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ABSTRACT:

In Bayesian model selection or hypothesis testing, it is difficult to develop default
Bayes factors, since (improper) noninformative priors cannot typically be used. In devel-
oping such default Bayes factors, we feel that it is important to keep several principles in
mind. The first is that the default Bayes factor should correspond, in some sense, to an
actual Bayes factor with a (sensible) prior, which we call an intrinsic prior. The second
principle is that such priors should be properly calibrated across models, in the sense of
being “predictively matched.” These notions will be described and illustrated, primarily
using examples involving the intrinsic Bayes factor, a recently proposed default Bayes fac-
tor. It will be seen that intrinsic Bayes factors seem to correspond to actual Bayes factors
with proper priors, at least for nested model scenarios. The corresponding intrinsic priors

are specifically given for the normal linear model.
1. INTRODUCTION

There are a number of compelling reasons to consider use of Bayes factors in model
selection and hypothesis testing. There are also a number of compelling reasons for de-
velopment of ‘default’ or ‘automatic’ Bayes factors, especially in the preliminary stages of
modelling when careful specification of subjective priors for all models under consideration
is typically not feasible. For discussion of these issues, see Jeffreys (1961), Edwards, Lind-
man, and Savage (1963), Berger and Sellke (1987), Berger and Delampady (1987), Draper
(1995), Kass and Raftery (1995), Madigan and Raftery (1995), and Berger and Pericchi
(1993).

There are two main difficulties with the development of default Bayes factors. The first
is the well-known difficulty that, when the models or hypotheses have parameter spaces of
differing dimension, one cannot use only (improper) noninformative priors for computing
the Bayes factors; improper priors are unaffected by multiplication by an arbitrary positive
constant, but such arbitrary constants directly affect Bayes factors. The second difficulty
in developing default (or even subjective) Bayes factors is that parameters do not typically
have meaning independent of the model. Although this difficulty is also well-known, it is

less often discussed, and is of enough importance to deserve emphasis through an example.



Example. We wish to predict automotive fuel consumption, Y, from the weight, X;, and

engine size, X, of a vehicle. Two models are entertained:

M1:Y=X1,31+€1, E]NN(O,O'?)
M;:Y =X181+X2P2 + €2, €2 ~N(0,03).

Thinking, first, about M>, suppose the elicited prior density is of the form 72 (81, 82, 02)
= m21(B1).722(B2) ma3(02). It is then quite common to choose, as the My prior, 71(f1,01) =
m21(P1) - m2(o1), i.e., to use the same prior for #; as in Model 1. The problem, of course,
is that B, has a different meaning (and value) under M; than under M;. For instance,
regressing fuel consumption on weight alone will yield a larger coefficient than regressing
on both weight and engine size, because of the considerable positive correlation between
weight and engine size. Even worse, conceptually, would be to equate o, and o, and give

them the same prior; clearly oy will typically be larger than o,.

The first approach to overcoming these difficulties was that proposed by Jeflreys
(1961). He proposed the use of orthogonal parameters (i.e., parameters for which the
corresponding expected Fisher information matrix is diagonal, or block diagonal if the
parameters are to be handled in blocks), presumably in an effort to overcome the type of
difficulty illustrated in the above example. That use of orthogonal parameters overcomes
this difficulty is a belief in the statistical folklore and is undoubtedly true in certain asymp-
totic senses, but we have not seen a clear Bayesian argument as to why this should be so.
The other problems with orthogonalization are (i) it is frequently extremely difficult or im-
possible to find orthogonal parameters, and (ii) orthogonal parameters typically have no
intuitive meaning, and so models expressed in terms of subsets of orthogonal parameters
often have no meaning. Nevertheless, the use of orthogonal parameters, when possible, ap-
pears to be a quite effective tool. Jeffreys (1961) provides a number of convincing examples.

For a modern successful use of the idea, see Clyde and Parmigiani (1995).

Jeffreys (1961) dealt with the issue of indeterminacy of noninformative priors by (i)
only using noninformative priors for common (orthogonal) parameters in the models, so
that the arbitrary multiplicative constant for the priors would cancel in all Bayes factors,

and (ii) using default proper priors for parameters that would occur in one model but not
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the other. He presented arguments for appropriate default proper priors, but mostly on
a case-by-case basis. This line of development has been successfully followed by several

others, for instance by Zellner and Siow (1980 ).

