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Abstract

This paper selectively reviews procedures for selecting the best among several treat-
ments, procedures for comparing experimental treatments with a standard or a control,
and simultaneous confidence intervals for comparisons with the best and comparisons with
a standard or a control. These procedures are discussed under the assumption of normal-
ity using both indifference-zone and subset approaches. Most of the discussions relate to
single-factor experiments (with or without blocking) and 2-factorial experiments with or
without interaction. A brief discussion deals with models involving Bernoulli and multi-

nomial distributions and restricted families such as IFR and IFRA distributions.
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Design of Experiments With Selection And Ranking Goals
Shants S. Gupta and S. Panchapakesan

1. Introduction

In many practical situations in everyday life, the experimenter is faced with the prob-
lem of comparing k(> 2) alternatives with a view to select the “best” among them. These
may, for example, be different varieties of wheat in an agricultural experiment, or different
coherent systems in engineering models, or different drugs prescribed for treatment of a
certain disease. In all these problems, each alternative is characterized by the value of
a parameter 6. In the above-mentioned situations, this parameter may be the average
yield of a variety of wheat, or the reliability function of a system, or a measure of the

effectiveness of a drug,.

Consider the well-known balanced one-way layout given by the model:
Yij=pite;,e=1,...,kij=1,...,n (1.1)

where Y;; is the jth response on the :th treatment, the u; are unknown treatment means,
and the ¢;; are the measurement errors assumed to be independent and normally dis-
tributed with mean zero and variance o2. The classical approach in this case is generally
to test the so-called homogeneity hypothesis Hy :  p1 = p2 = ... = px using the analy-
sis of variance (ANOVA) approach. However, this does not serve the experimenter’s real
purpose which is not just to accept or reject the homogeneity hypothesis of no treatment
differences. In practice, the experimenter will be considering treatments that are indeed
different, and with sufficiently large sample, will be rejecting Hy at any specified level. The
real goal of the experimenter to be addressed then is to identify the best alternative (the
variety with the largest average yield, the most reliable system, the most effective drug,
and so on). Thus the inadequacy of the ANOVA lies in the types of decisions that are made
on the basis of the data and not in the design aspects of the procedure. The method of
estimating the sizes of the differences between the treatments was often used as an indirect
way of reaching a decision regarding the best treatment(s). The attempts to formulate the
decision problem to achieve this realistic goal set the stage for the development of the

selection and ranking theory.



Selection and ranking problems have generally been formulated adopting one of two
main approaches now familiarly known as the indifference-zone formulation and the subset
selection formulation. Consider an experiment with k treatments in which we have n

responses for each treatment. We assume the model (1.1).

Let the ordered p; be denoted by ujy; < ... < px). It is assumed that there is no

information regarding the correct pairing between the ordered and the unordered yu;.

In the indifference-zone approach due to Bechhofer (1954), the goal is to select the
treatment associated with the largest mean p) (called the best treatment). A selection
satisfying the goal is defined to be a correct selection (CS). It is required that a correct
selection be guaranteed with a probability P*(i— < P* < 1) whenever ppx — pe—1 =
&*, where é* is a positive constant. Here §* and P* are specified in advance by the
experimenter, and P* is chosen greater than 1/k because otherwise we can make a no-data
decision by selecting one of the treatments randomly as the best. When pz) — pig—1) < 6%,
two or more treatments including the best are sufficiently close and the experimenter is
assumed to be indifferent as to setting probability requirement in this case. The region
Qs+ = {(g,0H)|p = (p1,- -, 4e), 0% > 0, ppr) — ppr—1) > 6*} is called the preference-zone
and its complement w.r.t. the entire parameter space = {(g,0?)| — 00 < p; < 00,1 =
1,...,k,0% > 0} is the indifference-zone. Denoting the probability of a correct selection
(PCS) using the rule R by P(CS|R), it is required that any valid rule R satisfy the
condition: |

P(CS|R) > P* whenever (g,0?)e Q. (1.2)
The design aspect of this basic setup is the determination of the minimum (common)

sample size n so that the probability requirement (1.2) is satisfied.

In the subset selection approach developed by Gupta (1956), the goal is to select
a nonempty subset of the k treatments so that the best treatment will be included in
the selected subset with a guaranteed minimum probability P*. The subset size is not
specified in advance; it is random and determined by the data. Formally, any valid rule

should satisfy the condition:
P(CS|R) > P* for all (g, 0%)e Q. (1.3)
It is obvious that the requirement (1.3) can always be met by including all the treatments
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in the selected subset. So the performance of a rule is studied usually in terms of the
expected size B of the selected subset. It is expected that a reasonable procedure will tend

to select only one treatment when pz — px—1] gets large.

Besides being a goal in itself, selecting a subset containing the best can also be consid-
ered as the first-stage screening in a two-stage procedure designed to select one treatment

as the best; see, for example, Tamhane and Bechhofer (1977, 1979).

The probability requirements (1.2) and (1.3) are also known as the P*-conditions. An
important step in obtaining the constant(s) associated with a proposed rule R so that the
P*-condition is satisfied is to evaluate the infimum of the PCS over Q or Q4+ depending
on the approach. Any configuration of (4,0?) for which the infimum is attained is called

a least favorable configuration (LFC).

Although we have discussed the selection problem in terms the normal means, the
problem in general is to select from k populations II;,...,II; characterized by the dis-
tribution functions Fy,,¢ = 1,...,k, respectively, where the 6; are unknown parameters
taking values in the set ©. The populations are ranked in terms of the 6; (There may
be other nuisance parameters). The ordered §; are denoted by ;) < ... < 6} and the
population associated with 64 is defined to be the best. To define the preference-zone,
one has to define a suitable nonnegative measure 6(6;,8;) of the separation between the

populations II; and II;. Then Qs+ = {80 = (61,...,6k), 6(6x),0[k—1)) = 6* > 0}.

There are several variations and generalizations of the basic goal in both indifference-
zone and subset selection formulations. One can generalize the goal to select at least s of
the t best populations with 1 < s <t < k— 1. In the subset selection approach, the size of
the selected subset can be random subject to a specified maximum m(1 < m < k). This
approach of restricted subset selection studied by Gupta and Santner (1973) and Santner
(1975) combines the features of the indifference-zone and subset selection formulations.
There have been other attempts in this direction of integrated formulations; for example,
see Sobel (1969), Chen and Sobel (1987a, 1987b). An important modification of the goal
of selecting the best population is selecting a good population or a subset containing only
good populations or containing all the good populations. A good population is defined as

one which is close enough to the best within a specified threshold value.



There is now a vast literature on selection and ranking procedures. Several aspects
of the theory and associated methodology of these and related procedures have been dealt
with in the books by Bechhofer, Kiefer and Sobel (1968), Biiringer, Martin and Shriever
(1980), Gibbons, Olkin and Sobel (1977), Gupta and Huang (1981), Gupta and Pancha-
pakesan (1979) and Mukhopadhyay and Solanky (1994). A very recent book is by Bech-
hofer, Santner and Goldsman (1995). A categorical bibliography is provided by Dudewicz
and Koo (1982). Besides these books, there have been published review articles dealing
with several specific aspects of selection and ranking. The reader is specially referred to
Gupta and Panchapakesan (1985, 1988, 1991, 1993), Panchapakesan (1992, 1995a, 1995b),
and Van der Laan and Verdooran (1989).

In spite of the vast published literature, there have been only a few papers until the
recent years devoted to design models beyond single-factor experiments. In this paper,
besides the most common single-factor experiments involving mainly normal distributions,
we review significant results involving blocking and factorial designs. The emphasis is not
on a total coverage but enough to provide a focus on these problems to help assess the

current status and potential for applications and further investigations.

