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1. INTRODUCTION

1.1 Goals of the Paper

Bayesian analysis has experienced spectacular growth in recent years, so much so that
it cannot be adequately reviewed in a single article. (Recent general books or reviews
of special areas of Bayesian statistics are listed in the references.) This article has the
considerably more modest goal of illustrating three of the reasons why this spectacular

growth is occurring.

One reason is a dramatic increase in computational capability. Ten years ago,
Bayesian analysis was limited to comparatively simple problems, because of the difficulties
in performing high dimensional integration. The common complaint about Bayesian anal-
ysis, in those days, was that, while intuitively appealing, it could not be used for problems
of real complexity. The story today is just the opposite: Bayesian analysis is now the
preferred (and often the only) method of analyzing highly complex problems. The reason
is the advent of Markov Chain Monte Carlo computational tools, as well as access to suf-
ficient computing power for implementation of these tools. This issue will be discussed in

Section 2, with a prototypical example being given for illustration.

The second reason for growth in Bayesian statistics is best described as foundational,
in the sense of being related to basic justifications of the Bayesian approach. Three of
these justifications are: (i) Bayesian answers are particularly easy to interpret, which is

important in a world where statistical answers are routinely misinterpreted; (ii) Bayesian
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methods have great flexibility in operation; and (iii) Bayesian methods and “good” classical
methods tend to agree. In Section 3, we illustrate how these ideas are today coming
together, using a clinical trial example for illustration. The example demonstrates the
simplicity and flexibility of the Bayesian approach, and also provides a vehicle for discussion
of recent theoretical developments that surprisingly show the Bayesian procedures to be

superior frequentist procedures.

The final reason that we discuss, for the upsurge in interest in Bayesian methods,
can be termed methodological, in the sense of introduction of new Bayesian methodolo-
gies. One such recent methodology is ‘robust Bayesian analysis,” which is concerned with
problems in which there is a multitude of prior opinions that must simultaneously be
accommodated. We illustrate this new methodology in Section 4 on the problem of quan-
tifying Ockham’s razor, which is the heuristic scientific principle that, if two models are

equally well supported by the data, the simpler model is to be preferred.

1.2 Notation

Notation will be kept basic. The (entire) data will be denoted by X, assumed to have
a conditional density f(z|d), given an unknown parameter § € O, the parameter space. A

prior density for 8 will be denoted by 7(#), with the posterior density being
©(8|z) = f(z|0)7(6)/m();

here m(z) = [ f(z|6)7(6)df is the marginal or predictive density. The focus of Bayesian

analysis is typically computation of various posterior expectations

E*[g(6)] = / 9(8)(6]z)de;

the “x” as a superscript to E will always denote posterior expectation, and if g(8) is a

vector or matrix, the expectation is to be taken componentwise. Common choices of ¢

include
g(6) = 8, since then E*[f] = posterior mean;

g(8) = (0 — E*[6])(6 — E*[6])’, since then E*[g(f)] = posterior covariance matriz;

g(0) = 1¢(0) = {é :)ftﬁefwci;e since then E*[g(0)] = posterior probability of C.



2. COMPUTATIONAL DEVELOPMENTS IN BAYESIAN ANALYSIS

A major development that has greatly contributed to the upsurge in use of Bayesian
methods is the development of computational tools that allow analysis of highly complex
and nonstandard models. Indeed, for complicated models, Bayesian analysis has now
arguably become the simplest (and often only possible) method of analysis. We illustrate
this point by presenting an example in Section 2.1, followed by a brief review in Section

2.2 of recent computational advances.

2.1 An Ilustration

The best way to illustrate the power of current Bayesian methods is to present an
example. The following example is based on a problem studied in Andrews, Berger, and
Smith (1993), though certain features of the problem are here simplified or enriched for
purposes of exposition. We do not actually analyze this example here; our goal is simply

to indicate the potential of current Bayesian methods.

