotes greatest integer and

¢ ¢'= (- gy - 18
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Note: Since the coefficients b; of any such quotient polynomial are integers, it follows that
they are elements of the finite set {-C,-C +1,...,C - 1,C}.

Proof. The argument, in brief, is as follows. Say that a polynomial P(z) has the bounded
division property if for each real a > 0 there exists a constant C, < oo such that for any
polynomial F(z) = " ,a;z' € C[z] with coefficients a; bounded in modulus by a, if
P(z)|F(z) in the ring C[z], then the coefficients of the quotient polynomial F(z)/P(z) are
bounded in modulus by C,. Call the assignment ¢ — C, an ezpansion function for P(z).
It is easily seen that if Py(z) and Py(z) both have the bounded division property, then
so does their product P; P, and the product has expansion function a — C(a) satisfying
C(a) < CW o C?)(a), where C()(-) and C?)(.) are expansion functions for P, and P,
respectively. It is also easily seen that any linear polynomial of the form z — o has the
bounded division property iff |a| # 1, and that in this case an expansion function is

Co=(1-la))la if |o| < 1;
=(1-|of™H e if |a| > 1.

Therefore, a polynomial P(z) € C[z] has the bounded division property iff it has no roots
on the unit circle.

Since 8 is a Pisot number, its minimal polynomial p(z) has no roots on the unit circle.
Thus, it has the bounded division property. In fact, 8 = By > 1 is the only root outside the
unit circle, so the results of the previous paragraph imply the bound (7) for the constant
C =10 O

Corollary 2. Assume that 8 is a Pisot number. Let H be the mazimum of the absolute
values of the coefficients of the minimal polynomial p(z). Then the entries of admissible
m—blocks are bounded in modulus by C., where

(8) Co=CHm+CH +1;
here C is the constant in (7) and m is the degree of the minimal polynomial p(z) of 3.

Proof. Consider the sequence of transformations specified in Corollary 1. The fundamental
relation is applied b,_,, times at the leftmost (m + 1)—block of ¢; then b,_,,41 times at
the leftmost-but-one (m + 1)—block of the resulting sequence; etc. The integers b; are
the coefficients of a quotient polynomial f/p, where f has all coefficients in 0,—1,1, so by
Proposition 8 each b; satisfies |b;] < C. Applying the fundamental relation once (either in
the forward direction or the backward direction) changes entries by at most H (in absolute
value), so applying it b; times changes entries by at most CH. Moreover, an entry is
changed only if its position is in the current (m + 1)—block. Since no position is in the
current (m + 1)—block more than m + 1 times, it follows that the maximum amount by
which it can be modified is no more than CH(m + 1). Therefore, since the entries of the
original sequence ¢ are either 0 or 1, entries in intermediate sequences cannot be more than
14+ CH(m+ 1) or less than —CH(m + 1).

O

Next, we discuss the problem of explicitly enumerating the set A of admissible m—blocks.
By Corollary 2, A is contained in the set of m—tuples with entries in {—Cy, —C\+1,---,Ci}.
Unfortunately, even for Pisot numbers of small degree m, CT* may be fairly large compared
to the cardinality of A (see the table below) and so a brute force search of the set of all such
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m—tuples may be needlessly lengthy. A much more useful test seems to be that provided
by the following lemma.

Lemma 5. Ife =¢€1€2...6p 8 AN admissible m—block, then

m
—(1-0)1 <Y e <om(1-6)7

i=1
Proof. If an application of the fundamental relation changes a sequence 8163 . . . 6, of integers
to an equivalent sequence 6165 ...6,, then 6,60 = EJ;Oj. Now recall that admissible
m—blocks occur only in intermediate sequences of canonical transformations of equivalent
sequences of 0s and 1s, and that in these canonical transformations, the fundamental relation
is applied repeatedly, left to right. Consequently, if ¢ = €163 .. . 15 a0 admissible m—block
such that Z}";l ;00 > Y 97, then the “excess” ) =y €07 — Y= ¢’ cannot be greater
than }°72,6077, because this excess must eventually be “transferred” to the right of the
m—block. Similarly, if 3772, € ;07 < 0, then this “deficiency” cannot be less than — 3224 67,
because it must eventually be compensated by the terms to the right of the m—block. U

Thus, A C B, where B is the set of all m—blocks with entries bounded in modulus by C.
such that the inequalities of Lemma 5 are satisfied. Let b = b1bz .. .b,, and b’ = bidh...b;,
be elements of B. Write

b— b
if b’ can be obtained from b by (1) appending either a 0 or a 1 to the end of b, then (2)
applying the fundamental relation to the resulting (m + 1)—block either —b; or ~by + 1
times, and finally (3) deleting the entry at the beginning of the transformed (m + 1)—block.
For example, if the fundamental relation is 100 ~ 011, then 20 — 12 (20:201:112:12), but
21 / 01. Observe that for a given m—block b there are at most 4 m—blocks b’ such that
b — b’

Lemma 6. An element b of B is an element of A if and only if there is a finite chain
b p@ .. b o eer — pE)
in which both endpoints b® and bE) are sequences of 0s and 1s.