Sections 2 through 5 discuss selection procedures and simultaneous confidence intervals
under the assumption that the observed responses for treatments are normally distributed.
Selection procedures under both the indifference-zone and the subset formulations are dis-
cussed in each section. Section 2 deals with selecting the best treatment and simultaneous
confidence statements for comparisons with best in single-factor experiments. Section 3
considers these procedures in experiments with blocking while Section 4 deals with these
procedures in factorial experiments. Selection with respect to a standard or control is
discussed in Section 5. Selection in experiments involving other models is briefly discussed

in Section 6. The models discussed are: Bernoulli, multinomial and restricted families such

as IFR and IFRA.

2. Selecting the Best Treatment in Single-Factor Experiments: Normal Theory

Consider k > 2 treatments II;,...,IIx, where II; represents a normal population with
mean y; and variance o2. The means y; are unknown. Different assumptions can be made

about the 62 depending on the context of the experiment. As before, the ordered u; are
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denoted by gy < ... < g and no prior information is available regarding the true pairing

of the ordered and unordered u;.

2.1 Indifference-Zone Approach

As described in Section 1, the goal is to identify one of the k treatments as the best
(the one associated with pu[)) with a guaranteed minimum probability P* of a correct
selection whenever ppx — pk—1) = 6*, where §* > 0 and 1/k < P* < 1 are specified in

advance.

Under the assumption that 02 = ... = 0 = ¢% (known), Bechhofer (1954) proposed
the following single-stage procedure based on samples of common size n. Let Y; denote

the mean of the sample responses Y;; j = 1,...,n, from II;,2 = 1,..., k. His rule is
Ry : Select the treatment II; that yields the largest Y;. (2.1)

The LFC for this rule is given by uy) = ... = pr—1) = p — 6. For given (k,6* /o, P¥),

the minimum sample size n required to meet the P*-condition is given by

H 2
n =< 2(‘;) >, (2.2)

where < r > denotes the smallest integer > =, H satisfies

Pr{Z <H,...,Zx_1 < H} = P*, (2.3)

and the Z; are standard normal variates with equal correlation p = % Values of H can
be obtained for several selected values of k and P* from Bechhofer (1954), Gibbons, Olkin '
and Sobel (1977), Gupta (1963), Gupta, Nagel and Panchapakesan (1973), and Milton
(1963).

Hall (1959) and Eaton (1967) have shown that the rule R; in (2.1) is the most eco-
nomical in the sense of requiring fewest observations per treatment among all single-stage

location invariant procedures satisfying the P*-condition.

Two stage procedures for the problem of selecting the normal treatment with the

largest mean assuming a common known variance o2 have been studied by Cohen (1959), |

Alam (1970) and Tamhane and Bechhofer (1977, 1979). These procedures use the subset
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selection procedure of Gupta (1956, 1965) to eliminate inferior treatments at the first stage
and select the best from among the remaining ones at the second stage. We describe the

Tamhane-Bechhofer procedure Ry below.

R;: Take a random sample of n; observations from each II;,: = 1,..., k. Eliminate
from further consideration all treatments II; for which Y; < ?[k] — ho/\/n1, where ?[1] <
o< ?[k] are the ordered sample means Y ;, and & is a constant to be determined. If only
one treatment remains, then it is selected as the best. If more than one treatment remain,
then proceed to the second stage by taking an additional random sample of size ny from
each of these remaining treatments. Select the treatment that yields the largest sample

mean based on the combined sample of n; + ng observations.

The above procedure Ry of Tamhane and Bechhofer (1977, 1979) involves constants
(n1, ng2,h) to be determined in order to satisfy the P*-condition. These constants are
determined by using a minimax criterion (in addition to the P*-condition) which minimizes
the maximum over the entire parameter space €2 of the expected total sample size required
by the procedure. The LFC for this procedure was first established only for & = 2. The
constants (n1,ng,h) tabulated by Tamhane and Bechhofer (1979) for selected values of
k,P*, and §* /o are conservative since they are based on the LFC for a lower bound of the
PCS. The fact that the LFC for the PCS is up) = ... = pg—1) = px) — 6" was proved by
Sehr (1988) and Bhandari and Chaudhuri (1990).

A truncated sequential procedure for this problem has been investigated by Bechhofer
and Goldsman (1987, 1989). It is designed to have improved performance over an earlier
procedure of Bechhofer, Kiefer and Sobel (1968) which is an open non-eliminating sequen-
tial procedure as opposed to the Bechhofer-Goldsman procedure which is a closed but also
a non-eliminating procedure. A multi-stage or sequential procedure is called open if, in
advance of the experiment, no fixed upper bound is set on the number of observations
to be taken from each treatment; otherwise, it is called closed. An eliminating procedure
is one which excludes treatments from further sampling if they are removed from further
consideration at any stage prior to taking the terminal decision. A non-eliminating pro-
cedure, on the other hand, samples from each treatment at each stage whether or not any

treatment is removed from the final consideration of selection.



Another well-known procedure for the problem under discussion is that of Paulson
(1964) which is a closed procedure with elimination. This procedure was successively
improved (by changing the choices for certain constants) by Fabian (1974) and Hartman
(1988). For further details regarding various procedures and their performance, see Gupta

and Panchapakesan (1991).

We now consider the case of unknown common variance o2. This is the classical

problem of the one-way ANOVA model. If one chooses to define the preference-zone
as Qs = {(,0)|pr) — K[x—1) = 6%}, then the single-stage procedure R; in (2.1) can
still be used with the minimum required sample size n given by (2.2) with ¢ = 1. If
we continue with the preference-zone Qs+ = {(y, )|y — pr—1) > 6*} as before, it is
not possible to devise a single-stage procedure that satisfies the P*-condition. This is
intuitively clear from the fact that the determination of the minimum sample size required
depends on the knowledge of . In this case of unknown o?, Bechhofer, Dunnett and
Sobel (1954) proposed an open two-stage non-eliminating procedure for selecting the best
treatment. The first stage is used to estimate ¢? and determine the total sample size
needed to guarantee the probability requirement. The second stage, if necessary, is used to
make the terminal decision. Using in addition the idea of screening, Tamhane (1976) and
Hochberg and Marcus (1981) have studied three-stage procedures where the first stage is
utilized to determine the additional sample sizes necessary in the subsequent stages, the
second stage is used to eliminate inferior populations by a subset rule, and the third stage
(if necessary) to make the final decision. Tamhane (1976) also considered a two-stage
eliminating procedure which was found to be inferior to the non-eliminating procedure of
Bechhofer, Dunnett and Sobel (1954). Later, Gupta and Kim (1984) proposed a two-stage
eliminating procedure with a new design criterion and obtained a sharp lower bound on the
PCS. Gupta and Miescke (1984) studied two-stage eliminating procedures using a Bayes
approach. Here we will describe the procedure of Gupta and Kim (1984).

R3: Take a random sample of size ny(> 2) from each treatment. Let X; be the
sample mean associated with treatment II;, ¢ = 1,..., k, and S? denote the usual pooled
sample variance based on v = k(n; — 1) degrees of freedom. Determine the subset I of

{II;,...,IIx} given by
I={IL[X; > Xy — (dS/v/m1 — )7},

8



where a* = max(a,0) and d is a constant to be chosen to satisfy the P*-condition. If I
consists of only one treatment, then select it as the best; otherwise, take an additional

sample of size N — ny from each treatment in I, where
N = max{n,, < (hS,/6*)* >},

< y > denotes the smallest integer > y, and h is a positive constant to be suitably chosen
to satisfy the P*-condition. Now, select as the best the population in I which yields the

largest sample mean based on the combined sample of size N.

There are several possible choices for (ny,d, k) to satisfy the P*-condition. Gupta and

Kim (1984) used the requirement that
Pr{ the best population is included the subset I} > P, (2.4)

where Py(P* < Pff < 1) is pre-assigned. Evaluation of these constants is based on a lower
bound for the PCS. The Monte Carlo study of Gupta and Kim (1984) shows that their
procedure Rz performs much better than that of Bechhofer, Dunnett and Sobel (1954) in

terms of the expected total sample size.