Although use of particular default proper priors can be criticized for being somewhat
arbitrary, one cannot be too demanding here. Any automatic procedure is going to contain
some quite arbitrary features, and we feel that the Jeffreys approach is among those with
the least objectionable arbitrary feartures. Indeed, we feel that any default Bayes factor
should correspond (in some sense, perhaps asymptotic) to use of an actual Bayes factor with
some proper prior distribution; if not, the Bayes factor is not compatible with Bayesian
reasoning, and we feel that it is then probably uninterpretable. Furthermore, we feel
that the best method of evaluating such ‘good’ default Bayes factors is to find the prior
distribution to which they correspond, which we call the intrinsic prior, and to determine
whether or not this distribution is sensible. In Section 3 we carry out this program for
the intrinsic Bayes factor, a default Bayes factor that was proposed in Berger and Pericchi

(1993, 1995).

Another general approach to overcoming the difficulties discussed above is the idea
of selecting prior distributions that are somehow “matched” across models. Suzuki (1983)
proposed matching the entropies of the prior distributions, or perhaps matching the en-
tropies of an intermediate sequence of priors that converge to noninformative priors upon

renormalization.

Perhaps more natural is to attempt to choose priors to match predictives. The un-
derlying motivation is the foundational Bayesian view that one should concentrate on
predictive distributions of observables; models and priors are, at best, convenient abstrac-
tions. According to this perspective, it is a predictive distribution m(y) that describes
reality, where y is a variable of predictive interest. We can choose to represent m(y) as
mi(y) = [ fi(y | 6:)m:(6:)d0;, where f; is a model and ; a prior, but these are merely a

convenient abstraction.

From this perspective, if one is comparing models M; : f; versus M : fz, then the
priors 7; and 7, should be chosen so that m1(y) and ms(y) are as close as possible. Thus

we think of m; and 7, as being properly calibrated if, when filtered through the models M,



and M,, they yield similar predictives. This could be assessed by defining some distance
measure, d(m;, mz), and calling 71 and w5 calibrated if d(m1, m2) is small. We explore this
formal approach elsewhere, here being content simply with showing that intrinsic priors

which arise from intrinsic Bayes factors seem to be well-calibrated.

One key issue in operationalizing this idea is that of choosing the variable y at which
a predictive match is desired. It seems natural, in the exchangeable case, to choose y to be
an “imaginary” minimal training sample, which is typically the smallest set of observations

for which the various model parameters are identifiable.

The ideas here are related to ideas of elicitation through predictives (cf, Kadane, et.al.,

1980). Also, a similar use of predictive matching to define priors for model selection can

be found in Laud and Ibrahim (1993) and Ibrahim and Laud (1994).

2. THE INTRINSIC BAYES FACTOR
2.1 Definition of IBF’s

Suppose that we are comparing ¢ models for the data x,
M;: X has density fi(x|6:), i=1,...,q,

and that we only have available default priors 77V (6;), i = 1,...,q. The general strategy
for defining IBF’s starts with the definition of a proper and minimal training sample.
The entire sample x is divided into two subsamples: x(I), which is the training sample,
and x(—1) the remaining observations used for discrimination. Define the marginal or

predictive densities of X,

m) (x) = / fi(x|6)7 N (6;)db;.

Definition. A training sample, x(1), is called proper if 0 < m(x(l)) < oo for all M;,
and minimal if it is proper and no subset is proper. (Note that, if x(!) is proper, then all

posteriors, 7N (6;x(1)), are proper.)

The “standard” use of a training sample to define a Bayes factor is based on using x(/)

to “convert” the improper 7N (6;) to proper posteriors, 7 (6;|x(1)), and using the latter
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to define a Bayes factor for the remaining data x(—!). The result, for comparing M; to

M;, is (with obvious notation)

_ S Fi(x(=0)18;, x()m." (63 |x(1))db;

Bt = (=) 16:, =) (6 (1)) d6;
=BY - BY (1), (1)
where
3 mg-v(x) _ m¥ (x(1))
Bﬁ = N ) and Bl-]}[(l) = m (2)

are the Bayes factors that would be obtained for the full data x and training sample x(1),

respectively, if one were to blindly use 7V and 7r§v .