Proof. This is a direct consequence of Corollary 1 and the discussion following. The
fundamental relation can be applied either —b; or —b; + 1 times, because the resulting
(m + 1)—block will begin with either a 0 or a 1. O

Similarly, write b = b’ if b’ — b. Note that b 5 b’ iff b’ can be obtained from b by
(1) prepending either a 0 or a 1 to the beginning of b, then (2) applying the fundamental
relation to the resulting (m +1)—block either —by, or —bm 41 times, and finally (3) deleting
the entry at the end of the transformed (m + 1)—block. Again, for a given m—block b there
are at most 4 m—blocks b’ such that b Iy b’. Moreover, the conclusion of the preceding
lemma holds with all the arrows — replaced by 5.

We may now give an algorithm for determining the admissible m—blocks.

Algorithm:Set A’ to be the set of all m—blocks with 0-1 entries. Update A’ by appending
to it the set of all b’ € B such that for some b € A’, b = b'. Continue updating A’ in
this manner until it stabilizes. Nezt, set A" to be the set of all 0,1 m~—blocks. Update A"
by appending to it the set of all b’ € BN A’ such that for some b € A", b 5 b, Continue
updating A" in this manner until it stabilizes. Finally, A= A".
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Following is a table of all Pisot numbers between 1 and 2 of degree < 4 whose minimal
polynomial has coefficients < 2 in absolute value, together with the cardinality of A and
the value of C,.

B |p(z) |A[ | Cu(B)
1618 |z —z — 1 8 21.6
1325 (22 -2 — 1 200 | 949.5
1.466 | 23 — 22— 1 68 417.0
1.755 | 23 — 222 4 2 — 1 28 310.5
1.839 |23~ 22—z 1 14 128.1
1.380 | z* — 23 — 1 1702 | 28288.8
1.866 | z* — 223+ 2 — 1 92 3535.6
1.905 | z* — 23 — 222 + 1 154 | 4790.6
1928 |zt — 23 — 22 —2 -1 |24 1398.2

The following result will not be needed in the analysis to follow, but it is essentially
equivalent to Proposition 7.

Proposition 9. There is a deterministic finite automaton M such that the language ac-
cepted by M is the set of all finite sequences v = ¥17y3...7n with entries y; = (&4,€}) such
that € ~ ¢, where
£ =E&1€2...€&p,
e =¢eleh. . .el.
See [12], sec. 2.2 for the definition of a finite automaton and the language it accepts.

6. COUNTING EQUIVALENCE CLASSES BY MATRIX MULTIPLICATION

We will now show that the cardinality of the equivalence class of a given sequence of
zeroes and ones may be represented as a certain natural matrix product. Two matrices,
which we shall call My and Mj, are involved in these products. The rows and columns are
indexed by the set A of admissible m—blocks. By the results of the preceding section, if
B = B, is one of the simple Pisot numbers, then the admissible m—blocks are the sequences
of length m with entries in {—1,0,1,2}, subject to the restrictions (1) any 2 that occurs
must be followed only by Os and preceeded only by 1s; and (2) any —1 that occurs must be
followed only by 1s and preceeded only by 0s. Note that for the case of the golden ratio (3
there are 8 such sequences:

(0,0) (1,0)
(0,1) (1,1)
(1,2) (0,-1)
(2,0) (-1,1)

Entries of the matrices M; are zeroes and ones; they indicate whether transitions between
the various m—blocks can be made when 7 is the entry immediately to the right of the current
m—block. Allowable transitions may be described as follows: (1) If the leading entry of the
current m—block is a 0 or 1, the transition that concatenates 7 to the m—block at the end
and deletes the initial entry is allowable. Thus, for example, when 8 = B2, the transition
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(1,0) — (0,%) is allowable. (2) A transition that concatenates : to the m—block at the
end, then applies the fundamental relation an integral number of times to the resulting
(m+1)—block, then deletes the initial entry is allowable iff the deleted entry is a 0 or 1 and
the resulting m—block is admissible. For example, when 8 = f;, if i = 1 then the transition
2,0 — 1,2 is allowable, but 2,0 — 0,1 is not, because the deleted initial entry in the latter
case would be a 2, nor is 1,1 — 2,2, because 2,2 is not an admissible m—block.

Note that although the matrices are large (8 by 8 in the case of the golden ratio and
correspondingly larger for the other §,,) they are “sparse’: for each block b and each ¢ = 0,1
there are at most two blocks 4’ such that the entry M;(b,b') is 1. Thus, to describe M; it is
easier to make a list of allowable transitions than to write out the entire matrix.

Example: 8 = 3,.

Following is a table showing the allowable transitions.