Recently, there have been a series of papers regarding the conjecture of the LFC for
the Tamhane-Bechhofer procedure R; and some other related procedures for selecting the
best normal treatment when the common variance o2 is known. As mentioned earlier,
the conjecture that the LFC is yjj) = ... = Kik-1] = Mk} — 0* has been proved by Sehr
(1988) and Bhandari and Chaudhuri (1990). The LFC’s for two-stage procedures for more
generalized goals have been established by Santner and Hayter (1993) and Hayter (1994).
It will be interesting to reexamine the performance of the concerned procedures by using

the exact infimum of the PCS.

2.2 Subset Selection Approach

As in Section 2.1, we are still interested in selecting the best treatment. However,
we do not set in advance the number of treatments to be included in the selected subset.
It is expected that a good rule will tend to select only one population as Bik) = Hk—1]

gets sufficiently large. Gupta (1956) considered the case of known as well as unknown 2.
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Based on samples of size n from each population, his rule, in the case of known o2, is Ry:

Select the treatment II; if and only if

— —_ do
Xi> max X; — —,
1<5<k Vn

where X; is the sample mean from II; and d is the smallest positive constant for which

the PCS > P* for all (g,0) € Q. (Any larger d would obviously satisfy the P*-condition

(2.5)

but would, if anything, only increase the size of the selected subset). This smallest d is
given by V2H where H is the solution of (2.3). Thus d can be obtained from the tables

mentioned previously.

When o? is unknown, Gupta (1956) proposed the rule Rs which is R4 with o replaced
by S, where S? is the usual pooled estimator of 62 with v = k(n — 1) degrees of freedom.
To keep the distinction between the two cases, we use d' in the place of d. The smallest d’
needed to satisfy the P*-condition is the one-sided upper (1 — P*) equicoordinate point of
the equicorrelated (k — 1)-variate cenetral ¢-distribution with the equal correlation p = 0.5
and the associated degrees of freedom v = k(n — 1) The values of d' have been tabulated
by Gupta and Sobel (1957) for selected values of k,n, and P*. They are also available
from the tables of Gupta, Panchapakesan and Sohn (1985) corresponding to correlation
p = 0.5.

It should be noted that, unlike in the case of the indifference-zone approach, we do

2

have a single-stage procedure for any specified n when ¢ is unknown.

We may not have a common variance 2 (the heteroscedasticity case) or a common
sample size (unbalanced design). These cases have been studied by Gupta and Huang
(1976), Chen, Dudewicz and Lee (1976), and Gupta and Wong (1982). In all these cases,

the authors have used lower bounds for the infimum of the PCS to meet the P*-condition.

When the variances are unknown and unequal, and the sample sizes are unequal,
Dudewicz and Dalal (1975) proposed a two-stage procedure using both the indifference-
zone and subset selection approaches. Sequential subset selection procedures have also
been studied which are applicable to the normal model. For a review of these, the reader

is referred to Gupta and Panchapakesan (1991).

As we have pointed out previously, several modifications of the basic goal have been
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investigated. In particular, we mention here the restricted subset selection approach which
includes a specified upper bound for the expected subset size which is otherwise random.
Procedures of this type have been proposed by Gupta and Santner (1973) and Santner
(1975).

Several authors have also studied the modified goal of selecting good populations.
Reference can be made to Gupta and Panchapakesan (1985) and Gupta and Panchapakesan
(1991).

2.4 Simultaneous Confidence Intervals for Comparisons with the Best

Related to the selection and ranking objectives is the multiple comparison approach in
which one seeks simultaneous confidence sets for meaningful contrasts among a set of given
treatments. A comprehensive treatment of this topic can be found in the text by Hochberg
and Tamhane (1987). Our main interest here is simultaneous comparisons of all treatments
with the best among them. In other words, we are interested in simultaneous confidence
intervals for y; — Iﬁzx i;, taking a larger treatment effect to imply a better treatment. If
i — I?;z,zx pj < 0, then treatment ¢ is not the best and the difference represents the amount
by which treatment i is inferior to the best. On the other hand, if the difference is positive,

then treatment i is the best and the difference is the amount by which it is better than

the second best.

Assume that all (normal) treatments II; have a common unknown variance o2. Let Y;
denote the mean of n independent responses on treatment ;e =1,...,k. Let S? denote
the usual pooled (unbiased) estimator of o2 based on v = k(n — 1) degrees of freedom.

Hsu (1984) showed that the intervals

[_(?i - ma‘X?J - C)_’ (_Y—l - ma'X?] + C)+]7 1= ... k? (26)
J#i J#i
form 100(1 — a)% simultaneous confidence intervals for i — m;smx pi,t = 1,..., k. Here
—z~ =min(z,0),z* = max(z,0), and C = ¢S, /\/n, where c satisfies
P[Y; — m;zc?j > —cS,/Vn]=1—a (2.7)
j
under the assumption that u; = .., = pr = 0.
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The intervals in (2.6) are closely related to the selection and ranking methods discussed
previously. It was shown by HSU (1984) that the upper bounds of these intervals imply
the subset selection inference of Gupta (1956) and the lower bounds imply the indifference-
zone selection inference of Bechhofer (1954). Any treatment : for which the upper bound
of u; — Iglgzx p; is zero can be inferred to be not the best. Similarly, any treatment ¢ for

which the lower bound of u; — Ir_1¢ax p; is zero can be inferred to be the best.
JF1

The intervals in (2.6) are “constrained” in the sense that the lower bounds are non-
positive and the upper bounds are nonnegative. Removing these constraints would require
an increase in the critical value. The nonnegativity constraint on the upper bounds does
not present a great disadvantage as one will not normally be interested in knowing how
bad is a treatment that is rejected as not the best. On the other hand, it will be of interest
to assess how much better than others is a treatment inferred to be the best. Motivated by
these considerations Hsu (1985) provided a method of unconstrained multiple comparisons
with the best which removes the nonpositivity constraint on the lower bounds in (2.6) by

increasing the critical value slightly. We describe these simultaneous intervals below.

Let D = dS,/+/n where d is the solution of
Pr{Z; < Zy +dS,/\/n,i =1,...,k —2,|Zx_1 — Zx| <dS,/V/n} =1 —q, (2.8)

where the Z; are independent N(0,1) variables. The 100(1 — a))% simultaneous confidence

intervals [D}, D¥*] of Hsu (1985) for the differences y; — max i are defined as follows:
J#£

Djz?i—mngj—D fore=1,...,k,
JF

(?, — mgx?J + D)+ A (—Drk]) if Y, # ?[k],
JFi
Di*=4¢ . L (2.9)
Y,-—maij-{—D if Y, =Y[k].
JFE
Here ?[k] denotes the largest Y; and a A b = min(a,b). The constrained simultaneous
confidence intervals can be implemented by using a computer SAS package; see Gupta and

Hsu (1984, 1985), and Aubuchon, Gupta and Hsu (1986). Hsu (1985) has tabulated the
values of d/+/2 for k = 2(1)5,v = 5(1)20, 24, 30,40, 60, 120, co, and a = .01,.05.
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2.5 Estimation After Selection

Consider the selection rule R; of Bechhofer (1954) defined in (2.1) for selecting the best
treatment, namely, the one associated with the largest p;. This rule selects the population
that yields the largest sample mean Y';. Let us denote the treatment mean of the selected

population. Then pg is a random variable and
Prius=w}=Pr{Y; >Y;,j#i},i=1,...,k.