While Bji(l) no longer depends on the scales of 7rJN and 7}, it does depend on the
arbitrary choice of the (minimal) training sample x(I). To eliminate this dependence and to
increase stability, a natural idea is to average the Bj;(1) over all possible training samples
x(l), I = 1,...,L. Thus, in Berger and Pericchi (1993), we defined the arithmetic IBF
(AIBF) and geometric IBF (GIBF) as, respectively,

L L
1 1
B! == Bu(l) = B, - 7 > Bij(D), (3)
=1 =1

L 1/L L 1/L
BG! = (H B,-,-(l)) = BN (H BY (z)) . (4)
=1

=1

An important point, observed in Berger and Pericchi (1993), is that the average of the
correction factors, Bf}’ (1), must converge (for large samples) in order for Bﬁl to correspond
to a proper Bayes factor. To this end, it is typically necessary to place the more “complex”

model in the numerator of the AIBF, i.e., to let M; be the more complex model. We then
define B{?I by

B4 =1/BjY. (5)



2.2 The IBF for Two Non-Nested Examples

The following two scenarios will be used to illustrate several of the issues raised in the

Introduction.
The IBF for Fized Design Linear Models

Assume that we are considering the Linear Models

M;:Y =XpB; +ojej, (6)

for j = 1,...,q alternative error models £; ~ g;; here Y is n x 1, X is n x k, B3;€RF is
k x1,0; >0, and €; is n x 1. Note that the design matrix, X, is assumed to be fixed
across models. We label the unknown 3 and ¢ by j, so as to emphasize that parameters
can have different meanings within different models. We will use reference default priors,
wN(Bj,0;) = 1/0;. A minimal training sample can be seen to be any (k + 1)-vector y(I)
with corresponding sub-matrix X({), of X, such that X*({)X({) is nonsingular. Let |A]|

denote the determinant of a matrix A.

Lemma 1. In the above situation, if gj(v) = g;j(—V), then the marginal density of the

minimal training sample y(l) is

m} (y()) = RIX*OXO|y(1) - XOX OXO) T X QyON~. ()

Lemma 1 is established in Berger, Pericchi and Varshavsky (1994). It is a quite
surprising result because m;(y(l)) does not depend in any way on g;. For instance, it
holds when g; is any N, (0, Z;) distribution, regardless of X;. It also holds for nonnormal

distributions.

This provides our first illustration of the “predictive matching” idea described in the
Introduction. Indeed, Lemma 1 suggests that the reference prior is properly calibrated for
comparison of any models of the form (6), in that the predictives for a minimal sample
are then identical. (Note that this will not be the case if other noninformative priors, e.g.,
the Jeffreys prior, are used.) This result greatly simplifies the model elaboration for linear

models, since then all Bf}’ (1) clearly equal one (see (2)) and hence (from (3) and (4))
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Al _ nGI __ N
BAT = BT = B (8)

Comparison of Exzponential and Lognormal Models

Suppose Xi,...,X, are i.i.d. according to one of the following models:

Mi: fi(zilby) = 0;1 exp{—zi/61} (Exponential(,)),

exp{—(logzi — p)*/(20°)}
2rox;

M;: fo(zi|p,0) = (Lognormal(pu, 0)).

For My and Mj,, the standard noninformative priors are 7i¥(6;) = 1/6; and =¥ (u,0) =

1/0. Calculation yields, for x = (z1,...,2Zx),

T —
i) = 0L i) = B2
(521) ([T antr=/22 (™
i=1
where v; — )2, y; =logz;. It is easy to see that minimal training samples are o
here S? = =logz;. I h 1 g 1 f

=1
the form x(l) = (z;,2;),zi # zj, so that

mi¥(x = L X 1
VM) = ey ™ W) = T

The IBF can thus be computed using (2) and (3) or (4). We defer discussion of this

example to Section 3.3.

2.3 The IBF for the Normal Linear Model
Suppose, for j =1,...,q, that model M; for the data Y(n x 1) is the linear model
M; Y = X;085 +¢;, £j NNn(O,dszn),

where 012- and B; = (Bj1,Bj2,. .-, Pjk; )t are unknown, and Xj is an (n x k;) given design

matrix of rank k; < n. Let
Bj = (X!X;)"' X}y and R; = |y — X; 58512
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denote the least squares estimator for 8; and residual sum of squares, respectively.

We will consider default priors of the form

N (Bj,0;) = a;‘”%", g; > —1. (9)

Common choices of ¢; are g; = 0 (the reference prior; cf., Bernardo, 1979, and Berger and
Bernardo, 1992) or ¢; = k; (the Jeffreys prior). When comparing model M; nested in Mj,
we will also consider a modified Jeffreys prior, having ¢; = 0 and ¢; = k; — k;. This is

intermediate between the reference and Jeffreys priors.

It is easy to show, for these priors, that a minimal training sample y(l), with corre-
sponding design matrices X;(!) (under the M;), is a sample of size m = max{k;} 41 such
that all (X;-(I)Xj(l)) are nonsingular. (Note that if ¢; = —1, i.e., constant noninformative

priors are used, then one would instead need m = max{k;} + 2.)