My M,

From To From To
(0,0) 1 (0,0) (0,0) | (0,1)

(0,1) | (1,0) (0,-1)[(0,1) [ (L,1) (0,0)
(1,0) 1 (0,0) (1,1) |(1,0) |{(0,1) (1,2)
(1,1) |1 (1,0) (1,1) |1 (1,1)

(2,0) || (1,1) (2,0) | (1,2)

(1,2) || (2,0) (1,2)

(01'1) (Oa'l) ('1a1)
('lal) (Oa'l) ('171) (070)

Notice that in My there are no allowable transitions from the m—block (0,—1). This is
because a —1 must always be followed by a 1 in an m—block. But notice also that there is
an allowable transition from (0,—1) in the matrix M.

Proposition 10. Let € = €;€3...€,4m be an arbitrary sequence of zeroes and ones. Then
the number of sequences of zeroes and ones equivalent to € and ending in the m—block
by = €i¢€)...€,, is the (by,by)th entry of the matriz product M, M.,...M.,,., where
bo = €1€2...€y.

It obviously follows that the total number of 0-1 sequences equivalent to € is the sum
over all m—blocks b; of the (o, by)th entries of the matrix product M. ., M, .M.,

€m41 Cm42 *

Proof. We prove a slightly more general statement, specifically, that for any admissible
m—blocks by, by the bg, byth entry of M., .. M.,.,...M,_,. is the number of allowable left-
right transformations of the sequence bo€m+1€m42 - - . €ntm ending in a sequence whose first
n entries are Os and 1s and whose last m entries are the m—block b;. The proof is by
induction on n > 1. The case n = 1 is easily checked: the matrices My and My were defined
in such a way that this would be true.

The induction step is also easy. Assume that it is true for all integers < n and let
€ = €1€2 ...€p4m be a sequence of Os and 1s. Then we know by the induction hypothesis that
the number of canonical (left-right) transformations of the sequence bo€m41€m+42 - - - €ntm—1
that move the “cursor” n — 1 steps to the right and result in a sequence beginning with
n —1 0s and 1s and ending in a given block b is the b, bth entry of M., ,, ... M., .. ,. To
obtain the number of canonical transformations of b€y 41€m12 - . . €, that move the cursor
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n steps to the right and transform the final m—block to by, partition the count by the
possible values of the next-to-last m—block b (when the cursor is 7 — 1 units to the left).
Regardless of the steps taken to reach b the number of ways to go from b to by is given by
the b, bth entry of M.,,,,, again by the induction hypothesis. (Note: Once the first n — 1
steps of the substitution sequence have been made, the first n — 1 entries of the resulting
transformed sequence play no further role, since the cursor has now moved to their right.
Therefore, even though different substitution sequences may result in transformed sequences
with different initial (n — 1)—blocks, as long as they result in the same m—block b to the
right of the cursor the number of ways to complete the transformation will be the same for
each.) Finally, summing over all possible m—blocks b and using the definition of matrix
multiplication one obtains the desired equality, completing the inductive phase of the proof.

O

1t now follows that the asymptotic behavior of the random variables 7n(€) when €1, €2,. ..
is a sequence of iid Bernou]]j-% random variables is determined by that of the random maftrix
product

M, = Mep, Mepnys - - Mo,

The asymptotic behavior of these random matrix products is in turn described by the
Furstenberg-Kesten theorem ([8]; also [3], ch. 1). This theorem implies that

) 1im Droglimal = »

where
1
A= lim —Elog |||

is the “top Lyapunov exponent” of the sequence IL,. Neither the convergence nor the value
of A is affected by the choice of norm.

If the entries of II,, were eventually positive, with probability 1, then not only the norm
but also the individual entries would grow exponentially at the rate A. This is not the
case, however. For example, examination of the entries of My, My in the case 8 = [, (see
above) shows that the (1,1) and (1,0) columns of II,, cannot both have positive entries. But
the (Euclidean) norms of the rows do grow exponentially at rate A, as the following result
shows. For any b € A, let up, be the vector with bth entry 1 and all other entries 0.

Proposition 11. For each b € A,

. ’ ES A
Jim Tl = ¢

Proof. First, we will argue that for each pair b,b’ of admissible m—blocks there exists
a sequence 4143 ...i; of Os and 1s such that the b, b’ entry of M;, M;, ... M;, is positive.
Write b — b’ if there is such a sequence. Let b, b’ be arbitrary admissible m—blocks. By
definition of A, for each b € A there exist m—blocks b”,b” with 0-1 entries such that
b — b" and b” — b. Consequently, it suffices to prove the contention only for pairs
of m—blocks b, b’ with all entries in {0,1}. But if b,b’ have only 0-1 entries, then it is
certainly true that b — b’, because all the m~blocks in the concatenation bb’ are 0-1
m—blocks and are therefore admissible, and hence, if b’ = i1é3.. .1, then the b, b’ entry
of M; M;, ... M;, is positive.
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Next, we will argue that with probability 1 there exists an admissible m—block b (possibly
random) so that

(10) lim inf [Ju Tl > > €.

