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Abstract

We study the problem of selecting populations close to a control from among k normal
populations using the parametric empirical Bayes approach. A Bayes selection rule is
derived, which depends on certain parameters. When those parameters are unknown,
using the empirical Bayes idea, we first present estimators, based on information collected
from the k populations for the unknown parameters. Then, mimicking the behavior of
the Bayes selection rule, an empirical Bayes selection rule is constructed. The relative
regret Bayes risk is used as a measure of performance of the empirical Bayes selection rule.
It is shown that the relative regret Bayes risk of the proposed empirical Bayes selection
rule converges to zero at a rate of order O(k™!). A simulation study is also carried out
to investigate the performance of the proposed empirical Bayes selection rule for small to

moderate values of k.
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1. Introduction

Problems of selecting populations close to a control arise frequently in many appli-
cations. Assume that there are k populations and a target value used as a control. Our
goal is to select those populations which are sufficiently close to the control. To motivate
such a study, for example, consider the matching parts problem in industrial production
described in Burr (1976). A diesel engine plant has to make plunger rods for forcing
fuel through small holes. The diameter of the plunger rods should meet certain specifi-
cation limits. Suppose there are several plunger rods. Then, we may wish to select one
or all those rods which meet the specification limits. Also, as described by Wellek and
Michaelis (1991), such selection problem arises in clinical trials and bioavailability trials,
for instance, to identify the equivalence of a newly developed formulation of a drug with

different administration methods to a standard formulation.

In the literature, Gupta and Singh (1979) and Gupta and Hsiao (1981) have derived
Bayes, Iminimax and minimax procedures for selecting populations close to a control.
Mee, Shah and Lefante (1987) have developed multiple testing procedures to compare
the means of k£ normal populations with respect to a control. Giani and StrafSburger
(1994) have studied testing and selection procedures for equivalence of k populations with
respect to a control. It should be noted that comparing populations with a control under
different types of formulation has been investigated in the literature. To mention a few,
for example, Bechhofer and Turnbull (1978), Dunnett (1984), Wilcox (1984) and Gupta,
Liang and Rau (1994) have discussed problems of selecting the best population pfovided
that the best is better than a control. Paulson (1952) and Gupta and Sobel (1958) have
studied problems of selecting a subset containing all populations better than a control.
Randles and Hollander (1971) and Miescke (1981) have derived optimal selection rules via
the I'-minimax and minimax approaches for selecting good populations. Huang (1975) has

derived Bayes selection rules to partition normal populations.

In this paper, we study the problem of selecting populations close to a control from
among k normal populations according to the Kullback-Leibler discrimination information.
We will derive empirical Bayes simultaneous selection rules for this selection problem and

investigate the corresponding optimality of the empirical Bayes selection rule. The paper



1s organized as follows. The framework of the selection problem is given in Section 2. An
empirical Bayes selection rule is proposed is Section 3. The asymptotic optimality of the
empirical Bayes selection rule is investigated in Section 4. The relative regret Bayes risk
is used as a measure of performance of the empirical Bayes selection rule. It is shown that
the relative regret Bayes risk of the concerned empirical Bayes selection rule converges to
zero with a rate of order O(k™!). A simulation study is carried out to investigate the

performance of the empirical Bayes selection rule for small to moderate values of %.

2. Formulation of the Selection Problem and A Bayes Selection Rule

Consider k independent normal populations 7, ..., 7 with unknown means 64, ..., 0%,

2, Let 6y be a known control value. Also, let X;

respectively, and a common variance o
denote a random variable arising from population 7; and f(z|6;,0?%) denote the density of
a N(6;,0?) distribution. Then, the distance between population 7; and the control §; is

defined as:

(51’ = EO; [@n f(Xilei,O'z):l = (91 — 90)2

= 2.1
f(X:lbo,0?) 202 (2.1)
the Kullback-Leibler discrimination information between two normal distributions N(6;, o%)

and N(p,0?). Note that §; is increasing in |6; — 6y] and §; = 0 as 6; = 6.

For a given constant ¢ > 0, population 7; is said to be good if §; < ¢, and bad
otherwise. Our selection goal is to select all good populations (or all populations with at

most distance ¢ from the control §y) and to exclude all bad populations.