The experimenter not only wishes to select the treatment with the highest mean but
also wants an estimate of the mean for the treatment selected. Of course, the “natural”
estimator of pg is ?[k]- For k = 2,?[k] is admissible and minimax under the squared error
loss. For k = 2 and especially for k > 2, ?[k] is highly unsatisfactory. It is highly positively
biased when the yu; are equal or close. The bias becomes more severe as k increases and,
in fact, it tends to infinity as k — oo. Sarkadi (1967) and Dahia (1974) have studied this
problem for k = 2 and known common variance 0. Hsieh (1981) also discussed the k = 2
case but with unknown o?. Cohen and Sackrowitz (1982) considered the case k > 3 with
known o2. They have given an estimator which is a convex weighted combination of the
ordered sample means ?[,-] where the weights depend on the adjacent differences in the

ordered means.

Jeyaratnam and Panchapakesan (1984) discussed estimation after selection associated
with the subset selection rule R4 defined in (2.5) for selecting a subset containing the best

treatment. They considered estimating the average worth of the selected subset defined

by M = Y pi/|S|, where S denotes the selected subset and |S| denotes the size of S. For
i€ES

the case of ¥ = 2 and known 02, Jeyaratnam and Panchapakesan (1984) considered the

natural estimator which is positively biased and some modified estimators with reduced

bias.

Cohen and Sackrowitz (1988) have presented a decision-theoretic framework for the
combined decision problem of selecting the best treatment and estimating the mean of the
selected treatment and derived results for the case of k¥ = 2 and known ¢? with common
sample size. Gupta and Miescke (1990) extended this study in several directions. They have
considered k£ > 2 treatments, different loss components, and both equal and unequal sample

sizes. As pointed out by Cohen and Sackrowitz (1988), the decision-theoretic treatment
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of the combined selection-estimation problem leads to “selecting after estimation” rather

than “estimating after selection”.

Estimation after selection is a meaningful problem which needs further study. The
earlier papers of Dahia (1974), Hsieh (1981), and Jeyaratnam and Panchapakesan (1984)
dealt with several modified estimators in the case of k¥ = 2 treatments. These have not
been studied in detail as regards their desirable properties. The decision-theoretic results

require too many details to provide a comprehensive view. For a list of references, see

Gupta and Miescke (1990).

2.5 Estimation of PCS

Consider the selection rule R; of Bechhofer (1954) defined in (2.1) for selecting the
treatment with the largest mean p;. This rule is designed to guarantee that PCS > P*
whenever px) — pr—1 = 6*. However, the true parametric configuration is unknown. If
B[k — M{k—1]) < 0, the minimum PCS cannot be guarantéed. Thus a retrospective analysis

regarding the PCS is of importance.

For any configuration of y,

o k-1

PCS = / H Bt + ("”‘] ““]))qs(t)dt, (2.10)

where ® and ¢ are the standard normal cdf and density function, respectively. Olkin,
Sobel and Tong (1976, 1982) considered the estimator P obtained by replacing the K3
by ?[i] in (2.10). This estimator P is consistent, but its evaluation is not easy. Olkin,
Sobel and Tong (1976) have given upper and lower bounds for the PCS that hold for any
true configuration, with no regard to any least favorable configuration. They have also
obtained the asymptotic distribution of P which is a function of §; = ?[k] —?[,-] ,i=1,...,k;

however, the expression for the variance of the asymptotic distribution is complicated.

Faltin and McCulloch (1983) have studied the small-sample performance of the Olkin-
Sobel-Tong estimator P of the PCS in (2.10), analytically for ¥ = 2 populations and
via Monte Carlo simulation for ¥ > 2. They have found that the estimator tends to
overestimate PCS (getting worse when k£ > 2) when the means are close together and

tends to underestimate when /n §/0 is large.
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Anderson, Bishop and Dudewicz (1977) first gave a lower confidence bound for PCS in
the case of the selection rule R; of Bechhofer (1954) defined in (2.1). Faltin (1980) provided,
in the case of k = 2 treatments, a quantile unbiased estimator of PCS which can be regarded
as a lower confidence bound for PCS. Later Kim (1986) obtained a lower confidence bound
on PCS which is sharper than that of Anderson, Bishop and Dudewicz (1977) and reduces
to that of Faltin (1980) in the special case of k = 2 treatments. Recently, Gupta, Liao, Qiu
and Wang (1994), using a new approach, derived a confidence region for the differences
Blk—i+1] —B(k—i],t = 1,...,k~—1, and then obtained a lower bound for PCS which is sharper
than that of Kim (1986). They also derived some practical lower bounds by reducing the
dimensionality of § = (é1,...,0k-1), where é; = pr_it1] — pr—i»é = 1,...,k — 1. The
lower bound improves as this free-to-choose dimensionally ¢ (1 < ¢ < k — 1) increases and

the result for ¢ = 1 coincides with that of Kim (1986).

Gupta and Liang (1991) obtained a lower bound for PCS by deriving simultaneous
lower confidence bounds on ppx — pp,t = 1,...,k — 1, where a range statistic was used.
Of the two methods of Gupta and Liang (1991) and Gupta, Liao, Qiu, and Wang (1994),
one does not dominate the other in the sense of providing larger PCS values. Generally
speaking, for moderate k (say k > 5), the Gupta-Liang method tends to underestimate
PCS.

Finally, Gupta and Liang (1991) obtained a lower bound for PCS also in the case of the
two-stage procedure of Bechhofer, Dunnett and Sobel (1954) for selecting the treatment

2

with the largest mean when the common variance o is unknown.

2.6 Notes and Comments

For the rule R; of Bechhofer (1954) defined in (2.1), Fabian (1962) has shown that a
stronger assertion can be made without decreasing the infimum of the PCS. We define a
treatment II; to be good if u; > ppy — 6* and modify the goal to be selection of a good
treatment. Now a CS occurs if the selected treatment is a good treatment. Then the
procedure R; guarantees with a minimum probability P* that the selected treatment is

good no matter what the configuration of the yu; is.

We have not discussed sequential procedures for selecting the best treatment. There

is a vast literature available in this regard. Reference can be made to Gupta and Pancha-
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pakesan (1991) besides the books mentioned in Section 1.

For the problem of estimating the PCS, Olkin, Sobel and Tong (1976), Kim (1986),
Gupta and Liang (1991), and Gupta, Liao, Qiu and Wang (1994) have obtained their
general results for location parameters with special discussion of the normal means case.
Gupta, Leu and Liang (1990) have discussed the case of truncated location parameter

models.

Finally, robustness of selection procedures is an important aspect. This has been
examined in the past by a few authors and there is a renewed interest in recent years. A

survey of these studies is provided by Panchapakesan (1995a).

3. Selection in Experiments with Blocking: Normal Theory

There may not always be sufficient quantities of homogeneous experimental material
available for an experiment using a completely randomized design. However, it may be
possible to group experimental units into blocks of homogeneous material. Then one can
employ a traditional blocking design which minimizes possible bias and reduces the error

variance.

3.1 Indifference-Zone Approach

Assume that there are sufficient experimental units so that each treatment can be
used at least once in each block. Consider the randomized complete block design with fixed

treatment effects, namely,

Yije = p+7i + B + €ije, (3.1)

where Y;j; is the £th observation (1 < £ < n) on treatment : (1 < 7 < k) in block
J(1 <7 <b). Here u is the over-all mean, the 7; are the treatment effects, the 3; are the

block effects, and the errors €;;; are assumed to be iid N (0,02). It is assumed without
k b
loss of generality that > 7; = )  f; = 0. There is no interaction between blocks and
i=1 j=1
treatments.
Let ) < ... < 7x denote the ordered 7;. The goal is to select the best treatment,
namely, the one associated B with ;). Let us assume that o2 is known. Then the procedure

R; of Bechhofer defined in (2.1) for the completely randomized design can easily be adapted
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here. We take n independent observations Y;;¢(1 < £ < n) on treatment II; (1 < i < k)
in block j(1 < j < b). The procedure is based on the estimates 7; = Y:. — Y., where
Y, and Y are the averages of Y;j; over the suffixes replaced by dots. The 7; are the
best linear unbiased estimates (BLUE’s) of the treatment effects 7;. Then the adapted

procedure is

Rg : Select the treatment II; that yields the largest 7;. (3.2)
In order to guarantee that the PCS is at least P* whenever 7[3) — 7(3—1) > 6", the minimum
sample size n required is given by

n=< g(aH
A

)2 >, (3.3)

where < z > denotes the smallest integer > z, and H is given by (2.3).