Since the entries of I, and up, are all nonnegative, and since Y ¢ 4 ub is the vector with all
entries 1, it follows that || Y _pc4 upIIn|| > ||II,||. Consequently, by the Furstenberg-Kesten
theorem, there exists an admissible m—block b such that

lim sup [|ub I [|% > €.
n—+00
But since ||IIn||% — ¢*, an elementary argument shows that lim sup may be replaced by
liminf in the above equation.

The proposition follows from the results of the last two paragraphs. Choose an admissible
m—block b, such that, with positive probability, (10) holds for b = b,. Fix any b € A;
then by the result of the first paragraph (and the fact that the matrices in the product II,,
are iid) there exist (random) N3 < N3 < --- such that the b,th entry of u{)HN]. is > 1.
Hence, for each j =1,2,... and each n > 1,

”u{)HNj+n” 2 ”u’i).Hj_\_I:HNj+n”.

Now consider the sequence of sequences {u{)*II;,;HNﬁn}nZl, for j = 1,2,.... By the
Kolmogorov 0-1 Law, this sequence is ergodic, since the invariant oc—algebra is contained in
the tail o—algebra of the sequence ¢y, €3, . ... Moreover, by the choice of b,, the probability
that (10) holds for any one of these sequences is p > 0. Consequently, by the Birkhoff
ergodic theorem, with probability 1 there exists 7 > 1 such that

o - 1 A
lim inf [|up, T TN, 40" 2 €.
The proposition now follows directly from this and the last displayed inequality. O

Let Ag be the set of all admissible m—blocks with only 0-1 entries, and let » = Y beA, Ub-
Let 1 = 37 4 ub be the vector with all entries 1, and let w = 1 — .

Corollary 3. For each b € A,

. ! L A
nlingo(ubﬂnv)n =e .
Proof. Recall that for each b € A there exist a finite 0-1 sequence iy, = #143...75 and an
admissible m—block b’ with 0-1 entries such that the b, b’ entry of M;, M;, --- M;, is > 1.
Moreover, there exists K < oo such that the length J of the string i}, satisfies J < K for
all b € A, because there are only finitely many b € A.

Let u be a vector with nonnegative entries, not all 0. For each & > 1 let b(*) € A be
such that the b(*) entry of w/Il; is maximal. (Note that b(*) is random.) For each k > 1
it may happen, with probability at least 27K, that ez, = 1; V1 < 7 < J, where ¢132...%7
is a 0-1 sequence as in the previous paragraph, for b = b(¥). Denote this event by Gy.
Since P(Gy) > 27K for each k, and since the events Gx,Gak,... are independent, the
Borel-Cantelli lemma implies that

P ((UizK zGx)" i0.) =0,
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We will argue that on the event UZ;TIL{_ ﬁGk,

!
(11) W > —— (207 I
Al max,_./p<k<n T L |

This will prove the corollary, because by the preceding proposition ||u'IIn||1/ n > e*, and by
Lemma 7 below,

lim su max ;' %<1.
p_max I <

n—oo n—

On the event G, there is at least one b’ € Ag and 1 < J < K such that the b’ entry of
/Mg, is at least as large as the b(*) entry of w/'Il;. Since b’ € Ag, there is at least one
b” € Ag such that the b’,b” entry of l'[;_il_ 7, is > 1. Consequently,

w'T,v > w' gy gup
> ' Tpug e
> |lu'Tl}/|Al,

the last inequality because of the choice of b}, On the other hand, no entry of «'Il, can
be larger than ||u/'Tlg|| || 15 II,||, and hence

[/ TLa]} < JAJ® (| Te | (1T T
The inequality (11) follows from the last two displayed inequalities.

Lemma 7. limsup,_,, MaX,_ /m<k<n ||H;1Hn||% <1l

Proof. Recall that the random matrices M., can assume only two values, so E|| M|l = p <
oo. Now each H,:llln is the product of independent copies of M, , so foranyn—+/n<k<n
and any ¢ > 0, Markov’s inequality implies that

P{II; || > (14)"} < pV"(1+) ™"

The probability that {|II; 'II,|| > (1 + )" for some n — V1 < k < n cannot be more than
\/n times this. Because }_, VipY™(1+¢€)™™ < o0, it follows from the Borel-Cantelli lemma
that with probability 1,

max (G| > (1+ )"

n—

for only finitely many n. g

Theorem 3. Let \ be the top Lyapunov ezponent for the sequence I, of random matriz
products defined above. If ¢ = €1€2... where €1,€2,... are i.i.d. Bernoulli—% then with
probability 1

. 1 1 A
(12) Lim ma(e)n = g€ =
Note: This proves Theorem 1 in the special case p = %

Proof. By Proposition 10, the cardinality of the equivalence class of €1€3...6n i8 up I,
where b = £162...6m. Consequently, m,(¢) = 27"uj,Il,v. By the preceding corollary,
Tn(E)/™ — /2. O
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7. CALCULATING THE WEIGHT OF AN EQUIVALENCE CLASS

For values of p other than -;— the probabilities 7,(¢) cannot be obtained merely by enu-
merating the equivalence classes of the various sequences. Nevertheless, it is still possible
to represent them in terms of a matrix product, with matrices similar structurally to those
used to enumerate the classes.