Let @ = {§ = (61,...,0k,02) |6;eR,i = 1,...,k; 0 > 0} be the parameter space.
Let ¢ = (aq,...,ax) denote an action, where a; = 0,1,¢ = 1,..., k. Whenever action g
is taken, it means that population 7; is selected as good if a; = 1 and excluded as bad if

a; = 0. The following loss function is adopted:

k
i=1
where for each 1 =1,...,k,
Li(8,a:) = ai(6; — ¢)I(c,00)(6i) + (1 — as)(c — 6:)I o, (6i), (2:3)
where I, denotes the indicator function of the set S.
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In (2.3), the first term is the loss of selecting population 7; as good while 7; is at least
c distance away from the control 6y, and the second term is the loss of wrongly excluding

m; as bad one while 7; is within ¢ distance from the control ;.

For each 2 = 1,...,k, let Y;;...,Yin be a sample of size m taken from population
7;. It is assumed that 6; is a realization of a random variable ©; which has a N (6, 7?%)
prior distribution with unknown common variance 2. The random variables O, ..., O

are assumed to be mutually independent.

Let Vi = (Yi1,...,Yim), 2 = 1,...,k, and ¥ = (¥1,...,Y%) and let ) denote the
sample space of Y. A selection rule d = (dy,...,d;) is a mapping defined on the sample
space Y into [0, 1]¥, such that for each y €Y, d(y) = (di(y),...,dx(y)) where di(y) is the
probability of selecting population 7; as good.

Under the preceding statistical model, the Bayes risk of a selection rule d is:

k
Ri(d) = Z Ryi(d;) (2.4)

where

k
Rii() = [ diwlptw) o I] fiu)du + . (25)

and
Ci = El(c— @8y, 1@ty

202

1 fi(y;) is the marginal probability density of Y,

| pi(ys) = B[Ry, = .

Since given Y ; = y;, ©; has a posterlor normal distribution with mean B6,+(1— B)y;

and variance Br2, where j; = = Z yij and B = il /(” + 72), it follows that
J=1

Var(0;|Y; = y;) N {E[0:]Y: = yi] — 60}

pilus) = 202 202
_ %27'2 (¥; — 60)? o T4
_202(%2 + 7_2) + 202 (0._2 n 7_2)2 (2.6)
=1[ B]+( )(1 B)? = 9i(7,).
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Hence, a Bayes selection rule dg = (dBi,...,dBt), which minimizes the Bayes risks Ri(d)

among all selection rules, is given as follows:
For each yeY,and : =1,...,k,

1 if 1/)1@,) <eg,
dpi(y) = (2.7)

0 otherwise.

From (2.6) and (2.7), we see that for each component 7, the Bayes selection rule dp; is
independent of y;, for all j # 7, and depends on y; only through the sample mean value ;.

Therefore, it can be written as dp;(y). That is, dpi(7;) = dpi(y:). The minimum Bayes

risk is:
k
Ri(ds) = Z Ryi(ds:) (2.8)
and -
Ryi(dp:) = /_ dgi(T:)[%:(¥:) — clgi(¥:)dy; + Ci (2.9)

where ¢;(7;) is the marginal pdf of the sample mean Y; = —71; > Y;;. According to the
j=1

statistical model described previously, it is known that Y,...,Y are iid, with a normal
. . . 2
distribution N (6o, < + 72).

Let ¢* = 20%[c — 1=B]/(1 — B). Then vi(y;) — ¢ < 0 if and only if (7; — 8¢)? < c¢*. If

c* <0, then ¥;(g;)—c>0forally;,,¢ =1,...,k. Hencedpi(y;) =0foraly,,:=1,...,k.

When ¢* > 0, the Bayes selection rule dp can be rewritten as follows: For each ¢ = 1,... %,
1 if :l-jz € I,

dpi(y;) = (2.10)

0 otherwise,

where I = [0y — v/c*, 80 + V/c*].

Finally, we note that for each i, 9;(7;) is increasing in |y; — 6| and dp;(7y;) is nonin-
creasing in |§; — 6g|. Also, since when ¢* < 0, dp;(y;) =0 for all 7,,7 =1,...,k, and this
may be an extreme case. Hence, in the following analysis, it is assumed that ¢ > 2—1”—; and

therefore ¢* > 0.



