A NEW LOOK AT WARRANT PRICING
AND RELATED OPTIMAL STOPPING PROBLEMS

by

M. Beibel and H.R. Lerche
Purdue University Albert-Ludwigs-Universitat
Freiburg i. Br.

Technical Report #95-35

Department of Statistics
Purdue University

July 1995



A New Look at Warrant Pricing
and related Optimal Stopping Problems

M. Beibel

H. R. Lerche
Institut fiir Mathematische Stochastik
Albert-Ludwigs—Universitat Freiburg i. Br.

Germany



1 General Ideas

In several papers on sequential Bayes testing and change-point detection (see for instance
[1], Chapter II of [7], or [19]) the following argument is used: The Bayes risk R(T) is
represented for all stopping times T with R(T') < oo as

(R) . R(T)= Egy(LT),

where L, denotes a certain stochastic process connected to the likelihood process evaluated
at time ¢ and where g is a positive function with a unique minimum, let’s say at a*. Then

we have

R(T) = Eg(Lt) 2 9(a”) .

If L; is a time-continuous process and passes a* with probability one, the optimal

stopping time will be

T* =inf{t > 0|L; = a*} .

If L, is discrete in time, one will usually not hit a* exactly, therefore one has to stop ahead
of a*. This is also the case for the ‘parking problem’ described in the book of Chow,
Robbins and Siegmund ({3], page 45 and 60). There ¢g(z) = |z| and L, = X3 + ... + X,,
where the X; are geometrically distributed. Therefore M. Woodroofe has called situations
as described above ‘generalized parking problems’ (see [19]). Of course for time-continuous
processes L, the solution is trivial, when one has the representation (R). Nevertheless to
find a representation of type (R) is sometimes not obvious (see e. g. [1]).

One can combine the above technique with the one recently used by Shepp and
Shiryayev ([14]). This yields an easy method to handle also some tricky optimal stopping
problems.

Since the examples are formulated more naturally as maximization problems, we switch
for convenience from minimization to maximization. To explain our technique more thor-
oughly let X = (Xt;O <t< oo) denote a continuous stochastic process for which we
want to maximize E Xt over all finite stopping times T' with respect to some filtration
F = (F;0 <t < 00). We will discuss a general approach to transform such a problem
to a generalized parking problem. The basic idea is to find another continuous stochastic
process Y adapted to F, a function g with a maximum uniquely located at some point
y* and a positive martingale M with My = 1 such that

for 0 <t < co. By the properties of g we have
X, = g(Y)M, < g(y")M, .
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Since M is a martingale we obtain for any ﬁnite stopping time T'
EXTt <g(y*) .
In order to prove the optimality of
T* =inf {t > 0|Y; = y*}
one needs only to show that
P(T*<o0)=1 and EMr«=My=1.

This can be seen as follows:
EXT- = Eg(YT")MT‘l{T‘<oo}
= g(y*)EMr-
= g(y).

To reformulate this argument let () denote the probability measure on Fo, = o(F3;t > 0)

with

9. =
dP 7
(In the problems we are considering such a probability measure always exists since we
assume F; = 0(X,,0 < s < ¢).)
Then we have for all stopping times T with P(T < o0) =1

M, for0<t< .

EXT = EQg(YT) .

This means that we have tranformed the initial stopping problem into a generalized
parking problem with respect to a new probability measure Q. To prove EM7. = 1,

is equivalent to show
QT <o0)=1.

We note that 7™ still maximizes the quantity EXrl{r<o), if P(T* < 00) < 1 but
Q(T™* < 00) =1 holds.

A crucial point in some of our arguments is to establish the martingale property for
continuous local martingales. Sufficient conditions for that are given in the book of Protter
([10], p.35, 66). Our technique works especially well for prdblems with exponentially
discounting. Many problems of option pricing have this feature.



In the sections 2.1, 2.2 we discuss some classical results on American call and put
options. In section 2.3 we take a more general viewpoint which leads also to results on
two-sided problems. As a consequenc e we calculate the values of American straddles and
strangles with infinite horizon in section 2.5. In section 2.6 we take another look on the

classical problem of stopping E TLZ-TT Finally section 2.6 discusses Russian options.