Let € = €1€3....€, be a given sequence of 0s and 1s; its probability under the Bernoulli-p
measure is p5()g"—5() where S (e) = Y7, & is the number of 1s in €. Observe that not
all sequences of length n equivalent to ¢ have the same probabilities: for instance, when
B = 32 the sequences 100 and 011 are equivalent, but the first has probability pg? while the
second has probability p?q.

Suppose in general that € ~ €'; then by Corollary 1 there is a sequence of left-right substi-
tutions based on the fundamental relation, some positive and some negative, transforming
€ to €. Every time a single positive substitution is made, the likelihood of the sequence is
multiplied by the factor (p/q)", where & is the number of 1s on the left side of the funda-
mental relation minus the number of 1s on the right side. This is because each time the
fundamental relation is applied (in the positive direction) there is a net increase of x in the
number of 1s and a net decrease of x in the number of 0s. Similarly, every time a single
negative substitution is made, the likelihood is multiplied by (g/p)*. Hence the likelihood
of € is p times the likelihood of €, where p = (p/q)V* and N is the total number of positive
substitutions minus the total number of negative substitutions in the transformation from
€to¢e.

In the last section we defined matrices M; with 0-1 entries to indicate whether transfor-
mations between different m—blocks could occur when the entry to the right of the block
was i. We found that the entries of products of these matrices give the number of ways to do
substitutions left to right on the original sequence and arrive at given m—blocks. If we want
to tally total likelihood (relative to the parameter p) instead of cardinality, then instead
of 1s as entries we should put a positive number indicating the (multiplicative) effect on
likelihood. Thus, we redefine the matrices My and M; as follows: For admissible m—blocks
b and b’ let the (b,5')th entry of M; be zero when the transition b — b is not allowable;
p'q' ™" when the transition is allowable and no substitution is made in the transition; and
p'¢'~* X v when the transition is allowable and a substitution is made, where v = (p/q)"*
and [ is the number of substitutions made in the transition (I may be positive or negative).
For example, when 8 = 5, K = —1, so the nonzero entries of My and M; are as given in
the following table:

My M
From | To Entry || From | To Entry
(0,0) [(0,0) 1 ¢ [1(0,0) [(0,1) [
(0,1) 1 (1,0) | ¢ [ (0,1) [(L,1) | »p
(071) (07'1) q2/p (0’1) (170) q

(1,0) [ (0,0) | ¢ |1(1,0) [(O,1) | p
(1,0) (1>1) P (1’0) (172) pz/q
(L1) [ (1,0) | ¢ |1 (L1) [(LY) | »p
(2,0) [ (1,1) p | (20) | (1,2) | P*/q
(1L,2) [(20) | ¢ [(1,2)

(07'1) (07'1) ('lal) p

('151) (05'1) q2/p ('171) (0,0) q
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Note that the positive entries occur in exactly the same locations as for the matrices defined
in the previous section. The (0, —1) row of M, has no nonzero entries, since there are no
allowable transitions from this 2—block when the next entry of the sequence is a 0, nor does
the (1,2)row of M.

For any admissible m—block b = €€ .. . €y, define the (row) vector v, to have bth entry
p'q™~*, where i is the number of 1s in €;€; .. .6y, and all other entries zero. Define w to be
the column vector with entries 1 for admissible m—blocks with no -1s or 2s, and all other
entries 0.

Proposition 12. Let € = €1¢5...€, be a sequence of 0s and 1s, and let by = €1€2...€p.
Then
Tn(€) = Voo Mepyy Meppyy - - M, w.

€m+1

The proof is virtually the same as that of the corresponding result in the previous section.
There are analogues of all the results of the preceding section. Let A be the top Lyapunov
exponent of the sequence Il,, = M. 41 M., 42 - M,,, and let up, b€ Aand v =3 4, up.
Proposition 13. For each b € Ay,

. i by
n]i)xgo(uf,l'[nv)n =e".

Theorem 4. Let A be the top Lyapunov ezponent for the sequence Il,, of random matriz

products defined above. If ¢ = €165... where €1,€2,... are i.i.d. Bernoulli-p then with
probability 1
(13) Jim ﬁn(e)% =e = a.

This completes the proof of Theorem 1.