3. An Empirical Bayes Selection Rule

It should be noted that the Bayes selection rule dp depends on ¥;(7;),t = 1,...,k,
which are dependent on 02 and 72. When the parameters are unknown, the Bayes selection
rule dp cannot be implemented for the selection problem at hand. The unknown param-
eters should be estimated. In the following, the parametric empirical Bayes approach is
employed for estimating the unknown parameters and deriving a selection rule.

For each 1 = 1,...,k, let S; = in:(}/ij ~Y;) and S = Zk: S;. It is known that

=1 =1

Sifo® ~ x%,_1,t = 1,...,k; Si,...,Sk are mutually independent and hence S/c? ~
; !

Xi(m—l)' Let W = S (Y; — 6)%. Since Yq,...,Y} are iid, having a N(6q, %2 + 72)
i=1
distribution, W/(%2 + 72) ~ x%. Note that E[ﬁ] =o?, E[¥] = %2 +72. Hence we

may use B = (—SLW A 1) to estimate B by noting that B = %2/(%2 +72) <1

where a A b = min(a, b). Also, we use 62 = ﬁ to estimate o?.

Define

¢nm)=5—u_3y+@L;@X

1
m 262

[1-B)%i=1,...,k (3.1)

¥ (7;) is a mimicry of 1;(7;) with the unknown parameters B and o2 being replaced by the
corresponding estimators B and 5%, respectively. Now, an empirical Bayes simultaneous

selection rule df = (d%;,...,d};) is proposed as follows.

Foreach¢=1,...,k; and each y € ), define

) 1 if 9 (y,) <¢,
i) = dbi(y;1B,8%) = (3.2)
0 otherwise.

A

Note that for each ¢ = 1,...,k, d}; depends on y; as well as y;,j # 4, through ¥;, B
and 62. Also, it can be seen that }(7;) is increasing in |7;— 6| and therefore, d%;(7;| B, 52)

is nonincreasing in [y; — 6o].

The Bayes risk of the empirical Bayes selection rule dj is

k
Ri(dr) = ZRki (dxi)- (3.3)
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where

Res(dy;) = / Eild3(V:|B, 67T = 7:][i(@:) — Jas(7)dy; + Ci "
3.4
= [ Pd@IB,6%) = 17 = T} - o) + O

In (3.4), P; is the conditional probability measure generated by B and 62 conditioning
on Y; = 7; and E; is the expectation taken with respect to the conditional probability

measure P; given Y; = v,.

Example. The example of Romano (1977, page 248) is used to illustrate the application of
the empirical Bayes selection rule dj. Four product lines in an industrial corporation are set
to manufacture a specific type of ball bearing with a diameter of lmm. An experimenter is
interested in finding out all those product lines for which the associated Kullback Leibler
discrimination information from the control value 8y = 1lmm is at most 0.1. For this
purpose, at the end of a day’s production, ten ball bearings are randomly and independently

selected from each of the four lots manufactured by the product lines. The data is given

below.
i | 1 2 3 4
Y; 1.194 1.406 1.129 1.226 (mm)
S; 0.7552 1.6510 1.5319 0.5328

Note that 8y = 1lmm, ¢ = 0.1, ¥k = 4 and m = 10. Then, S = 4.4709, W =
0.270189, 52 = 0.124192 and B = 0.183859. Hence,

i | 1 2 3 4
bET,) 0.1417 0.4828 0.0854 0.1778
dr:(¥:) 0 0 1 0

That is, the empirical Bayes selection rule dj selects product line 3 only and excludes the

other three product lines.

4. Asymptotic Optimality

For a selection rule d = (dy,...,dr) let Rg(d) denote the Bayes risk of d. Since dp is
the Bayes selection rule. Dyg;(d;) = Rgi(d;) — Rri(dpi) 2> 0 for each ¢ = 1,...,k. Hence,
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Di(d) = Ri(d) — Re(dB) = E Dii(d;) > 0. Di(d) and pr(d) = Di(d)/Rr(dB) are called
regret Bayes risk and relative - regret Bayes risk, respectively, of the selection rule d. In the
following, the relative regret Bayes risk pr(d) is used as a measure of performance of the

selection rule d.