Our paper has close links to Moerbeke’s excellent survey paper ([18]), which lead us
to the be lieve that there is a general principle underlying our examples. So far we were

unable to formulate it in a mathematical statement.

Acknowledgements: We thank A. Novikov and A. Shiryaev for their interest and en-

couragement, D. Siegmund and M. Woodroofe for some useful comments.

2 Examples

2.1 The Warrant Pricing Problem

Let R denote the real and R* the positive real numbers. Let W denote standard Brownian
motion with measure P. Let 0 € R* and u € R. Let X denote the geometric Brownian
motion given by

X: = exp(oW; + (p — 0*/2)t)

Problem 1 Find a stopping time T of X that mazimizes
E {e—TT (XT - K)+ 1{T<oo}} 3
where K and r are constants with K > 0 and r > max{0, u}.

This problem has been considered first by H. P. McKean [8] and P. A. Samuelson [11]
and later by Moerbeke [17]; see also [6]. Note that for r < u the problem is trivial. In
that case it is advantagous to wait as long as possible.

Let

1 2 1
o=—(z-g)t\a+(m-3)

and

C* = max {(:zz—K)+:l:_"} .

K<z<oo



Let z* denote the unique point in (K, o00) where the function (z — K)*z~ attains its

maximum C*. A straightforward argument yields

:v*=-—a—1K and C*=—1—(a——1) K-«

o — a—1 o

Note that the condition r > max{0, u} implies & > 1. We will solve the above problem

under the additional assumption z* > 1.
Theorem 1 Let r > max{0,x} and K > 1—1/a, then
—rT + — —rT* + — (Y*
sng{e (X7 = K)* Lrcony } = E {7 (X1e = K)* Lgecoy } = O,

with
T* =inf {t > 0|X; = z*} .

Under the additional assumption
2

o
-2
p—5 20
it holds that P(T* < oo) = 1. In this case T* also mazimizes
E{eT (Xr - K)*}

among all stopping times T'.

Proof: Let M, denote the process

e XY,

(ag)2+a<u—%2) =r,

It holds

Therefore we have

(a0)’
M; = exp acW; — 5 t

and M is a positive martingale with My, = 1. By the choice of C* for all 0 < ¢ < oo it
holds
G_Tt(Xt — K)+ = (Xt - K)+Xt_aMt S C*Mt.

On the set {T™ < oo} we have
(X7« — K)* X732 = C*.
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Therefore it is sufficient to show EMr«1(7e<c0) = 1. Let @ denote the probability measure
on the o-algebra o(W;;0 < s < 0o0) with
aQ
dP
for 0 <t < oo, where F¥ = o(W,;0 < s < t). Under the probability measure Q the

process W is a Brownian motion with drift ao. Therefore under @) the process log X is a

= M,

Fv T

Brownian motion with drift (per unit time)

o? 5 [2r po 1

0'2a+p—3=0' ;+(;—§) > 0.

Since logz* > 0 we get Q(T* < oo) = 1. If the additional condition y — % > 0 holds,
then the drift of log X is nonnegative. O

2.2 Perpetual American Put Options

Let W denote standard Brownian motion. Let 0 € R* and p € R. Let X denote the

exponential Brownian motion given by
X, = exp(oWi + (4 — a*/2)1) .
The following problem is treated in [5] for the case r = p. See also [11].
Problem 2 Find a stopping time T of X that mazimizes
E{e (K - X1)* Liz<oa}
where K and r are constants with K > 0 and r > 0.

Put

1 2 1
-t (G-3)

and

C* = max {(K —:c)+:1:°‘} .

0<z<K
Let z* denote the unique point in (0, K) where the function (K — z)*z® attains its
maximum C*. A straightforward computation yields

ak
a+1

¥ =
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and

o= —= (5) K.
at+l\a+1

Note that o > 0. We will solve the above problem under the additional assumption
z* <1

Theorem 2 Letr >0 and K <1+ 1/a, then
Sllzl'p E {e—TT (K - XT)+ 1{T<oo}} - E {e_rT' (K - XT-)+ 1{T'<oo}} = C* y

with
T* =inf {t > 0| X; = z*} .