The problem was to determine the effect of certain automotive technologies, such as
fuel injection, on the fuel efficiency of automobiles. After certain transformations of the

data and variables, the base model became
Yije = B'X(ijry + &' X(ij) + €ijks

here
Y;jx = log (fuel efficiency in MPG) of a vehicle;
X(ijry = a vector of the vehicle characteristics, including indicators of presence of
technologies of interest;
B = a vector of unknown “fixed effects”;
X {i ;) = an indicator vector specifying the vehicle model and manufacturer;

a = a vector of unknown “random effects”;

i =1,...,I, denoting the manufacturer;
j=1,...,J;, denoting the vehicle model for manufacturer :;
k=1,...,N;j, denoting a particular vehicle of model j from manufacturer .
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Error distributions deemed possible are €;jx“*" Normal (0,0?), with o? unknown, and
£ jk"'i*’d ‘t-distribution with median 0, unknown scale o, and unknown degrees of freedom
v. The model is complicated by being unbalanced (the J; and the N;; are highly variable)

and there is considerable missing data.

For the fixed effects, 3, certain sign and order restrictions are known; indeed, it is

known that
BeQ={B:P1o>0,P15>0,018 >0,0s < P5 < Ps}

The car model effects, a, are modeled as
a;; "% Normal (p;, Vi), 7 =1,...,J;

where p; and V; are the overall mean and variance for manufacturer :. It is believed,
however, that there is a time trend to the overall manufacturer means; this is modeled by
the AR (1) process

| pi(t) = pipi(t — 1) +7ie, 1=1,...,1,

where ¢ denotes the year of vehicle manufacture, and the ;¢ are i.i.d. Normal (0, ) errors.
Finally, the unknown p; and V; are also modeled as random effects from the population
of all manufacturers, with the p; being i.i.d. Beta (\,7) and the V; being i.i.d. Inverse
Gamma (£, 7).

The desired goal of the analysis is to predict fuel efficiencies, ¥, but at uncertain (i.e.,
random ) future vehicle configurations (X, X*). Estimates, standard errors, and confidence

(credible) sets for Y are desired, as well as tests for certain of the §; = 0.

There are numerous features of this problem that would virtually preclude the possibil-
ity of a classical analysis. Having both fixed and random effects in an unbalanced situation,
even with normal errors, is by itself enough to almost require a Bayesian analysis (to pro-
duce reasonable standard errors and credible sets). Adding the complications of t-errors,
restrictions on the parameters, time series structures for some of the random effects, and
the desire to predict ¥ at random future X creates a problem of almost unapproachable

complexity from a classical perspective.

Solving this problem from the Bayesian perspective is comparatively straightforward.

One must first place a prior distribution on all unknown parameters that do not alréady
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have a “random effects” distribution. The simplest possibility is the constant density on

these parameters (restricted to Q, of course), i.e.,

77(:3,7’)‘17'a£,7770'2, V) = 19-

(Choosing improper “noninformative” densities such as this can be justified from a number
of perspectives; see Berger and Bernardo (1992).) Using the techniques discussed in the
next section, one can then compute posterior means and variances (and other desired

posterior expectations) for any of the unknown parameters, or for future Y.

There are, of course, the usual variety of concerns with the above analysis, centering
around issues of sensitivity to, and plausibility of, assumptions (including choice of the
prior density). Also, the computation required is far from trivial. The point to be stressed,
however, is that with the Bayesian approach the statistician has complete freedom to utilize
whatever models, structures, or restrictions seem reasonable for a particular problem, while
maintaining the capability to compute answers. There is no need to force the problem into

a standard mold by oversimplification.
2.2 Markov Chain Simulation Techniques

The newest techniques to be extensively utilized for numerical Bayesian computations
are Markov Chain Simulation Techniques, including the popular Gibbs Sampling. (Certain
of these techniques are actually quite old — see, e.g., Hastings (1970); it is their application
and adaption to Bayesian problems that is new.) A brief generic description of these

methods is as follows:

Step 1. Select a “suitable” Markov chain on ©, with p(-, ) being the transition probability
density (i.e., p(6,8*) gives the transition density for movement of the chain from
6 to 6*). Here “suitable” means primarily that 7(f|z) is a stationary distribution

of the Markov chain, which can be assured in a number of ways.