A selection rule d is said to be asymptotically optimal of order {8k} if pr(d) = O(Bk)

where {8} is a sequence of positive numbers such that khm Br = 0.

In the following, we will investigate the asymptotic optimality of the empirical Bayes
selection rule dj. For doing so, note that under the previously described statistical model‘,
for the Bayes and empirical Bayes selection rules dp and dj, we have: Rii(dp1) =--- =
Rir(dpi) and Ry (di,) = -+ = Rii(dyy)- Hence, pi(dy) = [Ri1(di,)—Ri1(dB1)l/ Rra(dBa).
Since Ri1(dp1) is fixed for all k, therefore, it suffices to investigate the asymptotic behavior

of the regret Bayes risk Ri1(d%;) — Rk1(dp1).

Let ¢1(;) = ¥1(7;) — ¢. Also, let J = R — I, the complement of the interval I =

[6o —\/c*, 80 ++/c*]. Note that dp1(7;) = 1,¢1(7;) < 0if G e I; and dp1 (7, ) = 0,¢1(7;) > 0
for y; € J. From (2.9), (3.4) and the fact that dp is a Bayes selection rule, we have that

0 <R1(d%;) — Rra(dB1)

- / B[y (31B,6%) — dp1 (3)[F1 = Ty lea (7)o (7,7,

X . (4.1)
- /I P {dl, (3,18, 6°) = 07 = 7y} -2 (7161 (91 )dpy

+ /J P{dL 118, 6%) = 1T = 71 Y1 (8)91 (747



By the definitions of dj,, %7 and by an application of Bonferroni inequality, for each
yl el 3

Pi{d};(v,1B,6%) = 0|Y1 =7, }
=Pi{y1(71) > c[Y1 =71}
- [oma-8)+ BBl app| - a-m+ @0 pp)s @i =7)

B-B c1(7.) —
SPl{ >—%|Y1 =§1}

2m
— _0 2 " ~ U —
+P1{——(y1202°) [2-B-B]B-B]> ——CI(§I)|Y1 —7,)

_I_Pl{(yl _90)2(1 _B) [515 N %]

A 2me1 (Y, ) —
SPl{B—B<—;@|Y1=?71}

alyi) - _ -
~alliy, g,

20%c1(5y) .
+P{B-B< tﬁ“fl =71}

+ P2 —o? < o'a(d)_ Yi=7
i o =@, + 50, Gy T

(4.2)

Similarly, for each g, eJ,
P{d(5:1B,8%) = 1Y1 =7}
=Pi{$i(7) < Y1 =7}
B-B (Y1 — 60)? 2 (1~ 60) 2 o
=P+ O gy - 0l By < @) =)

B 2mece —
<h{B-B> :lg(yl)'|Y1 =Y} (43)

N 202(:1@1) —
+P{B-B>———""1Y, =7
1{ > 3(51 90)2| 1 yl}

20%¢1(51) -
+P{6*—0o%> — 1/ Yi=1
1{ 202[—01(?!1)] +3(y1 _90)2| ! }

Combining (4.1)-(4.3) together yields that

0 < Ry1(dy;) — Rra(dB1) < A1+ A2 + A3 + By + B2 + Bs (4.4)
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where

Ay =/P1{B —-B< 2m+@1)|?1 =7 H—c1(F1)]91(F1)dy,
I

N 20%c1(71) = _ - _ —
A; =/IP1{B -B< lel =Y Y1 (¥1)lg1(¥1)dy,

_ 52 — o2 o*c1(7y) V. = 7 Ve (T N
As —/Ipl{ < 202 [—c1(7,)] + 3(7; — 6o )2 Y1 =7 H-e1(71)]91(¥1)d¥1,

A 2mei(y,) =~ _ _ —
B, :/J~P1{B—B > %Wl = Y1 }er(71)91(71 )y,

20“c _ _ _
B, = / P{B-B> 2200 17, g e, (7)o @) a7,

3(yy — 60)?
and
20%¢1(y;) -
Bs; = | P {6*—0o%> L V=7 71)91 (T4 )d7, .
3 /J 1{0 4 20’2[—C1(g1)] +3(@—1 _00)2| 1 yl}cl(yl)gl(yl) A

Therefore, it suffices to investigate the asymptotic behavior for each of the six terms

in (4.4). For this purpose, certain useful lemmas are introduced as follows.
Lemma 4.1 For a random variable S ~ x?