It should now be clear how to modify the approach for other 0-1 stochastic sequences,
in particular, k—step Markov chains. If ¥ > m then it is necessary to index the rows and
columns by (k+ 1)—blocks rather than m—blocks, to keep track of the likelihoods involved.
It should also be clear that the whole approach could be adapted to sequences of random
variables valued in other finite subsets of Z than {0,1}.

8. COMPUTING THE LYAPUNOV EXPONENT

Computation of Lyapunov exponents is a difficult problem, even for small matrices.
However, because of the special structure of the matrices arising in sections 6-7, computation
to a reasonable degree of accuracy is possible for simple Pisot numbers 8, of small degree
m. In this section, we restrict our discussion to the cases 8 = §,,, m > 2.

Fix a value of the Bernoulli parameter p and let €;,€3,... be iid Bernoulli-p random
variables. Let My and My be the matrices defined in the preceding section. Our problem
is to calculate the top Lyapunov exponent of the sequence

o,=M,M,.. M,
By Proposition 13, for any vector 4 with nonnegative entries, not all 0,
.1
(14) A= nh—{%o Elog ||wIL, | .

A propitious choice is the vector » with (0,0,...,0) entry ¢, (1,1,...,1) entry p, and all
other entries 0. (Recall that the rows and columns of the matrices M; are indexed by
admissible m~blocks, hence so are the entries of row vectors.)
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The reason for the peculiar choice of u is that the random sequence of vectors ull,, visits
the ray through wu infinitely often.

Lemma 8. Let T be the infimum of the set of integers n > 1 such that ull,, is a scalar
multiple of u. Then

ET < o0
in particular, T < oo with probability 1.

The proof will be given later. In fact, we will obtam an explicit algebraic (in p) expression
for ET: thus, for instance, when m = 2 and p = 2, ET =12.

The existence of such a stopping time allows one to re-express the Lyapunov exponent
in a simpler form. The vector ullt is a scalar multiple of the starting vector u. Since
scalars may be factored out of matrix products, this implies that the process uII,, effectively

“regenerates” at time T: specifically, the law of the sequence

'U'HT+n
[|ullz|}’

is the same as that of the original sequence »II,,, n > 0. It follows that there are infinitely
many times at which ull, is a scalar multiple of u; label these times Tp =0 < Ty =T <
T3 < T3 < --- < 00. At each of these times the sequence regenerates. For each n > 1,

1 gy ||
'f;log”ur[Tn“ - Zl ” I

>0

_1 1”

and the summands are iid with finite expectation (this because ET < o). Dividing numer-
ator and denominator by n and using the strong law of large numbers on each, one obtains
the limit in (14) along the subsequence T, as a ratio of expectations. But we know the
limit in (14) exists, by the Furstenberg-Kesten theorem, so the limit of the whole sequence
must be given by the same ratio of expectations. (Note: A standard argument shows that
the limit exists without reference to the Furstenberg-Kesten theorem.) In summary,

Corollary 4.

_ FElog [Jullr||
(15) i
and

_ Elog ||ull7||
(16) = (logO)ET

Since we have an exact expression for ET', only the expectation in the numerator requires
estimation. Unfortunately, no further simplification seems possible: the numerator can only
be estimated by simulation or summation over paths. It should be remarked, however, that
this is a significant improvement on the crude representation of A as hmn_,oo Elog ”Hn”,
because in general one cannot say how fast the convergence in this limit is.

The numerator may, in general, be estimated by simulation with very little effort. Greater
or lesser precision may be obtained by adjusting the number of replications. To obtain
estimates with accuracy (to confidence level .99) to within +.002 requires on the order of
one million replications (depending on the values of p,m). Results for m = 2 and various
values of p are reported in the table below.
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p | dimension | estimated error
5 9954 .0008
A4 9868 .001
3 .9501 .002
2 .8499 .004
1 .6085 .008
.05 3877 .003

We have conducted simulations for all rational values of p between 0 and .5 with denom-
inators less than 12 and also for .01,.02,...,.09; these seem to indicate that the dimension
is a strictly increasing function of p € (0,.5]. As yet we have no rigorous argument for this
conjecture,

Proof of Lemma 8. We shall discuss only the case m = 2, the general case being completely
similar but requiring more cumbersome notation. Thus,  is the vector with (0,0) entry ¢,
(1,1) entry p, and all other entries 0.

Let u, = ull,,.We will say that any admissible 2—block for which the corresponding entry
of u, is positive occurs in u,. Not all admissible 2—blocks may occur simultaneously in u,:
for instance, 11 and 10 cannot occur simultaneously. However, all admissible m—blocks
may occur in some u, (see the proof of Proposition 11).