Computation yields that

gy 7B T(n =k +q)/2) [XIXJ2 R

772G T((n— ki +0:)/2) XX Rlrk b/ 1o

and that B{}’ (1) is given by the inverse of this expression with n, X;, X;, R;, and R;
replaced by m, X;(1), X;(1), Ri(l), and R;(l), respectively; here R;(!) and R;(!) are the

residual sums of squares corresponding to the training sample y (1), i.e.,

= ly(0) - X;OB; O, Bi(1) = (XLDX;()) XDy (D). (11)

Inserting these expressions in (1) results in the following arithmetic IBF’s in (3) for the
three default priors being considered. (For the corresponding geometric IBF’s, simply

replace the arithmetic averages by geometric averages.)

Using the Jeffreys prior:

par - X2 (R Z XXM (Rj(l) e 2)
= IX;X]'l/z RJ lXt X (l l1/2 .

Using the Modified Jeffreys prior: Defining p = k; — ki,
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BAT _ |X:;Xi|1/2 ' & (n—k.')/2.l L |X;(Z)Xj(l)|1/2 ‘ R;(]) (p+1)/2 13)
7O XEX[/2\R; L & XX \Ri(D) :
Using the Reference prior: Defining p = k; — k; and
_ D((n = k3)/2)T((k +1)/2)
¢= I((n—ki)/2)L(1/2) (14)
BAI _ IXIX;[1/2 R(PRI2 ¢ L IXEDX (D] . (R;(1))!/? (15)

# TG R R L KEOX(ORF (R(D)EHI

For Known o%: If the a;‘? are known and equal o2, and the W;V(,B]) =1, then

|XIX;|1/2

N _ 27\(k; —k:) /2
Bji = (2770' )( i / . IX‘?X]|1/2

-exp{—%(R]‘ —Ri)}. (16)

Here, a minimal training sample is a sample of size m = max{k;} such that all (X%(1)X; (1))
are nonsingular, and Bﬁ(l) is as in (16) with X;, X;, R;, and R; replaced by X;(1), X;(1),
R;(1), and Rj(l). Thus the arithmetic intrinsic Bayes factor from (1) and (3) is

Al _ |XfX,-|1/2. __1_ . _R.
Bi = gz, P\ " T )

1 - IXOX(01 1
T ; XX ()72 Fexp {"F(Rj(l) - Ri(l))} : (17)

We discuss intrinsic priors and predictive matching for IBF’s in Section 3.2.

3. INTRINSIC PRIORS FOR IBF’s

3.1 Definition and Motivation.

Our major goal is to show that arithmetic IBF’s correspond to actual Bayes factors
with respect to what we call an intrinsic prior. We view the fact that IBFs tend to
correspond to actual Bayes factors w.r.t. (sensible) intrinsic priors to be their strongest
justification. Hence, determination of the intrinsic priors is of inherent theoretical interest,

as well as providing the best insight into the behavior of IBFs.
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There are also potential practical benefits in determining intrinsic priors. One obvious
benefit is that the intrinsic priors could themselves be used, in place of the 7V, to compute
actual Bayes factors. This would eliminate the need for training sample computations and
eliminate concerns about stability of the IBFs. Indeed, one could alternatively view the
IBF procedure as a method to apply to “imaginary training samples,” so as to determine
actual conventional priors to be used for model selection and hypothesis testing. This
could be viewed as the complement to, say, the reference prior theory (Bernardo, 1979;
Berger and Bernardo, 1992), which also uses imaginary samples to develop conventional

priors for estimation and related problems.

While this latter view of the IBF methodology has considerable philosophical appeal,
there are pragmatic arguments against actually operating in this fashion. Foremost among
these arguments 1s that it is often very difficult to determine intrinsic priors. In contrast,

IBFs are typically extremely easy to determine.

The formal definition of an intrinsic prior, given in Berger and Pericchi (1993), was

based on an asymptotic analysis, utilizing the following approximation to a Bayes factor:

G e (D PPN
BJz—Bji Wj'v(éj)ﬂ'i(éi)(l-}_ (1))’ (18)

here ;i denotes the Bayes factor associated with priors 7; and m;, 7 and 7er are the

noninformative priors used to compute Bﬁ , and 6; and éj are the MLEs under M, and
M;. (The approximation in (18) holds more generally than the more standard Schwarz
approximation that is discussed, for instance in Schwarz, 1978, Gelfand and Dey, 1994,

and Kass and Raftery, 1995.)
To define intrinsic priors, equate (18) with (3) or (4), yielding