(a) P{£ -1<C} <exp{—2[C —In(1+C)]}for -1 < C < 0;

(b) P{2 -1>C} <exp {—2[C —In(1+C)]} for C > 0.

Note: Lemma 4.1 is from Corollary 4.1 of Gupta, Liang and Rau (1994).

For each real value b and y, define a;(b) = %, az(b) = 4(5—:_,,), c2(y,b) = (kk_;;)b

ko
2Bl —} and es(y,8) = g +PEE=AE. Also, let W = 1 (7 —60)°.
J=2
Note that Wl/(%2 + 72) ~ x3_,. Finally, set h(c) = c — In(1 + ¢).

Lemma 4.2 For g, € J and b > 0 such that (£ — 1)b > 2B, we have
Py{B - B >b[V; =7} < exp{—257 h(a1(8))} + exp{—E52 h(as())}.

Proof: First note that c2(y,b) > (k l)b —1> ( ) = 2a3(b) > 0, since (k — 1)b > 2B.
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Then, by the definition of B and the preceding inequality, we can obtain

P{B-B>bY, =7}

S

W(B + b)

Pl 5 0)Y: =7}
P~ 21~ = =G+ S S Ze 7 =7,
SPl{km(nf_ N~ %2 > %cz@l,b)l?l =71}

ko?

+ AW = (b= D +7) <~ e8I = )

S |

_Pl{—02k(m — 1) —-1> Ecz(yl,b)[Yl = yl}
Wi 1 kB —
< —= In ,b Yi=17
1{( 2)(k_1) 262(y1 )(k—l)(B—i—b)l 1 yl}

S _
< —_—_— =7
<Pl — 1> @BV =7}

Wi >
+ P. > -1< b)Y, =
1{(%4-7-2)(]:—1) az(b)[Y1 =7}
k(m—1

<expl ==y 6) = in(1 + an (8))])

k—1

+exp{——5—[az(b) — In(1 + a2(b))]}
k(m —
=exp 2D (o (1))} + exp{~ - h(aa (0},
(4.5)
In (4.5), the last inequality is obtained from an application of Lemma 4.1 by noting that
a1(b) > 0 and a3(b) < 0 and S and W; are independent of Y. O

Lemma 4.3 For each y; € I and b < 0 such that B+ b > 0 and
~b>2mB*(y, — 69)? /[(k — 1)o? + 2mB(7, — 6,)?], we have that
Pi{B - B <blY1 =7} < exp {— 55 h(aa(0))} + exp {~251h(aa(8))}.
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Proof: Note that ca(¥;,b) = c3(7y,8) — T < c3(¥y,b). Also, under the assumption of the
Lemma, ¢3(7,,b) < 2a1(b) < 0. Following an argument similar to the proof of Lemma 4.2,

and by noting the preceding inequality, we obtain that

P{B-B<Y,; =7}

SPl{;é—k(mS—_l) -1< 302@1,5”?1 =7}
A 1 kB -
B C s Ty R G R L
<P~ L <@ =7)
W -
1{( Yk —1) — 1> ()Y =7}
< exp {— (L—l)-[fh(b) In(14 a1(b))]}
+ exp {—’“—[az(b) — In(1 + as(B)]}
— exp {—k(m D b)) +exp{——h(a2(b))}. O

Lemma 4.4 For fixed t; > 0, and n > 0,
t n
/ T exp {—E[ac — In(1+2)]}dz = O(n™1).
0
(b) For 0 <ty <1 andn > 0.

/0 "2 exp (2o + In(1 — 2)]}dz = O(n ™)

Proof: These results can be obtained through straight forward computation. The details

are omitted here. il

Now we are going to investigate the asymptotic behavior of A; and B;,i = 1,2,3 for

k being sufficiently large.

Lemma 4.5

[ it - B> 22207, =33, (5 = O
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Proof: Assume & being sufficiently large so that 202 (1=2 =B 4 )/(1-B)? > 2B . Note that
by the definition of B, P,{B — B > M YV, =7%,} =0if m%& > 1 — B, which is

equivalent to that (7; — 60) > 20%(1=2 + ¢)/(1 — B)?.