One can modify the basic procedure R; defined in (2.1) to select the treatment as-
sociated with the largest effect 74 in other cases such as the balanced incomplete block

2 is unknown,

design (BIBD) and Latin Square design. However, when the error variance o
there is no single stage procedure which will accomplish our goal with a guaranteed PCS.
Also, Driessen (1992) and Dourleijn (1993) have discussed in detail selection of the best
treatment in experiments using more general types of block designs called connected de-

s1gns.

3.2 Subset Selection Approach

Consider model (3.1) with one observation per cell, which we rewrite as
Yii=p+Ti+Bite; (3.4)

where Y;; is the observation on treatment II;(1 < ¢ < k) in block j (1 < j < b) and the
eij are iid N(0,0%). Our goal is to select a non-empty subset containing the treatment

associated with 7).

When o2 is known, we can use the procedure Ry defined in (2.5), which will be in this

model, Ry: Select treatment II; if and only if

do
\/57

Ti 2 Ty = (3.5)

17



where 7, = Y; — ?_,(1 <1 < k) and the constant d is the smallest positive constant for

which the PCS > P*. This constant d = v/2 H, where H is the solution of (2.3).

When o? is unknown, we use the procedure Ry which is R; with o replaced by S,,

where S2 is given by

(V;j =Y, -Y; +Y.)*/v (3.6)

1

SE=Y"

b
i=1 j=
based on v = (k—1)(b—1) degrees of freedom. To keep the distinction between R7 and R,
we denote the constant needed by d' instead of d. The values of d' (as mentioned in the
case of Rs of Section 2.2) have been tabulated for selected values of k,b, and P* by Gupta
and Sobel (1957). They can also be obtained from the tables of Gupta, Panchapakesan and
Sohn (1985) corresponding to correlation coefficient p = 0.5. Gupta and Hsu (1980) have
applied the procedure Rg and its usual analogue for selecting the treatment associated with
1) to a data set relating to motor vehicle traffic fatality rates (MFR) for the forty-eight
contiguous states and the District of Columbia for the years 1960 to 1976. Their goal is to

select a subset of best (worst) states in terms of MFR.

As in the case of indifference-zone approach, the basic procedures R4 and Rs of Gupta
(1956) discussed in Section 2.2 can be adapted for other designs such as the BIBD and Latin
Square. Driessen (1992) and Dourleijn (1993) have discussed in detail subset selection in

experiments involving connected designs.

3.3 Simultaneous Inference with Respect to the Best

In the model (3.4), let us assume that the error variance o? is unknown. Hsu (1982)
gave a procedure for selecting a subset C of the k treatments that includes the treatment
associated with 7[z; and at the same time providing simultaneous upper confidence bounds
Dy,..., Dy for 1) — 71,...,7k)) — k- His procedure is based on the sample treatment

means Y;, and S? given in (3.6). The procedure Ry of Hsu (1982) defines

C={l;:Y; > mgx?,-_ — (dS, /Vb)} (3.7)
J#
and
D; = ma,x{m;x?j_ ~Yi +(dS,/Vb)},i=1,... .k, (3.8)
FED)
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where the constant d = (k, b, P*) is to be chosen so that
Pr{ll(xye C and ) — 6y < D; for: =1,...,k} = P*

and Iy is the treatment associated with 7. The constant d = d(k, b, P*) turns out to
be the constant d' of the procedure Rs and it can be obtained for selected values of k, b,
and P* from the tables of Gupta and Sobel (1957) and Gupta, Panchapakesan and Sohn
(1985).

For further detailed treatment of multiple comparisons with and selection of the best

treatment, the reader is referred to Driessen (1991, 1992).

3.4 Notes and Comments

Rasch (1978) has discussed selection problems in balanced designs. Wu and Cheung
(1994) have considered subset selection for normal means in a two-way design. Given b
groups, each containing the same k treatments, their goal is to select a non-empty subset
from each group so that the probability of simultaneous correct selection is at least P*.
Dourleijn and Driessen (1993) have discussed four different subset selection procedures for

randomized designs with illustrated applications to a plant breeding variety trial.

Gupta and Leu (1987) have investigated an asymptotic distribution-free subset selec-
tion procedure for the two-way model (3.4) with the assumption that the ¢; = (€1 ..., €ir)
are iid with cdf F(¢) symmetric in its arguments. Their procedure is based on the Hodges-
Lehmann estimators of location parameters. For a Bayesian treatment of ranking and
selection problems in two-way models, reference should be made to Fong (1990), and Fong

and Berger (1993).

Hsu (1982) has discussed simultaneous inference with respect to the best treatment in
block designs in more generality than what was described previously. He assumes that the
€;; are iid with an absolutely continuous cdf F' with some regularity conditions. Besides the
procedure Ry based on sample means discussed previously, he considered two procedures
based on signed ranks. Finally, Hsu and Nelson (1993) have surveyed, unified and extended

multiple comparisons for the General Linear Model.

19



4. Selection in Factorial Experiments: Normal Theory

Factorial experimentation when employed in ranking and selection problems can pro-
duce considerable savings in total sample size relative to independent single-factor exper-
imentation when the probability requirements are comparable in both cases. This was
in fact pointed out by Bechhofer (1954) who proposed a single-stage procedure for rank-
ing normal means when no interaction is present between factor-level effects and common
known variance is assumed. In this section, we will be mainly concerned with the two-factor

model.

Consider a two-factor experiment involving factors A and B at a and b levels, respec-

tively. The treatment means are p;; (1 <7 <a,1 <j < b) are defined by

pi; = p+ ai + B + (aB)ij, (4.1)

where p is the over-all mean, the a;(1 < ¢ < a) are the so-called row factor main effects, the

B;(1 < j < b) are the column factor main effects, the (af3);; are the two-way interactions

subject to the conditions za: a; = zb: B =0, zb: (af)ij = 0 for all 4, and Za:(aﬂ)ij =0
for all j. The factors A alzl—(ilB are ;;ild to be ac]l:iz}ti'ue if (aB)i; =0 for all e Za_nld j, and to
interact otherwise. In this section, we discuss selection problems under the indifference-
zone as well as subset selection approach both when the factors A and B are additive and

interacting. Deciding whether or not the additive model holds is an important problem to

be handled with caution. We will be content with just referring to Fabian (1991).

4.1 Indifference-Zone Approach

We will first assume an additive model. Independent random samples Yjjm,m =
1,2,..., are taken from normal treatments II;; (1 <7 < a,1 <j < b) with associated
unknown means p;; = g + o; + f§; and common variance 2. Here a > 2 and b > 2. The
goal is to select the treatment combination associated with ap, and fp); in other words,

we seek simultaneously the best levels of both factors. The probability requirement is:
P{CS|u} > P* whenever pe Q4 g, (4.2)

where Qq g = {glag) — aa—1) > 65, 8] — Bp—1) = 63}
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2 case, Bechhofer (1954) proposed a single-stage procedure

For the common known o
based on n independent observations from each II;;. Let Y, andY. ;. denote the means of
the observations corresponding to the levels ¢ and j of the factors A and B, respectively.

Then the procedure of Bechhofer (1954) is

Rio: Select the treatment combination of levels associated with the largest

_ _ (4.3)
Y;.. and the largest Y ;.
The LFC for this procedure is given by
o] =« .0 = Q1] = Q[g] — 5;; ﬂ[ll =...= IB[b—l] = ﬂ[b] — 5; (4_4)

The PCS for the rule Ry at the LFC can be written as a product of the PCS’s at the
LFC’s when the rule R; in (2.1) is applied marginally to each factor. This fact enables

one to determine the smallest n to guarantee the minimum PCS.