()N (6:)

= BN
ﬂ';\,(é])ﬂ',(éz)(l-}_O(l)) —Bz_17 (19)

where we define ég to be either the arithmetic or geometric average of the B{}’ (). We
next need to make some assumptions about the limiting behavior of the quantities in (19).
The following are typically satisfied, and will be assumed to hold as the sample size grows

to infinity:
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(i) Under Mj, éj — 9]', éi — ¢i(0j), and BZ}I — B;(H,)
(ii) Under M;, 6; — 6;, 8; — ¢;(6:), and BY — B;(6;). (20)

(iii) For k = ¢ or k = j, the following limits exist:

L
LIEI;O Eg;f" [% 121 Bg(l)] arithmetic case
Bi(6x) = (21)

L
Llim exp {Eé‘f’“ [% > log Bf;’(l)] } geometric case;
—o0 =1

if the X(!) are exchangeable, then the limits and averages over L can be removed.

Passing to the limit in (19), first under M; and then under M;, results in the following

two equations which define the intrinsic prior (7r]I ,mF

w107 ($:(6;)) . :
AN O h(8) (22)

7r]1 ;(6; 7er 0, .
W?’( T = ) (29

The motivation, again, is that priors which satisfy (22) and (23) would yield answers which
are asymptotically equivalent to use of the intrinsic Bayes factors. We note that solutions
are not necessarily unique, do not necessarily exist, and are not necessarily proper (cf,

Dmochowski, 1994).

As a simple example of the above ideas, consider the fixed design linear model from
Section 2.2. It is clear that B}(6;) = B}(8;) = 1; it follows trivially that solutions to (22)
and (23) are given by

() = 7 (6k), k=1,j.

Thus the intrinsic priors are merely the original noninformative priors. (Note, however,
that this happens only because we used the reference noninformative priors; it would not

happen, for instance, had the Jeffreys noninformative prior been used.)
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3.2 Intrinsic Priors for Arithmetic IBF’s in Nested Linear Models

Here we consider the normal linear model situation of Section 2.3. For the nested
situation and use of arithmetic IBF’s, it will be shown that proper intrinsic priors exist.
Model M; will be said to be nested in M; if X; consists of a subset of the columns of X;.
(More general types of nesting can be reduced to this by transformation.) In fact, we will
assume that the covariates have been ordered so that X; = (X; X*) (the concatenation
of the two matrices, not the product), and that the parameterization has been chosen so

that X{X* = 0. Writing 8¢ = (8§, 8*"), it is convenient to write 7;(6;) = 7;(8;,0;) as
7i(Bj,05) = 7;(B*1Bo, ) - 75 (Bo, 7). (24)

Note that (Bo,0;) is the analogue, under Mj, of (8;,0;) under M;. As discussed in the
Introduction, we do not make the common mistake of identifying these parameters as being
equal but, as they are related “nuisance” location-scale parameters, it is natural to assign
them the same noninformative prior. We in fact will choose this common prior to be the

same as 7} (Bi,0:) = az-_(l'l'q"), so that

mi(Bi,0i) = o7 MY 73(Bg,05) = o 1T (25)

If (Bi,0:) and (Bo,0;) really were the same parameters, this choice would be noncontro-
versial. As they are not necessarily the same parameters, however, it could be argued that
m; and 7rJz- may not be properly “calibrated.” If, however, ¢; = 0 (i.e., the original 7} is
the reference prior), then m; and 7r12- are themselves the reference priors, and we saw in
Section 2.2 that this seems to provide a type of predictive “calibration” for any location-
scale models. Thus our argument that IBF’s correspond to sensible real Bayes factors is
strongest if the IBF is defined for reference 7/, which occurs in either the “reference prior
case” or the “modified Jeffreys prior case.” (In fact, we will see that an “adjustment” of

7r]2-(,30, ;) is needed for the Jeffreys prior case.)

For this situation, the conditions in (20) can be shown to hold, with ¥;(6;) = (8o, 0;)
and v¥;(60;) = 6; = (Bi,0;), providing the limits in (21) exist. There can be a certain
ambiguity in defining this limit when the design matrix is unpatterned; we will thus assume
that, as n — oo, the design matrix is patterned or replicated in such a way that the limits

in (21) exist.
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Next, observe that expectation in (21) under M; is equivalent to expectation under
M; with 6; = ((Bo,0),0;). It is then straightforward to show that (22) and (23) are both

equivalent to the single equation.