Step 2. Starting at a point 69 € O, generate a sequence of points 6 9@ .., 6(™ from
the chain.

Step §. Then, for large m, 8(™ is (approximately) distributed as 7(6|x) and

L3 (6 = Elg(6))

i=1



The main strengths of Markov chain methods for computing E*[g(6)] are:

(i) Many different g can simultaneously be handled via Step 3, once the sequence

6 ...,6(™) has been generated.

(ii) Programming tends to be comparatively simple.

(iii) Methods of assessing convergence and accuracy exist and/or are being developed.
The main weaknesses of the Markov chain methods are:

(i) They can be quite slow. It is not uncommon in complicated problems to need m to
be in the hundreds of thousands, requiring millions of random variable generations if

the dimension of @ is appreciable.
(ii) One can be misled into prematurely judging that convergence has obtained.

The more common Markov chain methods, corresponding to different choices of p(-, ),

will briefly be discussed.

Metropolis- Hastings Algorithm: One generates a new * based on a “probing” distribution,
and then moves to the new 6* or stays at the old 6 according to certain “accept-reject”

probabilities. See Hastings (1970).

Gibbs Sampling: The Markov chain moves from () to §(i+1) one coordinate at a time (or
one group of coordinates at a time), the transition density being the conditional posterior
density of the coordinate(s) being moved given the other coordinates. This is a particularly
attractive procedure in many Bayesian scenarios, such as analysis of hierarchical models,
because the conditional posterior density of one parameter given the others is often rela-
tively simple (or can be made so with the introduction of auxiliary variables). Extensive
discussion and illustration of Gibbs sampling can be found in Gelfand and Smith (1990),
Gelman and Rubin (1992), Raftery (1992), and Smith and Gelfand (1992).

Hit and Run Sampling: The idea here is roughly that one moves from 6(9 to (+1) by
choosing a random direction and then moving in that direction according to the appropriate
conditional posterior distribution. This method is particularly useful when © is a sharply
constrained parameter space. Extensive discussion and illustration can be found in Belisle,

Romeijn, and Smith (1993), and Chen and Schmeiser (1993). -



Hybrid Methods: Complex problems will typically require a mixture of the above (and
other) methods. Here is an example, from Mueller (1991), the purpose of which is to do

Gibbs sampling when the posterior conditionals (e.g., 7(6;|z, other 6;)) are not “nice”:
Step 1. Each step of the Markov chain will either
e generate Og-i) from = (0j|z, other 05:)) if the conditional posterior is “nice” or

e generate 0§i) by employing one or several steps of the Metropolis-Hastings algo-

rithm if the conditional is not nice.

Step 2. For the probing function in the Metropolis-Hastings algorithm, use the relevant
conditional distribution from a global multivariate normal (or ¢) importance func-

tion, as typically developed in Monte Carlo importance sampling.

Step §. Adaptively update the importance function periodically, using estimated posterior

means and covariance matrices.

Other discussions or instances of use of hybrid methods include Geyer (1992), Gilks and
Wild (1992), Tanner (1991), Smith and Roberts (1993), Berger and Chen (1993), and
Tierney (1994).

3. FOUNDATIONAL ISSUES AND APPLICATION TO CLINICAL TRIALS

We illustrate a standard ‘default’ Bayesian analysis in the context of a particular
clinical trial. For pedagogical reasons the example is artificial, but it is typical of many

real examples. Discussion of the example, together with its foundational implications, will

follow.

9.1 The Clinical Trial

Treatment 1, consisting of use of Drug A, is to be compared with Treatment 2, which
utilizes both Drug A and Drug B. The design is a paired comparison design, resulting
in observation of independent X; ~ AN (6,1), i = 1,2,..., where 8 is the mean difference
in effect between Treatment 2 and Treatment 1. Typically, one tests Hy:0 = 0 versus
H,:0 # 0, although a more reasonable formulation might be to test Hyp:6 = 0 versus
Hy:6 < 0 versus Hy:68 > 0.