Since the random variables €, €, ... are iid Bernoulli-p, the sequence must, with prob-
ability 1, contain arbitrarily long blocks of 1s. Consider what happens to the vectors u,
when such a long block of 1s occurs. If either of the blocks (0,—1) or (—1,1) occurs in
Un, then after one or two successive 1s these blocks will be converted to the block (0,0).
If either of the blocks (2,0) or (1,2) occurs in uy, then after one or two successive 1s they
will be “killed”. If any of the four blocks with no 2 or —1 entries occurs in u, then after
either one or two successive 1s all will be converted to one of the blocks (0,0),(0,1),(1,1).
Consequently, regardless of which blocks occur in u,, if €nt1 = €pt2 = 1 then only 00, 01,
and 11 can occur in u,42. Moreover, the blocks 00 and 01 cannot occur simultaneously.
Note that if the two blocks that occur in un42 are 00 and 11 then if €nt+3 = 1, the blocks
that occur in w43 must be 01 and 11. Thus, with probability 1, for some n the vector u,,
will have positive entries in the 01 and 11 entries and all other entries zero.

Now consider what happens when wu, has positive entries in the 01 and 11 entries and
all other entries zero, and €,41 = €542 = 0. Using the table in section 6, one easily verifies
that w12 must have 11 entry pg(un(01) + u,(11)), 00 entry ¢2(u,(01) 4 u,(11)), and all
other entries zero. Thus, w2 is a scalar multiple of .

The arguments of the last two paragraphs show that, depending on the composition of u,,
a regeneration will occur if either (a) en41 =1 and ep42 = €p43 = 0, 01 (b)epy1 = €ngz = 1
and €,43 = €p44 = 0. Elementary arguments show that this must happen eventually, with
probability 1; in fact, that the expected time until it happens is finite.

O

The preceding argument shows that the regeneration event is determined by the set of
admissible m—blocks that occur in a given u, and the subsequent pattern of 0s and 1s in
the sequence ¢;, but not on the actual coefficients of the m—blocks that occur in u,. It
follows that T is a stopping time for the Markov chain whose state at any time n is the set
of admissible m—blocks that occur in u,. It follows from elementary Markov chain theory
that ET may be computed by solving a simple matrix equation. In the special case m = 2
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there are 7 distinct sets of admissible m—blocks that may occur simultaneously in u,; the
transition probabilities between these sets are easy to write down, and the resulting matrix
equation is easily solved via Mathematica. This yields the identity (when m = 2)

~2-p+p?
17 ET = .
(an —p +2p* - 2p° + p?
Similar formulas may be obtained for arbitrary m, although the size of the matrix equation
that must be solved grows with m.

9. THE ASSOCIATED GRAPH

In this section we indicate another approach to the representation of the probabilities
Tn(€) by matrix products. This approach is essentially geometric in nature, relying on
simple properties of a natural graph associated with the Pisot number 8 € (1,2). In the
special case § =golden ratio, this graph is the “Fibonacci tree” exploited by Alexander and
Zagier [2].

The (directed) graph I' = (V,&) is defined as follows. The vertex set V is the union of
countably many finite sets V,, n > 0; the elements of V, are the possible sums zn(e) =
> k=1 €x0%, where ¢ is a 0-1 sequence. The (directed) edges connect vertices at depths n and
n + 1: there are edges from z,(€)to #n41(€) for every € € £, and no others. To each edge
from z,(¢) to zn(e) + 6™ attach weight p, and to each edge from z,(¢) to z,(¢) attach
weight ¢ = 1 — p.

For any two vertices z,,(¢), a(¢’) at the same depth n, define their distance p(z,(¢), zn(c'))
by

p(n(e), zn(e") = B"|zn(e) — 2n(e")].
Fix a constant k£ > 26/(1 — 8). For any vertex z,(¢) define its neighborhood N (z,(¢)) =
Ni(2zn(e)) to be the set of vertices zn(c’) at the same depth such that p(zn(e), zn(e")) <
k. Say that two vertices z,(¢),zx(e’) (not necessarily at the same depth) have the same
neighborhood type if there is a bijective mapping between N (z,(¢)) and N (zx(¢’)) that
preserves the distance function p.

Proposition 14. There are only finitely many neighborhood types, i.e., there is a finite
set of vertices S such that every vertez of I' has the same neighborhood type as one of the
vertices in S.

Remark: The reader should notice the similarity with Th. of [4], concerning the Cayley
graph of a finitely generated, discontinuous group of isometries of a hyperbolic space.

Proof. This follows from Garsia’s lemma, which implies that there is a lower bound d on
the p—distance between distinct vertices in any neighborhood. Consider the neighborhoods
N of a vertex zn41(e) and N’ of the vertex zx(c™¢) (here ois the shift operator). There is a
distance-preserving injection A" — N/, because there is a copy I of the graph I' embedded
in T' emanating from the vertex z,(o"™¢). Consequently, for any sequence € = €165... € &
and each n > 1 there is a chain of distance-preserving injections

N(z1(0™ e)) = N(z9(0™ %)) — ... N(2n(c)).