Under the additional assumption

0.2

——<
p—5s0

it holds that P(T™ < oo) = 1. In this case T* also mazimizes
E{e”™ (K - X1)*}

among all stopping times T'.

Proof: Let M, denote the process
e XY .

Then

(a20') +a('u_‘7_)=r,

Therefore it holds

(a0)?
M; = exp{ —aocW; — t

and so M is a positive martingale with My = 1. By the choice of C* it holds for all
0 <t < oo that
e—rt(K - Xt)+ = (K — Xt)+XtaMt S C*Mt .

Therefore we have for all stopping times T
Ee (K — X1)*1{1<00) < C* .
For the stopping time T™ holds
Ee™™ (K — X1)*{7eco0) = C*EMrpel(recooy -
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Let @ denote the probability measure on o(W,;0 < s < 00) defined by

©Q

aplzw =M

for 0 < t < oo, where YW = o(W,;0 < s < t). Under the probability measure @ the
process W is a Brownian motion with drift —ao. Therefore log X is a Brownian motion
with drift

2
2 L 9 |21 po 12
—ao’tu-g=——a"\ 5+ (G-3) -

This yields Q(T* < o) =1 since log z* < 0. Therefore it holds

EMTml{T.Q,o} =1.

2.3 Exponentially Discounted Functions of Brownian Motion
with Drift — one-sided boundaries
The arguments in 2.1 and 2.2 are very similar. In fact the examples of these sections can
be seen as particular cases of the following general theorem.
Let W denote standard Brownian motion. Let & € R* and u € R. Let X denote the

Brownian motion given by
Xi=0oW;+ ut .

Let h denote a measurable real-valued function. Let r be a strictly positive constant. The
following problem is treated for g = 0 in Moerbeke [17] and [18].

Problem 3 Find a stopping time T with respect to FX that mazimizes

E {e_rTh(XT)l{T<°°}} .

Let
__ k[ 2
M=tV et
and
Y N Vs
=" Vate



denote the solutions of the quadratic equation

(a0)?
2

+ap=r.

Of course a3 < 0 < ;. Therefore the processes Mt(l) and th given by
Mt(l) — e—Tte¢11Xt a,]:1(1 Mt(2) — e—Tteazxt

are positive martingales.

Theorem 3 If

0 <Ci=sup (e“"”’h(z)) < 00
z€R

and there exists a point x; > 0 with
Cl =e N7 h(.’L‘l) )

then
sup B {eTh(X1)lircen} } = C

and the supremum is attained for T* with

T* =inf{t > 0] X; = 21} .

Proof: Let QM) denote the probability measure on o(W,;0 < s < oo) with

dQW
dP

for all 0 <t < 0o. We have for all stopping times T

— M(l)

w t
Fy

E{e"h(Xn)lreoy} = E{MPe X h(Xr)li7co)}
= Equ {e_a‘XTh(XT)l{T<oo}} -

By the definition of C; we obtain for all stopping times T
E{e™"h(Xr)L{r<co} } < Ci -
On the set {T™ < oo} it holds

e—cuXT- h(XT-) = Cl



and so we have

E {e—TT‘h(XT*)l{T-«o}} = C1QU(T* < 0) .
To complete the proof it is therefore sufficient to show QMW(T* < oo) = 1. Under QU

the process W is a Brownian motion with drift ayo. This yields the desired result. 0O

Remark If P(T* < o0) =1 holds, then T* also mazimizes
Ee™Th(X7r)

among all stopping times T.

Example (See [18], p. 553-554) For p = 0 and 0 = 1 we have o4 = /2r. For a

sufficiently smooth function h the point z; satisfies the equation
(h(x)e_‘/ﬂx)’ =0.
Stnce
/
(h(w)e_ 2”) = (h'(z) — \/2_rh(:1:)) e Ve
holds, xy also solves

d
- logh(z) = Var .

For h(z) = z it is easy to check the above conditions. We obtain

T = inf{t > 0|W; = —\/12=}
. r
and )
E —rTW — -1
sgp (e T) —\/2_re

With similar arguments as above one can also prove the following theorem.