A common default Bayesian analysis of this problem assigns Ho and H, equal prior
probabilities of 1/2, and chooses the conditional prior density on 6 # 0 to be a N(0,2) den-
sity (see below for discussion). Straightforward computations then yield, as the posterior

probabilities of the hypotheses,

Pr(H, is true |X1,...,X5) = B,/(1+ By),
Pr(H, is true | X1,...,Xn) = 1/(1 + Ba),

&(—vnXa/y/1+41/(2n))

Pr(H, is true | X1,...,Xn) = oy

_ 8(/aXn/v/TF /)

1+ B,

Pr(H, is true | X1,...,Xxn)
where X, is the sample mean, ® is the standard normal c.d.f., and

1 — 1
Bn=+vI+ 2n-exp{——2—nXi/(1 + 550}

Suppose the data, given in Table 1, arrives sequentially. Then, after each new data

point, one can compute the above posterior probabilities; these are also given in Table 1.

Table 1. Data and Posterior Probabilities for the Clinical Trial

Posterior Probabilities of

_:Eaﬁ Xi :Yn Hy H, Hl H2
1 1.63 1.63 417 583 .054 .529
2 1.03 1.33 .352 .648 .030 .618
3 0.19 0.95 453 547 .035 512
4 1.51 1.09 .266 734 .015 719
) —0.21 0.83 .409 591 .023 .568
6 0.95 0.85 328 672 .016 .657
7 0.64 0.82 301 .699 .013 .686
8 1.22 0.87 .220 780 .009 771
9 0.60 0.84 77 823 .006 817
10 1.54 0.91 .082 918 .003 915

If one were observing this data, and the associated posterior probabilities, two primary
features would affect the decision as to whether or not to stop the experiment at a given
observation. The first is the posterior probability of Hy, which decreases quite slowly.

Indeed, even after ten observations, this probability is not small enough to conclusively
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reject the hypothesis of no effect (i.e., that Drug B has no effect). The other significant
feature of the analysis is that the posterior probability of H; is remarkably small through-
out the analysis. This means that, even early in the experiment, it becomes clear that
Treatment 1 is not superior to Treatment 2. But whether Treatment 2 is actually better,
or just equivalent, remains uncertain. The time at which one might choose to stop the
experiment would depend on the relative importance of these two factors (and also the

magnitude of the effect, if present, which is determined from X,).

The above analysis does contain several somewhat arbitrary elements, which could be
subject to criticism or alteration. One is the specification of a ‘precise’ null hypothesis.
Rarely is a hypothesis of ezactly zero treatment difference formally correct. However, it is
quite plausible that the addition of Drug B has essentially no effect, and it can be shown
that Hy is then satisfactory as an approximation to this ‘essentially no effect’ hypothesis,

unless the sample size is very large (cf, Berger and Delampady (1987)).

Other concerns about the above analysis center on the specifications of the prior
distribution. Choosing the prior probabilities of Hy and H, to be 1/2 each is natural,
but obviously could be changed if desired. Likewise choosing a prior distribution for
6, under H,, to be N(0,2) can be challenged. The centering of the prior at zero is
rather innocuous, and would typically be done to provide an appearance of ‘fairness’. The
choice of a normal distribution is not essential, and is done here mainly for convenience in
presenting the answers. (Indeed, Jeffreys (1961), who first carefully discussed this issue,
actually preferred a Cauchy distribution to a normal.) The choice of a variance of 2 is the
most arbitrary feature of the analysis. It was chosen, here, because use of the resulting
prior is then similar in effect to use of the Cauchy(0,1) distribution that Jeffreys (1961)
proposes (based on extensive arguments). The issue here is more one of standardization
than of ‘correctness.” Anyone desiring to use an actual subjective Bayesian analysis, with
subjectively specified probabilities and distributions, is welcome to do so. But to provide
a standard analysis for purposes of general communication, use of agreed-upon default

choices has considerable appeal.