W}(,B*|ﬂ0a0'j) — 0,5.91'—‘1:') . B;(e])

1 L

= o) LY Bl B 2s)

=1

Interestingly, the expectations in (26) can be computed in closed form; see the Appendix.
Using these expressions, the “intrinsic priors” in (26) can be written as follows. (We also
include the result for the known variance case; the analogue of (26) for this case is easy to

derive using Fact(v) from the Appendix.)

Unknown a? and ar]Z-:

(9-—91)0* Xt ZX |1/2
1(16 |IBO’UJ) = Z I|Xt§l§X (l))||1/2 "9[)()‘(1)’0']')’ (27)

where C* is defined in (A2) of the Appendix, ¥(A(l),0;) is either (A3), (A4), or (AD),
depending on the default prior used, and

M) = 05287 X* (DI - Xu(DXIDOX:(N] T XD)X*(1)B” (28)

Known 0? = 02 = 0?: Defining p = kj — ki (recall that k; is the dimension of ;)

1 1 |X5OX, O
1(B*1Bo) = v LZ KR PO/ (29)

Of course, we have not yet answered the big question: is w}(ﬁ*[ﬂg,aj) a proper

distribution? If so, we have established the Bayesian correspondence of IBF’s.

Consider, first, the case of known ¢? = 012- = ¢2. It is straightforward to show that

2 () = (X*()'(I - X:OXIOX: O X)X (D) o (30)
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has determinant
12 ()] = o2 |XHOX(DI/IXEDX (D).

Hence (29) can be written
L

w8 180) = 7 > m(B"), (31)

=1
where the m; are N,(0, %E(l)) distributions. Thus 71']1- is a mixture of normals, and is

trivially a proper distribution. The following theorem deals with the unknown variance

case.

Theorem 1. For the reference prior and modified Jeffreys prior cases, 7r]1-(,3*|ﬂ0,aj) in

(27) is a proper density. For the Jeffreys prior case,
‘ yaar — v Pk +1)/2)T((p +1)/2)
[t ois = 0= s

Proof. We freely use notation and facts from the Appendix. For the Jeffreys prior case,

L
w1810, 0) = 7 3 0,(8%),
=1

9.(8%) = ¢ XX, (01" =Mz gy (PEL PR 42 MY
! (27r0'2)P/2 XX (D[17? 5 5 5

The transformation 8* — A(!) has Jacobian
XiOX(/? | (7o)
IX5(OX;M2 T(p/2)
so that (writing A = A(0))

CAD)=D/2)

1 k; 2 A
/gz(ﬂ )dp* = 2P/2I‘(p/2)/ A\(P—2)/2 —A/zM(P+ p+ - + )dA

Using Fact (ii), and integrating term by term yields
/ =2 /2g=2/2 (P +1 ki t2 ’\)d)\

0 2
_ N((p+k; +2)/2) =~ I'(j+(p+1)/2) [T (i-14p/2) ;= A/2
BT 2 A R T /o @

_ P((p + kj + 2)/2) Z F(] + (p + 1)/2)1‘(] +p/2)2p/2
M +1)/2) TG + (p + k; + 2)/2)GD

= 2/T(p /2>F<1”+1 g,“’;f”,n

_ 22°T(p/2)T((p + k; +2)/2)T((ki +1)/2)
- I((kj +1)/2)T((k; +2)/2) ’
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where F' is the hypergeometric function, and we have used 15.1.20 of Abramowitz and

Stegun (1970). Combining terms and simplifying yields Co.

The identical argument works for the reference and modified Jeffreys prior cases, but

now the integral equals 1. O

It is interesting that 7F]1' (B*|Bo,0;) is proper for the reference prior and modified Jef-
freys prior cases, but is not for the Jeffreys prior case. This suggests that our choice of
7i(Bi,0:) = ai_(Hq‘) and 7%(Bo,05) = a;(1+q‘) for the Jeffreys prior IBF are not properly
“calibrated”; choosing 73(80,0;) = Cy la;(Hq‘) would ensure that 7;(8*|8o,0;) is then

proper, and is hence perhaps the correct calibration of 7r]2.

The nature of 7r} (B*|Bo,0;) is of considerable interest in providing insight into the
behavior of the associated IBF’s. In the known variance case, 7r3l (B*|Bo) is rather simple,

and clearly has mean 0 and covariance

1 L
*=‘ZZ (32)

Note that, in balanced cases where the X (I) are equal, 7;(8*|80) is just a single normal
prior, and is similar to the prior used for model comparison by Zellner and Siow (1980).
Seeing how X* differs from the Zellner and Siow covariance matrix in unbalanced cases

would be of considerable interest.