Let omer(7,) . 2B
. mci1lyY,
= <
Ji1 ={7, e J|0 < 3 _k—l}’
_ 2B 2mer(7,)
J2 {yleJ|k_1< 3 < B}
Then,
A 2mce1(y; ) — _ _ — N
B, :/J P{B-B> #Ih = 71 }e1(71)91(F1)d7,
~ 2mC]_(y1) X — — — —
+/ P{B - B> ——=-IY1 =71} (#1)9:(7,)d7,
=B11 + Bia,
where

3B 3B
JE— N v, < — = -1y.
B < /Jl m(k — 1)91(y1)dy1 ~m(k—1) Ok~

and by Lemma 4.2,

Bua < [ enf- U N i LI PR PR A

+ /J exp{—%h(az(m—c;(y—l)))}cl (¥1)91(¥1)dy,

=B121 + Bi22.

For 7; € Ja, 2%11(?19)0' < [8c*7r(% + Tz)]_%exp {— } = M*.

2("2

Let M} = M* x %. Hence,

_ k(m 1) 2m01(y1) 91(71) 207
B = [ exp{= 2 hon G s (1) 200w 2 ()

(m—

/M1c1<y1>exp{—’“ )h(a1<2mc;(yl)>>}dc1@1>

[ (%) e oo (H Doy

B

Ty
[ ekB 1?2 fEE k(m — 1)
=M [m(k——l)} /# a exp {——2—[a —In(1 + a)]}da

=0(k™!) by Lemma 4.4(a).
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Also,

By <M ()2 /I_B xp{— = Lh(as(2))}d
122 < = (5 ] exp 5 2 z
6B =2 @ E—1
=M*( )2 / exp{ [a+ In(1l — a)]}da
ey (L 4@)? 2 (4.10)
<M*( 65 )2 / exp{ [a + In(1 — a)]|}da
W
=0(k™!) by Lemma 4.4(b) .
Now, combining (4.6)-(4.10) together concludes the result of the lemma. O

Lemma 4.6

. 20%¢1(7,) — _ _ _ . -1
[REEEE s g V1 = T @), = (k™).

Proof: Fory, e J,0 < :(ay cigyol))z = da 9B) +2” Xz’z‘y(l—B;zc, which is increasing in |y; —6o|

and bounded above by 5 B)’ since %(1 — B) — ¢ < 0 by the assumption that ¢ > %

(see the end of Section 2). Assume k being sufficiently large so that 20261(102":;2\/6_*) >
Let
202¢1(Y;) 2B
* _ [ <
']1 {y1€J0< 3(?1—00)2 — k‘—l}’
202¢1(Y;) 2B
* __for . * d
J2 {y1€J |y1 60' < 2\/(:_an 3(—y—1 —_ 90)2 > b — 1}7
T3 =77 |lg, — o] > 2/},
Note that y,eJ; iff :g;lclg%l > 2”201(16;";2\/6_*) = p*. Therefore,
- 20%¢1(¥;) =  _ _ —
B, = / P{B-B> _;(yl),lYl =71 }ta(¥1)9:1(¥1)dy,
* 3(y1 — bo)
-1—/ Pl{B—B > MIYH =7, tc1(¥1)91(71 )dy
. 3(y, — 60)? RS RELE (4.11)
20%¢1(7,)
—|—/* Pl{B B> W|Y1 = y1}01(y1)91(y1)

=By + B2y + Bas,
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where,

3B _ 2 N
B S/J; (k—_—l)—atg(yl — 60)"91(¥1)dy,

3B o? 2 (4.12)
SW(H +77)
=0(k™1);

Bys S/* Pl{B — B > B*|Y1 =¥ }er(¥1)91(¥1)dy,

3

< / * [exp{—k(m Y h(as (ﬂ*))}—i—exp{——h( 28" ))}] (1_3):59; =) g, @)aw,

— BY(% +72)

s[exp{—’“(m H =D has(57))} + exp{—E5  htaa(s™))] 4

602
=0(k™1)
(4.13)
and by Lemma 4.2,
I e B M ICAEAT
+ [ enl-E5 a2 2O e ) ()i
< [ oot b I e Gnem

n / exp{—~ 5 1h(a2(20 CI(yl)))}cl(yl)gl(yl)
—0(k™Y).