Theorem 4 If

0 < Cz = sup (e"’”h(z)) < 0o
zeR

and there exists a point x5 < 0 with

Cg = e_""”h(:cg) )

then '
sup E {e_'Th(XT)l{T<°°}} =C,

and the supremum is attained for T* with

T = 1nf{t > OI Xt = $2} .

Note that the conditions of Theorem 3 and Theorem 4 are mutually exclusive. Suppose

for example that the conditions of Theorem 3 are satisfied, that is

0 < C} = sup (e“"”h(z)) < o0
zeR

and there exists a point z; > 0 with
Cy = e™* % h(zy) .
Then for all z < 0 with A(z) > 0 it holds
e 1 h(xy) > e ®h(z) > e ***h(z) .
Since z; > 0 we have e™***1h(x;) > e~*"1h(z,) and so we obtain
e " h(xy) > e **"h(z)
for all x < 0 with A(z) > 0. This inequality clearly also holds for z < 0 with A(z) < 0.

Therefore sup,cp (¢7*?*h(z)) cannot be attained at some point z, < 0.

2.4 Exponentially Discounted Functions of Brownian Motion
with Drift — two-sided boundaries

The method of section 2.3 can be extended to treat problems with two-sided boundaries.

We will now consider the problem to maximize
E {e_TTh(XT)l{T<°°}}
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for a function ~ with the properties:

ilg)) (e“’lzh(z)) > igg (e""lzh(x)) y igg (e"“zzh(m)) > il;}; (e‘“zzh(x)) ,

0< il;g (e““‘”h(:c))' < 00
~and

0< il;g (e'“’zh(x)) < oo,

In this case we can neither apply Theorem 3 nor Theorem 4. Examples for such functions
are given by h(z) = z? or h(z) = max{(L — e*)*,(e* — K)*} (if a; > 1). The basic idea
is to replace the martingales M) and M® by the martingale M with

M; =pM* + (1 - p)M® |

where p € (0, 1) is suitable chosen. We have for all stopping times T

E{e'TTh(XT)} =F {MTPCQIXT f((i(i)p)eazxq» } y

To find a proper p we will now study the function

h(z)
pealz + (1 _ p)eagz

more closely. Since the sets {z > 0|h(z) > 0} and {z < 0|k(z) > 0} are both nonempty,

we have

h oz Yooz -1
sup (z) - sup h(z) _ ( cp P+ (1—pe
>0 pe® + (1 — p)eazz 530;h(z)>0 pexs 4 (1 — p)e“” &>0h(z)>0 h(.’l))
and

h h o1z _ azz\ —1
sup (=) = sup (=) = ( inf P +(1—pe .
=<0 pe®1® + (1 — p)e®2®  com(z)>0 Pe*t® + (1 — p)es” 2<0;h(z)>0 h(z)

Note that for all p € (0,1) it holds

h(z) 1
0< su < —sup (e7*"h(z)) < 00
zZO;h(I;)>0 pe*® + (1 - p)e"z‘” D .1:2%) ( ( ))
and
h(z) 1
0< su < sup [e”***h(z)) < o0 .
zso;h(2)>0 pe® 4+ (1 —plex® ~ 1—p :BSIS ( ( ))
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For fixed z with A(z) > 0 the function

pealz + (1 _ p)eagz
h(z)

is linear in p. Therefore the functions m,(p) and m2(p) given by

pealm + (1 _ p)eagz

mi(p) = zgo§ﬁ£)>o h(z)
d
an ( ) 3 ¢ pealz + (1 - p)eazz
m2P) = :1:501}13(::)>0 h(x)

are concave functions on (0,1) with values in (0,00). The function m; is nondecreasing

and the function m; is nonincreasing. It holds that

1
< o0
sup,»o(e~**h(z))

0< Il’l_I)Ill my(p) =

and !
h = .
0< pl_{% ma(p) SIIpzso(e“"‘ﬂh(a:)) < 00

We have further

limmy(p) = inf L
imm;(p) = =
pg TP 220:h(2)>0 h(Z)  sup,5o(e~*2%h(z))
and
limmq(p) =  inf e =
pol AP s<Oh(2)>0 h(z)  sup,o(e~*1"h(z)) ’

with the convention that —;1;.; = 0. Since

sup (e‘“”"h(x)) > sup (e‘“’“’h(z))

>0
we obtain
lim (ma(p) — ma(p)) < 0.