By Garsia’s lemma, all sufficiently long chains must stabilize, i.e., there is a finite integer k
such that all the injections after the kth in any such chain must be bijections (if not, there
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would be neighborhoods with arbitrarily large cardinalities). It follows that there are only
finitely many neighborhood types. O

Let 7 be the (finite) set of possible neighborhood types.
For any vertex ,41(¢) at depth n+1 > 1, let B(zn41(€)) C Vn be the set of all vertices
at depth n from which emanate directed edges of I' leading into N (zn+1(¢)).

Lemma 9. B(z,41(€)) C N(zn(€)).

Proof. Observe that for any vertex z,41(¢’) at depth n+1 there are at most 2, and at least
1, directed edges from Vi, to Zny1(e’). Helyy = 1 then there must be a p—edge from z,(¢’)
to Zn41(e'), and there may be a g—edge from some &,(¢”) to zny1(e’); if €ny1 = 0 then
there must be a g—edge from z,(¢') to znt1(’), and there may be a p—edge from some
2,(€") to Tnt1(¢"). Consequently, B(zn+1(€)) is finite.

Now consider any directed edge from a vertex z,(¢’) € Vj, leading into B(znt+1(€)).
Depending on whether it is a p—edge or a g—edge,

|z () + 6" — zn(e) + ens10™| < KO < 20"+% /(1 - )
or
|z (e") — zn(€) + Enp10"t < kO™ < 20712 /(1 - 6).
In either case,
B |zn(e") — zn(e)] < 0+ 20%/(1—-60) <20/(1-6) <k,
since k > 260/(1 - 9). a

Corollary 5. For any 0-1 sequence ¢ = €1€2..., the neighborhood type N(zpy1(g)) is
determined by the neighborhood type N (x,(€)) and the entry enyi.

For any infinite 0-1 sequence ¢ and each n > 1, define Y,(¢) to be the vector of probabil-
ities
Ya(e) = ("n(el))N(zn(e)) ’
where the entries are indexed by the elements of N(z,(¢)) (for each element z,(e') of
N (2,(€)), choose one representative ¢’ and let m,(c’) be the entry for that element). The
probabilities 7,(¢) are computed under the Bernoulli-p measure (the measure on sequence
space ¥ making €1,€3,... ii.d. Bernoulli-p random variables).

Lemma 10. There ezist nonegative matrices Ly ;, for N €T and i = 0,1, such that for
every 0-1 sequence € and every n > 1,

(18) Yo+ (5) = LN(I‘n(E),En+1Yn(8)'

Proof. For any sequence & = €} ... the probability mni1(€) is gotten by summing the
probabilities of all sequences ¢” such that Zn41(€”) = zn41(¢’). In geometric terms, Tpyy (e)
is obtained by summing all m,(¢')w for depth-n vertices z,(¢’) such that there is an edge
from zn(€') to n41(€); w = p or ¢, depending on the weight attached to the edge. Note
that there are at most two, and at least one, terms in this sum. Moreover, by (9), the
factors () in the two terms are both entries of the vector Yn(e). It is clear that these
equations may be written in the matrix form (18), with the matriX Lp(py(e)enys DAVING
rows indexed by elements of M (2n41(¢)), columns indexed by elements of N (zn(¢)), and
entries 0,p,1 — p. O
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Note that this argument used the assumption that p is a Bernoulli measure. Generaliza-
tion to arbitrary shift-invariant measures on X would seem to be problematic. However, if
p is a Markov measure (i.e., under p the coordinate process €1,¢s,... is a k—step Markov
chain for some & < 00), then there is an obvious generalization of Lemma 10. We refrain
from giving the details.

Lemma 10 provides a representation of the probability vectors Y,(¢) in terms of matrix
products, but, unfortunately, the matrices need not be square. Nevertheless, it is possible
to use the theory of random matrix products to determine the asymptotic behavior of the
sequence Y,(¢). The idea is to embed the vectors Y,(¢) into vectors Y, (&) whose entries
are indexed by elements of the union G of all possible neighborhood types 7 € 7, and to
embed the matrices Ly ; (as blocks) into matrices £; with rows and columns indexed by
elements of G. The entries of Y, (¢) are all zero except for those indexed by elements of
the neighborhood type N(z,(¢); these entries have the same values as the corresponding
entries of Y,(¢). Then Lemma 10 implies that ¥p,41(¢) = L., Y r(€), and consequently,

Proposition 15. Ifn > k,
(19) ?n(e) = £5n£5n—1 e '£5k+1?k(5)'

Proposition 15 provides another representation of m,(¢) in terms of a random matrix
product (recall Propositions 10 and 12), as the value of 7, () is one of the entries of
the vector Y,(¢). Although this representation is in some ways more natural, and easier
to derive, it seems less useful for actual computations. This is because the matrices £;
are, in general, much larger than the matrices in the products in Propositions 10 and 12,
and enumeration of the neighborhood types may be practically more difficult than the
enumeration of the admissible m—blocks for a given S.
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