In (4.14), the second inequality is obtained by the fact that for y,eJy, h(al(:('y ci%z)l )

> h(ay (%)) and h(as (:(‘y c_lgzl)z)) > h (o (2;(\6/1—&?2-))). Also, the last equality is

obtained by an argument similar to that for B2 by noting that J3 is a bounded set.
Combining (4.11)-(4.14) together leads to the result of the lemma. O

Lemma 4.7

22 2 20%c1(71) — - — N\ -1
[ Pt =0 > AP = G)a@)n @) = 06

Proof: For §;eJ, ¢1(7;) > 0 and 0 < 20%[—¢;1(7;)] + 3(F; — 60)? < 3(y; — 60)?.
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20%c1(7;) 20%c1(7,)
Hence, 202[__61(;,1)]1_'_%1(?/1_00)2 > 3@119'1’;32. Therefore,

. 20%c1(y,) — _ _ N
B, S/Pl{az —a®> (_—l(yl))glh = Y Ye1(91)91(¥1)dg,
S _
&2 20%¢1(¥,) ~ _ _ N
- [PG =15 22007 —p)a@n (@)
Y1 — bo)
=Bj3,

which is a form similar to that of B;. Therefore, the technique used to treat By can be
applied here and one can conclude that Bf = O(k™1). |

Lemma 4.8

[ B -5 < AN, g @)l @ = 06

Proof: Note that 4(g, — 6y) = G 217)”013 +(2y;n?:°l 5oy7 is increasing in [y; — 6], and 0 <

Ly, —6) < % for all y; € I. Thus, for k£ being sufficiently large, —b* =

—2me) (8 + Y > £(y, — 6p) for all € I. Let

I =[6p — \/2_ 6o + \/2_]

—2meci(y
b =7 < I- o< 2720 < g, gy},

-2 7
and I; ={g, e [ — m%@lk o7, — 60)}-

Then,

A, :/11 P{B-B< 27’n+@1)|?1 = 7 H—c1(F1)]91(71)dy,

N / P{B-B< 2—”1%1@—1)?1 = 71} (@)1 (72 g

Iy (415)

+ [ B - < 2907 g @)ln ),
I3

= A+ A + Ass.

- V¥
For §, € Iy, ché(yl) < 2mcl(0§+ 2) = p* < 0. Also, lea(71)| < ¢ for all §; € I.
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Therefore, by Lemma 4.3,
An S/ PI{B - B < bV, = 71 }cg1(¥1)dy;
I

< [ dexp{-2 " h(an 67} + expl -5 L hlaa(B) o @),
I

2 (4.16)
E(m—1 k-1 N
< e Lexp (=2 D0, (54))) + exp (L han (67)]
=0(k™1).
Also,
3¢
Arz S/ (y;—) 1(1)dy
I
omB2c* (4.17)
< _
*/12 e 5 91(F1)d7;
=0(k™1).
By Lemma 4.3 and by a proof similar to that of (4.9) and (4.10), we have
kE(m—1 2me
A2 < [ exp == e LBy ey s ()
k— 2me 4.18
+ [ ewt-E b0 @@, 1
=0(k™1).
Combining (4.15)-(4.18) together leads to the conclusion of the lemma. a.

Lemma 4.9

/IPI{B _B< 2290 1y o @)l @)dT = Ok,

3(y1 — 60)?
Proof: Fory; €I, 32(051615921)2 < 202362,.@1) < 0. Therefore,

< [RiB-B< 2040 7, = ,)[-ex(7))o1 (7T

3c*
=A;
which has a form similar to that of A;. Hence we conclude that Ay = O(k™!) by Lemma
4.8. 0.
Lemma 4.10
[ ot < s 07, gl @i = 0k
I 202[—c1(¥y)] + 3(7, — 60)? ' ! e
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o*e1(F,) ot (7)
? 202 [—c1(1)]+3(7,—80)2 — 202c+3c*

4.8, we can conclude that

Proof: Fory, eI < 0. Hence, similar to that of Lemma

, ater(y — = V1o (7. \ 7
to < [P1o* -0t < ALy, 2 @)l

=0(k™). O
We summarize the preceding results as a theorem as follows.