3.2 Standard Bayesian Motivations

There are several aspects of the Bayesian analysis of this clinical trial that are worthy
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of note. The first is the ease of interpretation of the answers. One simply states the
probability that each hypothesis is true. The classical alternatives, such as frequentist error
probabilities or P-values, are not only much harder to interpret, but their interpretation is
fraught with danger (cf, Edwards, Lindman, and Savage (1963), Berger and Sellke (1987),
and Berger and Delampady (1987)).

The second appealing aspect of the Bayesian analysis here is the ease with which three
hypotheses are handled. In particular, it is crucial in problems such as this to separate
the evidence of no effect (i.e., the evidence for Hy) from the evidence for H; or H;. In
contrast, classical methods of dealing with these three hypotheses are awkward and cannot
effectively capture the difference between rejection of Hy and rejection of Hy. Of course,
one might also want to produce other inferences, such as confidence (credible) sets for 6,

conditional on H, being true. This is trivial to do using Bayesian analysis.

The third appealing feature of Bayesian analysis, here, is the ability to ignore the
‘stopping rule.” One can simply compute the Bayesian answers sequentially, as the data
arrives, and stop the experiment whenever the evidence is sufficient. It is not necessary to
formally specify a pre-experimental stopping rule, and the Bayesian answers do not depend
on any stopping rule chosen. Classical analyses, in contrast, not only must pre-specify a
stopping rule, but the answers depend dramatically on this rule, leading to complicated
discussions such as how to ‘spend o’ for looks at the data. Furthermore, deviation from the
pre-specified stopping rule can invalidate the analysis. Extensive discussion of Bayesian

analysis and stopping rules can be found in Berger and Berry (1988).

3.8 Frequentist Motivation

It has long been known that most commonly used classical procedures have ‘default’
Bayesian interpretations (and indeed many were originally devised using Bayesian reason-
ing). Two exceptions are testing of a precise hypothesis and sequential analysis, where
typical Bayesian answers often differ markedly from classical answers. This has been
something of an embarrassment for the field of statistics, since we cannot present any

professionally agreed-upon analyses for these situations.

Recent work in Berger, Brown, and Wolpert (1995) and Berger, Boukai, and Wang

(1994) indicates that this disagreement is unnecessary: the Bayesian procedures for test-
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ing precise hypotheses and sequential testing can often be shown to also be frequentist
procedures. This is a startling development, and indicates that the controversies are not
necessarily due to irreconcilable philosophical differences, but may simply be due to current

use of the ‘wrong’ frequentist procedures.

The key to these new developments is adoption of the conditional frequentist
paradigm, as formalized in Kiefer (1977). This paradigm is a generalization of the common
notion of providing frequentist inferences conditional on an ancillary statistic. The idea
is that one considers a partition of the sample space, and develops frequentist error prob-
abilities conditional on elements of the partition. Such conditional inferences have all of
the usual frequentist justifications, and are arguably superior to unconditional frequentist

analysis in that they better discriminate between data of different evidentiary strength.

For the above clinical trial example, a partition of the sample space can be found
such that the posterior probability of Hy can also be interpreted as the probability of
Type I error, conditional on the observed partition element. Furthermore, the posterior
probability of H, is an ‘average’ Type II error, conditional on the observed partition
element; the ‘average’ is with respect to the posterior distribution of § (on H,), conditional
on the observed partition element. (Reporting of this ‘average’ Type II error compares
quite favorably with the common classical prescription of reporting Type II error rates
at one or two subjectively specified values of 8.) For definition of the partition which
achieves this duality of interpretation, see Berger, Boukai, and Wang (1994). Note that
the partition can depend on the stopping rule used, but the reported Type I and Type 11

error probabilities do not depend on the stopping rule.

In conclusion, the Bayesian test, with its intuitively attractive operational properties,
can be used with complete frequentist justification. This not only unifies the two paradigms

in sequential experiments, but also yields considerably improved frequentist procedures.