The behavior of 7r11- (8*|Bo,0;) in the unknown variance case is more difficult to ascer-
tain. For the modified Jeffreys prior case and p = (k; — k;) an odd integer, simple closed
form expressions are available, as shown following (A4). For instance, when p = 1, using

(27) and (28) yields

. IXiOX;O1M 1
i (B |ﬂ0,a]~)=———2 LZ R EORE A(l)(1

71'0']-

— e~ 2MD/2)

L

_ 1 1 1 g erve
L ,; 2/7V() (B2/V(D) 5 ) (33)

where

V(1) = 203 /[X* (DI - X:()XHDXa(D) T X)X (D),
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Each of the densities in this mixture is very similar to a Cauchy (0, 1/V(!)) density (never
differing by more than 15%). This Cauchy density is similar to that recommended by
Jeffreys (1961) or Zellner and Siow (1980).

In general, it can be shown (for the reference and modified Jeffreys cases) that
7;(B8*|Bo,05) is a mixture of densities that behave like T5(1,0,X*(1)) densities: p-variate
t-densities with 1 degree of freedom, location 0, and scale matrix '

(1) = 203 [(X*()* (X - Xa(DXI(OX (D)) T X)X D)
The fact that the degree of freedom here is minimal, seems related to the fact that minimal

training samples were used.

As a final comment, note that an analogous derivation of intrinsic priors for geomet-
ric IBF’s can be performed. However, the analogous expressions for W}(ﬁ*]ﬁo,aj) are

considerably more involved, and also do not appear to be proper distributions.
3.3 Intrinsic Priors in Nonnested Models: An Example

For nonnested models, finding a solution to (22) and (23) is often more difficult.
Consider comparison of the nonnested models M;: Exponential (6;) and Mj: Lognormal

(i, 0), introduced in Section 2.2. Assumption (20) can be shown to be satisfied, since
under My, 6, =(i1,8) = (y,(S;/n)l/z)
(n—o0) | O 1 1
= (B V), (B IS;)Y)

(=) (6,) = (log 6, — 0.5772,1.2825); (34)
under Mz, 6 =% — 1(p,0) = E(A;Ifa) [X] = exp{p + 307%}. (35)

Also, (21) becomes

Eé\:ll [2X.-le108(X-'/Xi)|]

X+ X)? arithmetic case

B} =

exp {E%‘ [log (2X‘}E§|{}f§é{)‘! X )l)] } geometric case
0.2954 arithmetic case
= (36)

0.2383 geometric case;

M, 2X.-X,-Ilog(X:/Xj)|]
(n,0) (Xi+X;)?

exp {E(A: ) [log (2X.)§3|(}c->}-g}((}:().2/ X; )l)] } geometric case

arithmetic case

B; =
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HA(o) = E? [I;c__ﬁlf(_%a_z)] arithmetic case )
HG(o) =3 -exp {—2EZ [log (1 + eﬁ”Z)] } geometric case,
where Z ~ N(0,1). (The derivations above are straightforward.)

For the arithmetic case, equations (22) and (23) thus become

ma (o)1 explp+50°Y) _ pa
(1/0)mi(exp{p + 30%}) = 1), (38)

7§ (log 6; — 0.5772,1.2825)(1/6,)
(1/1.2825)71(6,)

= (0.2954). (39)

We have not attempted to characterize the solutions to (38) and (39) in general. The

equations are fairly easy to solve, however, if one assumes that

W%(#a o) = 7"211(ﬂ)7"212(‘7)- (40)

Indeed, the solutions are then given (up to multiplication of 7{ and division of 7 by an

arbitrary positive constant) by

m1(61) = 2/6;

= HA(o)exp{(1~ e + 507)), (a1)

where ¢ = 1.1291. A similar analysis for the geometric IBF yields, as the intrinsic priors,

the expressions in (41) with H* replaced by H and ¢ = 1.2602.
To obtain some insight into the behavior of these priors, it is useful to reparameterize
M, by (v,0), where v = exp{u + 02/2} is the lognormal mean. Then

2 H)

ve 20

ﬂé(/", U) - ’

where H is either H4 or H®. The point of this transformation is that §; and v are
then both the mean parameters of their respective distributions, and are given the same
improper prior. Curiously, however, it is not the usual inverse noninformative prior. We
speculate that this noninformative prior might prove to provide a better predictive match

for these “common” mean parameters.