Theorem 4.1 Under the statistical model described in Section 2, the empirical Bayes

selection rule dj is asymptotically optimal with pr(d}) = O(k™1).

5. Small Sample Performance: Simulation Study

We carried out a simulation study to investigate the small sample performance of the

empirical Bayes selection rule dj. Note that

Ry(d}) — Re(dB)

pk(dk) = kRkl(dBl)

where Rr1(dp1) is a fixed value, independent of the value k. Let
k — ~ —
By(Y) =) [d1:(YilB,6%) — dpi(Yo)|[y:(Ys) — c].
i=1

Then,

k
EBy(Y) = Z E{[d}:(Y:|B,8”) — dpi(Y)|[$:(Ys) — ]}

k
= Z Ew{E{[d(Yi|B,6%) — dp(Y)|[i(Y:) — cl}}

=Ri(dx) — Ri(dB),
where the expectation E(;) is taken with respect to the probability measure generated by

Y, and E; is the expectation taken with respect to the conditional probability measure

generated by B and 62 given Y;. Hence,

By(Y) ,_ 1 E[Bk(}”/)]
kRk1(dp1)”  Rri(dmi) ko
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Since Rk1(dp1) is independent of the value k, the relative regret Bayes risk px(d}) depends
B (Y
on k only through the part E [Lé-—)} .

By the law of large numbers, the sample mean By = £ 3~ Bi(Y (£)) can be used as an
£=1
estimator of the regret Bayes risk Ry(d})— Rx(dB), where Y (£),£ = 1,2,...,n, areiid ran-
dom vectors, identically distributed with ¥. Therefore, we use Bx/k = £ 3 Br(Y (£))/k
=1

to estimate the relationship between pr(d}) and k.
The simulation scheme used in this paper is described as follows.

(1) Foreach? =1,...,k, generate the independent random vector Y; = (Yi1,...,Yim) by
the following;:

(a) Generate ©; from a N(6p,7?%) distribution.
(b) Given ©; = 6;, generate random sample Y ... Y, from a N(6;,0?) distribution.

2. Based on the data Y = (Y;,...,Y), construct the Bayes and empirical Bayes selec-

tion rules dp and d}, respectively, and compute the Br(Y') value.

3. Foreach k, steps (1) and (2) were repeated 1000 times. The average By, of Bx(Y (£)),£ =
1,...,1000, based on the 1000 repetitions is used as an estimator of the regret Bayes
risk Ri(d}) — Ri(dB) and Bi/k as an estimator of Ryi(dp1)pr(d}) = [Ri(df) —
Ri(dB)]/k. Also, SE(B}/k), the estimated standard error of By/k, is computed.

Table 1 lists a simulation result on the performance of the proposed empirical Bayes

selection rule d} for the case where m = 10,02 = 2,72 =1.5,6p = 0 and ¢ = 0.3.

From Table 1, we learn that the values of B} /k decrease quite rapidly as k increases.
Note that for k > 40, the estimated regret Bayes risk values By oscilate about the value
0.0170, which indicates that Bi/k converges to 0 with a rate of convergence of order

O(k™1), same as the conclusion in Theorem 4.1.
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Table 1. Small Sample Performance of dj, for
m=10,02=2,72=1.5,6) =0and ¢c=0.3

k B Bi/k SE(By/k)
10 0.0238 0.00238 0.00538
20 0.0242 0.00121 0.00290
30 0.0236 0.00079 0.00186
40 0.0171 0.00043 0.00096
50 0.0159 0.00032 0.00060
60 0.0194 0.00032 0.00062
70 0.0186 0.00027 0.00057
80 0.0185 0.00023 0.00043
90 0.0187 0.00021 0.00037

100 0.0165 0.00017 0.00034
110 0.0171 0.00016 0.00034
120 0.0196 0.00016 0.00027
130 0.0168 0.00013 0.00023
140 0.0201 0.00015 0.00028
150 0.0194 0.00013 0.00022
160 0.0168 0.00010 0.00019
170 0.0164 0.00010 0.00016
180 0.0159 0.00009 0.00015
190 0.0175 0.00009 0.00016
200 0.0177 0.00009 0.00015
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