Bechhofer, Goldsman and Hartmann (1993) have studied the performances of the
single-stage procedure Rjo of Bechhoffer (1954) described previously and two other se-
quential procedures (not discussed here). One of these is a truncated sequential procedure
of Bechhofer and Goldsman (1988b) and the other is a closed sequential procedure with
elimination by Hartmann (1993).

The procedure Rjp can be easily generalized to the cae of r factors with levels
ki,...,kr. Oneis naturally interested in examining the efficiency of an r-factor experiment
relative to that of r independent single-factor experiments in the absence of interaction
when both guarantee the same minimum PCS P*. Let ny and n, denote the total num-
bers of observations required for the r-factor experiment and r single-factor experiments,
respectively. Then Bawa (1972) showed that the asymptotic relative efficiency (ARE) of
the r-factor experiment, defined by ARE = pl*irill (ny/n.), is given by

max {k;/ 6;-‘2}

1<5<r

ARE = = ,
Z%_(kj/ﬁ;z)
J=

(4.5)

where 67 is the threshold for the preference-zone for the levels of factor j.
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Under the additive model, assuming common known o2, procedures can be developed
for RCBD and split-plot design experiments. The latter has been studied by Pan and
Santner (1993).

When the common variance o2

is unknown, as in the case of a single-factor experiment,
we cannot design a single-stage r-factor experiment that will guarantee the probability
requirement. Assuming still an edditive model, Bechhofer and Dunnett (1986) proposed
a two-stage procedure which is a straightforward generalization of the open two-stage
non-eliminating procedure of Bechhofer, Dunnett and Sobel (1954). It is also assumed
by Bechhofer and Dunnett (1986) that the indifference-zone widths are the same for the

factors A and B i.e. & = 6.

When o2 is unknown, Pan and Santner (1993) have discussed a procedure for the

two-factor additive model using a split-plot design.

Factorial Experiments With Interaction

We now consider the model (4.1) in which (af3);; is not zero for some or all pairs (z, 5),
and assume that o? is known. Dudewicz and Taneja (1982) have discussed selecting the
combination of the factor levels with the largest mean in an r-factor experiment. Later,
Taneja and Dudewicz (1987) discussed in detail the two-factor case. When the interaction
is known to exist, their procedure is based on the means Y ;;. of n independent observations

taken from each II;;. Their procedure is

Ry : Select the II;; that yields the largest Y;. (4.6)

We note that the rule R;; can be used even when there is no interaction in which
case, however, Ry is the best to use (see Dudewicz and Taneja, 1982). This motivates
the procedure with a preliminary test, referred to as R;2 here, proposed by Taneja and
Dudewicz (1987) when there is no prior information regarding the presence of interaction.
The preliminary test is the likelihood ratio test for Hy : (af);; = 0 for all pairs (¢,j)
versus H; : Not Hy at level a. If Hy is rejected, we proceed by applying the selection rule
R;; in (4.6); otherwise, we apply the rule Ry in (4.3).

Borowiak and De los Reyes (1992) considered the class C of rules R;2 obtained by
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varying « in [0,1]. In the special case of a = b = 2, they showed that the rule Ry, (which

corresponds to & = 1) maximizes the minimum PCS in the class C.

When the common variance o2 is unknown, as in the case of single-factor experiments,
no single-stage procedure can guarantee the probability requirement. In the case of additive
model, Bechhofer (1977) proposed a two-stage procedure analogous to that of Bechhofer,
Dunnett and Sobel (1954). The decision rule of this procedure parallels Rig. In the case
of interaction being present, Taneja (1986) proposed a similar two-stage procedure whose

decision rule parallels Ry;.

For the remainder of this subsection, we consider the model in (4.1) with interaction
and let, for convenience, v;; = (af)ij. Assume that the common variance o? is known.
We consider a new goal, namely, selecting the treatment combination associated with the

largest vij. Let ;1) < ... < Vab) denote the ordered interaction effects.

It is required that
P(CS|y) > P* whenever 7jq > A" and Y[ap] — Vab-1] = 07 (4.7)

where the event [CS] occurs if and only if the treatment combination corresponding to y{ap)

is selected, and the constants §*, A* and P* satisfy

* (a_l)(b_l) * * i *
) >0’(a—1)(b—1)—16 <A andab<P <1

This problem was first considered by Bechhofer, Santner and Turnbull (1977) in the case
of @ = 2 with an arbitrary b. Their study was expanded by Santner (1981) to arbitrary
levels a and b. Take n observations on each treatment combination and let ¥;; = ?ij_ -
Y;: — ?_j_ +Y.. (1 <:<a1<j <b), where a dot replacing a subscript indicates
that an average has been computed over the elements for that subscript. The single-stage

procedure of Santner (1981) is
Ry : Select the treatment combination that yields the largest ¥;;. (4.8)

The LFC for this procedure has been shown by Santner (1981) to be a solution to a non-
linear programming problem. However, the computation of the PCS is difficult. The LFC

can be determined more easily in some special cases.
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4.2 Subset Selection Approach

Consider the model in (4.1) with no interaction, i.e. (af);; = 0 for all pairs (i, 7).

%2 is unknown. Our goal is to select a subset

We assume that the common variance o
of the treatment combinations which contains the combination of levels associated with
a[q} and fpz). A correct selection occurs if a subset is selected consistent with this goal.
Generalizing the single-factor procedure of Gupta (1956), the following procedure was

proposed by Bechhofer and Dunnett (1987).

Ry4 : Include in the selected subset all treatment combinations for which

Y, > max ?g“ — CAS,,/\/E

" T 1<t<a
and (4.9)
Y. > Y, — Van.
Y, > lnsl?%ch.z. CgS./Van

Here n is the number of observations taken on each treatment combination, Y; and Y 5.
are the appropriate means (as defined for the rule Rj3), and S? is the usual unbiased

estimator of 02 on v = abn — a — b+ 1 degrees of freedom. The LFC for the rule Ry4 is:
ar=...=azand B =...=B. (4.10)

For given n,a,b and P*, equating the PCS at the LFC in (4.10) to P*, one can solve
for C4 and Cp. The solution is not unique. Tables C.1 through C.3 of Bechhofer and
Dunnett (1987) give a particular solution g; = C4v2 = CgV/?2 for P* = 0.80,0.90,0.95
respectively, for a = 2(1)5,b = a(1)7,10 and v = 5(1)30(5)50,60(20)120, 200, co.

Pan and Santner (1993) have discussed subset selection procedures under the additive

model when a split-plot design is used.

One can consider subset selection procedures when interaction is present. A natural
goal to consider is selecting a subset of the ab treatment combinations which contains the
one associated with the largest v;;. If the experimenter is unsure whether or not interaction
is present, then the selection can be done by using an appropriate procedure depending on
the conclusion of a preliminary test for interaction. These problems have not been studied

in detail.
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4.3 Notes and Comments

Pan and Santner (1993) have also discussed selection procedures under the indifference-

zone approach as well as the subset selection approach for blocked strip-plot experiments.

When interaction is present in (4.1), one may be interested in selecting the treatment
combination associated with the largest absolute interaction. Procedures for this goal

have been considered by Bechhofer, Santner and Turnbull (1977) and Santner (1981) for

completely randomized two-factor experiments.

Bechhofer and Goldsman (1988a) have studied sequential selection procedures for
multi-factor experiments involving Koopman-Darmois population under the additivity as-
sumption. Federer and McCulloch (1984, 1993) obtained simultaneous confidence intervals
for the sets of differences a; — aq),2 = 1,...,a, and B; — fBp),j = 1,...,b, when the exper-
iment is conducted using split-plot, split-split-plot and split-block designs. Taneja (1987)
considered nonparametric selection procedures in complete factorial experiments. Finally,

reference should be made to Driessen (1992).