17



The “nuisance” parameter, o, receives the prior 74,(0) = H(0)/(20). It is easy to

show that 7l,(o) is monotonically decreasing, with the following limiting behavior:

1/(24/7) arithmetic case,

3/16 exponential case,

1/(y/7a?) arithmetic case,
3 exp(—20/+/7) exponential case.

as 0 = 0, wl,(0)= {
as o — 00, i, (o) {
It is thus clear that 7i,(o) is integrable; indeed, we have normalized (41) so that, in the

arithmetic case, 74,(0) is a proper density.

The pattern we have observed thus seems to be holding: for parameters that are in
some sense “common,” the intrinsic priors are the same and are of a noninformative type,
while parameters that exist only in one of the models receive proper intrinsic priors. For a

variety of other examples and characterizations of intrinsic priors, see Dmochowski (1994).

APPENDIX

Proof of Equation (27): Defining p = k; — k;, note that

L * L t i ]/2 ' ( ‘+1)/2
! M; BN\ = IXEOX; (O g, [ (R;(1)
7 2 Far B Ol = T 2 iR, Dot (mayyaerors | (4D
where /
—p/2 )
o= _T T((¢i +p+1)/2) (a2)

T 2w T (g +1)/2)
The expectation in (A1) can be evaluated in closed form for the default priors we consider.
The answers are in terms of Kummer’s function, M(a,b,c) (see Abramowitz and Stegun,

1970, Chapter 13).

In the proofs, the following standard facts will be repeatedly used ; all notation is

taken from Sections 2.3 and 3.2.

(i) Under M;,

W = %—9 ~ X1
v = BOZRA o),

J
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where x2 denotes the central chi-square distribution with v degrees of freedom, and
x2(A(l)) is the noncentral chi-square distribution with p = k; — k; degrees of freedom
and noncentrality parameter A(!) which, in the nested case, is given by (28). Also, W and

V are independent.
(ii)
M(a,b,z) =

I'(d) >, I(a+7) 27
I(a) ; r+j) 3!

(i)

B = Y PRSP pias ),

(iv) With obvious abuse of notation,

x3+x:) | TQA/2T(s+ (v +1)/2)

( % )3]_r<s+1/2>r«u+1)/z>

providing x? and x2 are independent.

v)
Blexp{~5x3(V}] = 277/%eM,

L +p/2((p+1)/2) _ 5
T(1/2)T(p + 1) '

Lemma 2. For the various noninformative priors, the expectations in (Al) are given in

the following expressions:

Using the Jeffreys prior: Here ¢; = k; and ¢; = k;, and the expectation in (A1) becomes

R;(D) (b 41}/ e —A(D)/2 ptl p+ki+2 NI

M,
Bj.o;

where
o — T((k; +2)/2)T((p +1)/2)
T((k; +p+2)/2)T(1/2)
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Using the Modified Jeffreys prior: Here ¢; = 0 and ¢; = k; — k; = p, and the expectation
in (A1) becomes

R\ "2 o, vz + L (1)
[(R(,) u(EEL, 5y, A (Ad)
’\; _ _,\(z)/zl ifp=1

xapl( = 3 + xwe) ~ (1 + 3 e ifp=5.
Using the Reference prior: Here ¢; = ¢; = 0, and the expectation in (Al) becomes

E[ BRI | __exp{=2(1)/2}
®RO)E| = 52 T((p +2)/2)

m(y, 212 Ay (A5)

Proof of Lemma 2: Using, in order, Facts (i), (iii), and (iv), we obtain

R](Z) (k;+1)/2 B 1%%4 (k;+1)/2
(Ri(l)) - (W+V>
(kj+1)/2
S f\(l)/2)’exp{ —A0/2} g X3
; <X3+Xf»+2]‘> }

POV Z ()\(l)/z)j T((k; +2)/2)0((p+2j +1)/2)
B J! L(1/2)T((p + kj +2j +2)/2)

EM

j=0
Using Fact (ii), (A3) follows immediately. The proof of (A4) is almost identical, but also

uses Fact (vi). The explicit forms given for p = 1, 3,5 follow from representations of M.

To prove (A5) use, in order, Facts (i) and (iii) to obtain

(Ry(V2 1 (AD)/2) exp{—A(1)/2)
| maneem) = . .

2
X1
(X? + X12;+2j)(p+1)/2]
Defining ¢ = 2(P+2+1/21(1/2)[((p 4 2§)/2), it is clear that
/3 o poo ... (j—1+p/2) —(z+y)/2
22 M (p1+1)/2 =/ / =L (6+1)/2 dzdy
(X} + X} o)tV o Jo (z+y)e
= ¢;2U DT +1/2)/(5 + p/2).

Algebra, together with Fact (ii), yields the result. O
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