In a similar way we can show that
lig (1 () = ma(p)) > 0 .

Therefore the function m;(p) — ma(p) is a continuous function for p € (0,1) with at least
one zero. This means there exists at least one p* € (0,1) such that
h(z) h(z)

su = su )
zzg p*eoqz + (1 - p*)eaza: zsg p*eala: + (1 _ p*)eazz

12



In general p* is not necessarily unique.
We will now show that p* is unique, if there exists a point Z > 0 with
e~ % h(%) = sup (e_‘"“’h(x)) .
z20
Suppose there exist p* and p** with 0 < p* < p** < 1 such that

mi(p") — m2(p*) = 0 = my (p™*) — ma(p™) .

This implies
0 2 my(p*) — mai(p™) = ma(p”) —ma2(p™) 20

and so

ma(p”) — ma(p™) = ma(p®) — ma(p™) = 0.
Since m; is concave and nondecreasing this yields m1(p**) = mq(p) for all p € (p**,1).
Therefore we have

1

SUP,»(e~*17h(z)) -

ml(P**) = 11’1_1)111 ml(P) =

This is a contradiction to

o PR pen e
<
) = TERETE)
1

sup,o(e~*17h(z))

Theorem 5 Let p* be chosen such that
h(z) h(z)

su = su —
:vzg p*eoqa: + (1 — p*)eazz xsg p*ealx + (1 _ p*)eazx

If there exist points x, > 0 and z3 < 0 such that

h{z1) _ h(z) — O~
p*eala:l + (1 _ p*)eagzl p*eala:g + (1 _ p*)eazxz - ’

then
sup {Ee"Th(XT)l{koo}} =C"

and the supremum is attained for

T = 1nf{t > OlXt =T or Xt = 1:2} .

13



Proof: For all stopping times T it holds

h(Xt)
p*equT + (1 _ p*)eagxr

E {e_"Th(XT)l{T<°o}} =F {MT 1{T<oo}} < C*"EMrlr<cs)

where
M, =pM" + (1 -p)MP .
Therefore it only remains to show that E{Mr:1{r+<e}} = 1. Let Q denote the probability

measure on o(W,;0 < s < 0o0) with

d@
aplsw =M

for all 0 < ¢ < oo, where F}¥ = o(W,;0 < s < t). Let B denote a standard Brownian

motion and Y a random variable that is independent of B with
PY=00)=p"=1-P(Y = ap0) .

Under the probability measure ) the process W has the same distribution as
(B; + Yt;0 <t < o©). Therefore it holds

QT <o0)=1.

Remark In general it is not possible to determine p*, z, and x, explicitly. One particular
situation in which it is straightforward to determine p* is, when h is symmetric around
zero (i.e. h(x) = h(—z) for all ) and the Brownian motion X has drift zero. Then we
have ag = —ay = —/2r/0?, p* = % and 3 = —x1. Even in this particular case there
seems to be no explizit expression for xi. If in addition h is sufficiently smooth the point

xy s a solution of the differential equation

W(2) (e + e} = ah(a) {e= — e~}

with ¢ = /2r /o2,
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2.5 Perpetual straddle and strangle options

Theorem § above can be used to determine the value and optimal exercise strategy of
a perpetual straddle or strangle option. A strangle (straddle) is a combination of a put
with exercise prize L (K) and a call with exercise prize K on the same security, where
L < K. If we model the price of the underlying process by a geometric Brownian motion

0.2
oo -2}

with W a standard Brownian motion, then we have to solve the following problem. Let