5. Selection With Reference to A Standard or A Control: Normal Theory

In the preceding sections we discussed decision procedures for choosing the best from
among a given set of k(> 2) treatments. Although the experimenter is generally interested
in selecting the best one of the competing treatments, in certain situations even the best
may not be good enough to warrant its selection. This typically happens in experiments
involving comparison of a set of experimental treatments with a standard or a control

treatment.

Let II;, . .., IIx be k experimental (normal) treatments with unknown means py,. . ., ux,
respectively. These mean responses are compared with po which is either a specified
(known) standard or the unknown mean of a control treatment II,. When the comparison
is with a standard, the decision is based on data from the k experimental treatments.
When the comparison involves a control population, we take samplés from all the £ + 1

treatments. For convenience, we will refer to the standard also as Ilj.
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5.1. Indifference-Zone Approach

Let ppy < ... < ppx) denote the ordered means of the k experimental treatments.
Our goal here is to select the treatment associated with pp if ppy > po, or to select
Mo if px) < po. Any selection consistent with the goal is a correct selection (CS). The

probability requirement for any valid procedure is:
Pr{Il, is selected } > Py whenever po > p) + 6gB (5.1)
and
Pr{Il) is selected } > P} whenever upx) > po + 67 and ppx) > pe—1) + 63, (5.2)

where 6,685,683, Py, and Py are constants with 0 < {6},65} < 0o, —8F < 8% < 00, 27F <
Py <1,(1—27F)/k < Pf < 1, and I denotes the treatment associated with k] -

We assume that the treatments have a common known variance o2. Let yo be the
specified standard. In this case, Bechhofer and Turnbull (1978) proposed a single-stage
procedure based on Y;,i = 1,...,k, the means of sample of size n from each treatment.
Their procedure is

Ry5 : Choose Il if ?[k] < po + ¢; otherwise, choose the population that
— (5.3)
yields Yy as the one associated with I .
Bechhofer and Turnbull (1978) have given simultaneous equations for obtaining (n., ¢) such
as the requirements (5.1) and (5.2) are satisfied for the common sample size n = [n.] + 1,

where [z] denotes the largest integer < z.

In many applications, we take 6§ = 0 and 6] = 85 = 6* (say). This is the formulation
considered earlier by Paulson (1952). If we let h = \/n.c/o and g = \/n.6* /o, then h and
g satisfy:

®*(h) = P} (5.4)

and

/oo F 1y + 9)p(y)dy = Py} (5.5)

h—g
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where ®(y) and ¢(y) denote the standard normal c.d.f. and density function, respectively.
The values of h and c satisfying (5.4) and (5.5) are tabulated by Bechhofer and Turnbull
(1978) for k = 2(1)15 and selected values of P; and Py.

When o2 is unknown, Bechhofer and Turnbull (1978) proposed a two-stage sampling
procedure which is an analogue of the two-stage sampling procedure of Bechhofer, Dunnett
and Sobel (1954). This procedure of Bechhofer and Turnbull (1978) and other early pro-
cedures for comparisons with a control are discussed in Gupta and Panchapakesan (1979,

Chapter 20).
5.2. Subset Selection Approach

Here our goal is to select a subset of the treatments that includes all those treatments
which are better than the standard or the control treatment, i.e., all those experimental

- treatments for which p; > po.

Let us first consider a specified standard o and assume that the common variance o2

is known. Any valid rule R is required to satisfy
P(CS|R) > P* for all yg = (p1,..., k) (5.6)
Let Yi;,7 = 1,...,ni, be independent sample responses from treatment II;(z = 1,...,k).
Based on the sample means Y;, Gupta and Sobel (1958) proposed the rule
Ri6 : Include II; in the selected subset if and only if
?,‘ > Mo — dO’/\/T_Z:

where d > 0 is the smallest number so that the requirement on the PCS can be met, and

it is given by ®(d) = (P*)'/*.

(5.7)

When o2 is unknown, we replace o in (5.7) by S, where S is the usual pooled

k
estimator of 02 with v = }_ (n; — 1) degrees of freedom and n; > 2 for 1 <: < k. In this

=1
case, the constant d is given by

/0 " ®*(yd) q,(y)dy = P* (5.8)

where ¢, (y) is the density of Y = S, /0. The d-values satisfying (5.8) can be obtained from
the tables of Dunnett (1955) for selected values of k,v, and P*. It should be noted that d

27



is the one-sided upper-(1 — P*) equicoordinate point of the equicorrelated (k — 1)-variate

central ¢-distribution with the equal correlation p = 0 and v degrees of freedom.

Now, let uo be the known mean of the control treatment. We assume that all treat-

ments have a common variance 02 . Let Y;,z = 0,1,...,n, be the means of random

samples of size ng from the control treatment and of size n from each of the experimental

2

treatments. When ¢ is unknown, the Gupta-Sobel procedure is

Ry7: Include II; in the selected subset if and only if

- = 1 1
Y:>Y¢—doy/—+—, (5.9)
n no
where the smallest d > 0 for which the minimum PCS is guaranteed to be P* is the solution
of

Pr{Z, <d,..., 2 <d} = P, (5.10)

and the Z; are equicorrelated standard normal variables with equal correlation p = n/(n+
ng). The d-values are tabulated by Gupta, Nagel and Panchapakesan (1973) for selected
values of k, P* and p. When n = ng, then d = H, given by (2.3) with k — 1 replaced by &,

and thus can be obtained from the tables mentioned in that case.

When o2 is unknown, we use rule Ry7 with o replaced by s,, where s2 is the usual
pooled estimator of o2 based on v = k(n — 1) + (ng — 1) degrees of freedom. In this case,
d is the one-sided upper-(1 — P*) equicoordinate point of the equicorrelated (k)-variate
central ¢-distribution with the equal correlation p = n/(n + no) and v degrees of freedom.
Values of d are tabulated by Gupta, Panchapakesan and Sohn (1985) and Bechhofer and
Dunnett (1988) for selected values of k, P*,v and p.

5.3. Simultaneous Confidence Intervals

In some applications, the experimenter may be interested in the differences between
the experimental treatments and po, which is either a specified standard or the unknown
mean of a control treatment. Let us first consider the case of comparisons with a standard
po. Assume that the treatments have a common known variance o2. Let Y;(: = 1,...,k)

denote the mean of a random sample of size n; from II;. Define

L= (Y- po—do//ni,Y; — po + do/y/ni) (5.11)
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for i = 1,...,k, where d is the a-quantile of the standard normal distribution with o =
(14 (P*)!/¥]/2. Then
Pri{ui—po e I;i;i=1,...,k} > P~ (5.12)

When o2 is unknown, let I! be the interval obtained by replacing o in (5.11) with S, where

k
S2 is the pooled estimator of o with v = 3 (n; — 1) degrees of freedom. In this case,
=1
the joint confidence statement (5.12) holds by taking d as the two-sided upper-(1 — P*)
equicoordinate point of the equicorrelated k-variate central t-distribution with the equal

correlation p = 0 and v degrees of freedom.

When pg is the unknown mean of a control treatment Ilp, let Y, be the mean of
a random sample from IIp. When the common variance ¢? is unknown, Dunnett (1955)
obtained one-sided and two-sided confidence intervals for p; — po,2 = 1,...,k, with joint

confidence coefficient P*. The lower joint confidence limits are given by

— = 1 1
Yi-Yo—diSuy/— +—,i=1,...,k (5.13)
n; Ty

k
where s2 is the pooled estimator o2 based on v = Y~ (n; — 1) degrees of freedom and the
~
constants d; are chosen such that 1
Pr{ti <dy, ...t <dk}=P* (5.14)
where the joint distribution of the ¢; is the multivariate ¢. If n; = --- = ng = n, then the
t; are equicorrelated with correlation p = n/(n + ng). In this case, d; = --- = dy = d. For

selected values of k, P*,v and p, the value of d can be obtained from the tables of Gupta,
Panchapakesan and Sohn (1985). Dunnett (1955) has tabulated d-values in the case of

ng =ny =---=nyi (ie. p=0.5).