4. ROBUST BAYESIAN ANALYSIS WITH APPLICATION TO QUANTIFYING
OCKHAM’S RAZOR

There has recently been extensive development of Bayesian methodology for situations

in which elements of the Bayesian model are uncertain (cf, Berger (1985, 1990, 1994),
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Walley (1991), and Wasserman (1992)). Attention has primarily focused on uncertainty in
the prior distribution, in part because non-Bayesians perceive this to be the main difficulty
with Bayesian analysis, and in part because there are numerous situations in which one
would like to draw a conclusion that is valid for a wide range of prior opinions. We illustrate
this latter phenomenon by reviewing the robust Bayesian quantification of Ockham’s razor,
the heuristic scientific principle which states that, if the data is compatible with two models,

then the simpler model is to be preferred.

The situation we consider here has data X ~ N(8,0?), 0? known. Two models are
proposed for this data: M, asserts that § = 6y, a specified constant, while M; places no
restriction on 6, but corresponds to prior beliefs about 6 that (i) are symmetric about zero,
and (ii) view values of 6 nearer to zero as more plausible than values of 6 farther from zero.
This can be formalized by saying that, under M3, the prior density of 8 is a nonincreasing

function of |6].

Result 1. For the above situation and if M; and M; are each assigned prior probability
1/2 of being correct, then the posterior probability of M; is at least

-1

p= (145 [t+ VER@ 19| ewiza))

providing dy > 1.4, where dy = |X — 6|/0 and d; = |z|/o.

Idea of the Proof: This is a robust Bayesian result, found by computing an approximation
to the lower bound of the posterior probability of M; over all prior densities for  (under
M) that are nonincreasing functions of |0|; see Berger and Jefferys (1992) and Jefferys
and Berger (1992) for details. O

Ezample. One of the great scientific problems of the latter part of the Nineteenth century
and early part of the Twentieth century was finding an explanation for an anomaly in the
orbit of Mercury. After taking into account Newtonian theory, the available data exhibited
an unexplained residual motion of Mercury’s perihilion of 41.6 seconds of arc per century.
Statistically, this observation of 41.6 can be considered to have been the realization of

X ~ N(6,4), where 6 is the true unexplained residual motion.

Numerous theories were advanced to explain.the anomaly, but by 1920 only two

remained viable. One was a theory of Newcomb, proposing that gravity followed an inverse
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(2 + €) law, rather than an inverse square law. It is crucial for our analysis to note
that no value of ¢ was predicted apriori by Newcomb, although e could, of course, be
estimated using the Mercury data. The second theory was Einstein’s general relativity,

which (independent of the Mercury data) predicted that 6 would be 42.9.

Clearly the data is compatible with Einstein’s theory. It is also clearly compatible
with Newcomb’s theory, in that & could be adjusted to exactly fit the data. Because of
this adjustable parameter, however, Newcomb’s theory is the more “complex” theory, so

that Ockham'’s razor would suggest that Einstein’s theory is to be preferred.

This situation fits the formalism that was described earlier, with 6% = 4, M; being
Einstein’s theory that specifies 6y = 42.9, and M; being Newcomb’s theory. Apriori, there
is no reason to favor positive or negative values of €, and values of € that are closer to zero
are more plausible, in that large |¢| would have been more likely to have been previously
detected. The same can be said about 8 (which can be shown to be an approximately
linear function of ¢ that passes through the origin), so that the prior assumptions about

M,, needed for application of Result 1, are satisfied.

Computation yields do = |41.6 — 42.9|/2 = 0.65, d1 = |41.6|/2 = 20.8, and
P = 0.938. The posterior probability of M; (the “simpler” Einstein model) is thus a#
least 0.938, which is a rather convincing lower bound. Robust Bayesian analysis has thus

provided a meaningful quantification of Ockham’s razor.

As a final remark, note that the simpler model must be compatible with the data for
Ockham’s razor to apply. Indeed, if M; is not compatible with the data, then do will be

large and, hence, P will be small.
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