Xt =0'Wt+ﬁt 3
withﬁ:p—%2 and
L—e” z <loglL
h(z) = 0 loglL <z<logK

e — K z>logK
The task is to find a stopping time T that maximizes
E{e‘TTh(XT)} :

where r > 0. Note that different than in the sections 2.1 and 2.2 the process X is now
the logarithm of the prize of the underlying security. Let

1y . /2 1
a=-(G-3)+a+(m-3)

and

a=—(L - -2 (L1,

o? 2 a2 o 2
Then a; < 0 < o;. Since the value of a straddle or strangle is larger than the value of
the corresponding call, we assume as in section 2.1 that the inflation factor r satisfies
r > p. This implies a; > 1 and so the constants oy and ay and the function h fulfill the

conditions of Theorem 5. Moreover we assume that
logL <0=Xo<logK .

Under these conditions we obtain from Theorem 5 the following result.
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Corollary 1 Let z;, z2 and p* be the unique solutions with £, > log K, x5 < log L and
0 < p <1 of the following system of equations:

e.’b‘l - K L -— 63‘2
p*ealxl + (1 —_ p*)ea2$1 = p*eal.’ﬁz + (1 —_ p*)eazzg
e1:1 _ p*alealxl + (1 _ p*)azeaz.‘b‘]
et — K - p*ealzl + (1 — p*)eagzl
___e:l:z _ p*al ealzg + (1 _ p*)azeazzz
L — %2 - p*ealzz + (1 — p*)eazxz

Let C* denote the common value of
e:L‘] - K L —_ e$2
p*eal:z:l + (1 — p*)eaz:z:l p*ealzl + (1 _ p*)eazzl .

Then \ ,
sup Ee™"T max {L — e"WT+(“_aT)T, 0, e"WT+("'aT)T — K} =C*
T

and the supremum is attained for T* with

T* = inf {t > 0|e”W'+(“'%2')t =€e" or e”Wﬁ(ﬂ_é)t = e”} .

Proof: Since
sup e~*h(z) = e~ %h(%)
20

for Z = log 7247 + log K, there exist a unique p* with

h(z)

h
sup =(C* =su (2)
>0 p*eal"”' + (1 _ p*)eagz

‘L‘SI(; p*eala: + (1 — p*)eazz .

For any p € (0,1) we have

lim W) =
B e 1 (1— ple

As h(z) > 0 for all z and h(log K) = 0 for any fixed p € (0,1) the function

h(z)
pealz + (1 _ p)eazz

assumes its maximum over (log K, c0) at some point z in (log K, 00). Each such point is

h(z) ) _

a solution of
(peala: + (1 _ p)eagx

16



On (log K, 00) this equation is equivalent to

z

e _ paqe®® 4 (1 — p)aze®®®
e — K pen® (1 —plex®

eI

e*—K

The function is strictly decreasing on (log K, 00) and the function

pa1e®?* 4+ (1 — p)age®?®
pealz + (1 _— p)eazz

is strictly increasing. Therefore there is at most one solution of

(=) -

in (log K,00). With similar arguments one can show that for any fixed p € (0,1) the

function

h(z)
peala: + (1 _ p)eagm

assumes its maximum over the interval (—oo,log L) at the point, which is the unique

solution of
—e®  paye*® + (1 — p)age®®®

L—er  pemz 4 (1 —p)ex=
in (—oo,log L). 0

2.6 Parabolic Boundaries

Let W denote standard Brownian motion and & be a measurable function such that

h(z)
och H(2)

<00,

where

o0 - w?
H(z) = / e~ Ty 1dy
0
with B € R*. We further assume that the supremum of h(z)/H(z) over R is attained at

a unique point z* and that this supremum is strictly positive. Let C* denote

«_ h(z*)
¢ = H(z*) "~
Let zo < z* and
X =W+

for 0 <t < 0co. We will now consider

17



Problem 4 Find a stopping time T of X that mazimizes

E{(T+ 1)"’h(\/1%)} .

This problem is treated by Moerbeke ([18]) (under different assumptions on h).

Theorem 6 Under the above assumptions it holds

- XT * - X7+ _ *
s {0+ 00 )} = B+ )M 7E) = Ao

where

T =inf{t > Ol% =:L'*} .