Similar to (5.14), we can write upper confidence limits and two-sided limits. In the

equal sample sizes case, Dunnett (1964) has tabulated the constant needed.

When the n; are unequal, there arises a problem of optimal allocation of observations

between the control and the experimental treatments. The optimality is in the sense of
k

maximizing the confidence coefficient for fixed N = }_ n;. This problem has been studied
i=0
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by several authors. For a detailed discussion, see Gupta and Panchapakesan (1979, Chapter
20, Section 10).

5.4. Notes and Comments

Chen and Hsu (1992) proposed a two-stage procedure which involves selecting in the
first stage the best treatment provided it is better than a control and testing a hypothesis
in the second stage between the best treatment selected (if any) at the first stage and the

control.

There are studies in which several treatments and a control are administered to the
same individuals (experimental units) at different times. The observations collected from
the same unit under these treatments are no longer independent. This type of design is
called repeated measurements design. Chen (1984) has considered selecting treatments

better than a control under such a design.

Bechhofer, Dunnett and Tamhane (1989) have studied two-stage procedures for com-
paring treatment with a control. In the first stage, they employ the subset selection
procedure of Gupta and Sobel (1958) to eliminate “inferior” treatments. In the second
stage, joint confidence statement is made for the treatment versus control differences (for

those treatments retained after the first stage) using Dunnett’s (1955) procedure.

Bechhofer and Tamhane (1981) developed a theory of optimal incomplete block designs
for comparing several treatments with a control. They proposed a general class of designs

that are balanced with respect to test treatments (BTIB).

Bofinger and Lewis (1992) considered simultaneous confidence intervals for normal
treatments versus control differences allowing unknown and unequal treatment variances.
Gupta and Kim (1980) and Gupta and Hsiao (1983) have studied subset selection with
respect to a standard or control using decision-theoretic and Bayesian formulations. Hoover
(1991) generalized the procedure of Dunnett (1955) to comparisons with respect to two

controls.

In our discussion of selecting treatments that are better than a standard or control,
we assumed that there was no information about the ordering of the treatment means

t;. In some situations, we may have partial prior information in the form of a simple or

30



partial order relationship among the unknown means u; of the experimental treatments.
For example, in experiments involving different dose levels of a drug, the treatment effects
will have a known ordering. In other words, we know that p; < p2 < ... < ug even though
the p; are unknown. For the goal of selecting all populations for which p; > po, we would
expect any reasonable procedure R to have the property: If R selects II;, then it selects all
treatments II; with j > 4. This is the ssotonic behavior of R. Naturally, such a procedure
will be based on the isotonic estimators of the u;. Such procedures have been investigated
by Gupta and Yang (1984) in the case of normal treatment means allowing the common

variance o2 to be known or unknown.

6. Selection in Experiments Involving Other Models

Thus far we discussed selection procedures and simultaneous confidence intervals un-
der the assumption that the treatment responses are normally distributed. In this section,

we briefly mention some other models for which these problems have been investigated.
6.1 Single-Factor Bernoulli Models.

The Bernoulli distribution serves as an appropriate model in experiments involving
manufacturing processes and clinical trials. In these experiments, response variables are
qualitative giving rise to dichotomous data such as defective-nondefective or success-failure.
Thus we are interested in comparing Bernoulli populations in terms of their success proba-
bilities. The initial and basic contributions to this problem were made by Sobel and Huyett
(1957) under the indifference-zone formulation and Gupta and Sobel (1960). There are
many interesting aspects of the Bernoulli selection problems. For specification of the
preference-zone one can use different measures for the separation between the best and the
next best population, namely, pix] —Pr—15> Px) /Pr-1) 20d [px) (1 —px—17))/ (1 — pay)Pe—1 -
The last measure is the odds ratio used in biomedical studies. Besides the usual fixed sample
size procedures and purely sequential procedures, the literature includes inverse sampling
procedures and so-called Play-the-Winner sampling rules. For a detailed review of these

procedures, reference may be made to Gupta and Panchapakesan (1979, 1985).
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6.2 Multinomial Models

The multinomial distribution, as a prototype for many practical problems, is a very
useful model. When observations from a population are classified into a certain number
of categories, it is natural to look for categories that occur very often or rarely. Consider
a multinomial distribution on m cells with probabilities p1,...,pm. Selecting the most
and the least probable cells are two common goals. The early investigations of Bechhofer,
Elmaghraby and Morse (1959), Gupta and Nagel (1967), and Cacoullos and Sobel (1966)
set the pace for a considerable number of papers that followed. The investigations of
multinomial selection problems reveal an interesting picture regarding the structure of the
LFC which, it turns out, is not similar for the two common goals mentioned previously
and also depends on whether a ratio or a difference is used to define the preference-zone.

For further discussion and additional references, see Gupta and Panchapakesan (1993).

Although selecting the best cell from a single multinomial population has been in-
vestigated over a period of close to forty years, selecting the best of several multinomial
populations has not received enough attention until recently except for the paper by Gupta
and Wong (1977). For ranking multinomial populations, we need a measure of diversity
within a population. Selection procedures have been studied in terms of diversity measures
such as Shannon’s entropy and the Gini-Simpson index. An account of these procedures

is given in Gupta and Panchapakesan (1993).
6.3. Reliability Models

In experiments involving life-length distributions, many specific distributions such
as the exponential, Weibull and gamma have been used to characterize the life-length.
Panchapakesan (1995b) provides a review of selection procedures for the one- and two-
parameter exponential distributions. How the life-length distribution is described as a
member of a family characterized in terms of failure rate properties. The IFR (increasing
failure rate) and IFRA (increasing failure rate on the average) families are well-known
examples of such families. Selection procedures for distributions belonging to such families
have been investigated substantially by several authors. A review of these investigations

is provided by Gupta and Panchapakesan (1988).
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7. Concluding Remarks

As we have pointed out in Section 1, our review of design of experiments with selection
and ranking goals covers mainly basic normal theory for single-factor experiments with
and without blocking and 2-factorial experiments with and without interaction. We have
referred to a few authors who have studied the problem using a Bayesian approach. There
have also been a number of investigations under an empirical Bayes approach. Some useful
additional references in this connection are: Berger and Deely (1988), Fong (1992), Gupta
and Liang (1987) and Gupta, Liang and Rau (1994).

In Section 2.4, we referred to a computer SAS package of Aubuchon, Gupta and Hsu
(1986) for implementing simultaneous confidence intervals for the difference between each
treatment mean and the best of the other treatment means. This package can also be
used for selecting the best treatment using the indifference-zone and the subset selection
approaches. There are a few other statistical packages such as CADEMO and MINITAB
which contain modules for selection procedures. A commercially distributed package exclu-
sively devoted to selection procedures is RANKSEL; see Edwards (1985, 1986) for details.
There are also programs developed by several researchers in the course of their investiga-
tions. Rasch (1995) has given a summary of available software for selection procedures
with specific description of each. Several FORTRAN programs needed for investigation
and implementation of selection procedures are given in the recent book by Bechhofer,

Santner and Goldsman (1995).

In the foregoing sections, we have discussed, as alternatives to tests of hypotheses
among treatment means, three types of formulations: indifference-zone approach, subset
selection approach, and multiple comparisons approach. We have mainly considered single-
stage fixed sample size procedures. In some cases we have described two-stage procedures.
Sequential procedures have only been referred to. In all these cases, we have not described
every available procedure for a given goal. As such we have not gone into efficiency
comparisons of competing procedures. However, brief comments have been made in certain
cases where a procedure was improved upon or bested by another at a later date. It should

however be emphasized that the procedures we have described are viable as yet.
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