Proof: Let M, denote the process

(t+1)"°H ( \/ﬁ_l) / H(zo) .

It holds

oo u? 2 X
¢ 1 ﬁ/ uXe—2-1 % 2ﬁ—1d - H ] .
t+1) A e z'eT 2y u Jiri

Moreover we have

2 2
equ—-"’Tt uTg euW, —‘uTt

=€

and
2
EeuX:—uTt — e'uxo ]

Therefore (M;;0 <t < 00) is a positive martingale with EM, = 1 and by the definition

of C* we have

h X
(t+1)Ph ( \/tX:}—t_l) - H(xo)H—ﬁ)Mt < H(z0)C* M, .

This implies
Xt

E {(T +1)Ph ( m)} < H(z0)C*EMy

for all FX—stopping times 7. As M is a positive martingale with My = 1 we obtain from
this that for all FX—stopping times T

E {(T +1)Ph ( \/%)} < H(zo)C*
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holds. On the set {T™* < oo} one has

and therefore

(T* +1)~Ph ( ) = C*H(wo) Mg .

vI*+1

In order to complete the proof it is therefore sufficient to show
P(T*<oo0)=1 and EMp.=1.

The law of the iterated logarithm yields immediately P(T* < oo) = 1. Let p denote the
probability measure on Rt with Lebesgue—density

2
1 urg—%- 28-1

H(zo)® "

Let @ denote the probability measure on o(W,;0 < s < 00) with

aQ
dP FW

00 w2 1 00 2 2
— uXe—%-t — uX -4t —-% 24-1 —
_/0 e 7' p(du) H(:vg)./o e e T u T du = M,

for 0 < t < oo, where F}¥ = o¢(W,;0 < s < t). Let B denote a standard Brownian
motion and Y a random variable with distribution p that is independent of B. Under
@ the process (X;;0 <t < 0o0) has the same distribution as (z¢ + B; + ¥;;0 < t < 00).
Therefore

QT <o0)=1

and so the assertion follows. a

Example (A classical stopping problem) We now consider the special case h(z) = z,

zo =0, and 8 = % That means we want to maximize

Wr
E .
T+1

This problem is treated in [13] and [15] and was initiated by [2] and [4]. An easy calculation
shows that

o0 u z2
/ e rdu = V2meT®(z),
0
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where

- /21

z 1 22
®(z) = / e"7dz.
(z) T
Differentation yields the following transzendental equation for the threshold z* (see [13])

0 = H(:c)—:t:[i(z) 2
= (1—.71:2)/0 e Tdu—zx .

Remark Let T, denote the stopping time
T, = inf{t > 0|z, + W >avi+ 1} .

Since M, is a martingale the optional stopping theorem yields

_ H(zo)
H(a)

E(T,+1)7"

for a > xo and B > 0. Note that sup H(z)= H(a) < oo . This is a special case of

—~-00<zLa

results of Novikov [9] and Shepp [12].

2.7 Perpetual Russian Options

Let W denote standard Brownian motion. Let ¢ € R* and ¢ € R. Let X denote the

geometric Brownian motion given by
X, = exp(oW; + (u — 0?/2)t)

and let S; denote the running maximum of X

S¢ = gggs)(t X, .
We will now consider the following problem
Problem 5 Find a stopping time T that mazimizes

E (e_"TST)

under all stopping times of the process X. r is a positive constant satisfying r > p.

Shepp and Shiryaev proved the following result. We formulate it in their notation.

20



Theorem 7 Let

__ ﬁ_l) 2r (i_l)”
"= (0'2 2 + 02+ oz 2

and
_ (1 _ 1/71)1/(‘/2—‘71)
1=1/7 '
Then
E —rTS = E —rT"S .,
B (e7757) = £ (50
where

T = 1nf{t>0|——a} .
We will now derive the result of Shepp and Shiryayev in [14] with our technique.

Proof: The continuous semimartingale %} satisfies the stochastic differential equation

X, 1 X,
d=t = —dX
S, S Ot s?

since S has increasing paths. For suﬂiaently smooth functions h we therefore obtain
() = [ (5) ogr (3) v 3 (7)1 (3)
rt _ TU _ Ut D BinfeiC] niftu
Sh(st>_/ S{rhS+ShS+2 =) W (%)
Xu Xu
Tu !
# e {5 () +4 () o

to /0 XN ()bf—) W, .

The process S is flat off the set {¢|S; = X;}. Therefore

e {5 (32) +h (32) Jasu= [ e (=) + by} as.

Hence for sufficiently smooth functions h the process e™™S;h ( 5 ) is a local martingale if
h satisfies

—dS;

, ,
0 = —rh(z)+ pzh'(z) + %zzh"(a:) for all z € (—o0,1]

0 = K(1)—h(1).

A solution of these equations is given by (see [14])

1 " 2
TR

Yo amn — T o2

21



where 7,, 72 and a are as above. Note that we have normalized the solution in a different
way than in [14]. This particular solution moreover satisfies A(1) = 1 and it is easy to see
that
. _ -1
02221 h(z) = h(a ) >0

holds. Since M; = e "'S;h (%f) is a positive local martingale we obtain

T _ 1 1 _]__
E(c"S7) =E (MTh(%)) < 7y PV S i -

On the event {T™ < oo} it holds

(B =he)

A straightforward argument (see [14], equation (2.15)) shows that P(T* < oo) = 1.
Therefore it is only left to show that EM7. = 1. A sufficient condition for this equality is
E sup e"Sh (&) <o0.

0<t<T* St
For 0 <t < T* we have

1 X
0<—<—X<1.
<C¥—St_

The continuous function A is bounded on the compact interval [1/a,1]. Hence it is suffi-
cient to show that

E sup ¢S < 00 .
0<t<T*

For all ¢ > 0 it holds

e ™ sup X, < sup e ™X,
0<u<t 0<u<lt

and hence

sup €S, < sup sup e™*X, = sup e "X, .
0<t<o0 0<t<o0 0<u<lt 0<u<oo

This yields (see [14])

E sup €S, <E sup e ™X,<00.
0<t<T* 0<u< oo

The estimation of the r.h.s. is a straightforward calculation (see [14]). 0

The arguments in the proof of Theorem 7 can also be used to discuss a perpetual put

with path-dependent strike S;. This means we can consider the following problem.

22



Problem 6 Find a stopping time T* that mazimizes
E (e_rT(ST — XT)I{T<°°})

under all stopping times T with respect to the process X. Here r is a positive constant

satisfying r > p.

We have the representation

X

S, — X,) = My——3
€ ( t t) th(Xt/St)

The function (1 — z)/h(x) assumes its maximum over (0,1) uniquely at some point z*.

This yields the optimality of the stopping time T™ with

T = lnf{t > 0|Xt S .’D*St} .

Remark on the structure of M: The local martingale M appearing in the proof above

satisfies

¢ —-ru Xu ¢ th,(&:)
Mt=a/06 th’(s—u>qu=a/0 MuS—uh(%)qu.

The function A with

GO N ) Ml GO
A(:E) - h(a:) - 717272 (ax)‘n I (aw)’h

is bounded on R. Therefore the stochastic integral Y with

t
imo [ (2o

is well-defined. The process M satisfies the Doléans equation
dM; = M,dY;

with My = 1. Hence we have (see [10], p. 77)

t X, o? it/ X,\?
Mt—exp{a/o A(-g:)qu—7/() A(S_u) du} .
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Since A (Ls(f) is a bounded process it is immediately clear that M is a martingale. Let Q
denote the probability measure on o(W,;0 < s < 00) with

dQ
ﬁ}_tW—Mt,

FY¥ = o(W,;0 < s < t). Under the probability measure Q the process

t X,
Wi [oA(5) o
is a standard Brownian motion. Note that A(z) < 0 holds for z > 1/ and A(1/a) = 0.
Remark on Laplacetransforms: Let T, denote the stopping time
Ta = lnf{t > OlXt S aSt} .

The function f with :
f(z) = ya™ — pya™
satisfies

o
0 = —rf(z)+ paf'(z) + —2—m2f”(x) for all z € (—o0,1]

0 = fQ).

This implies that the process e~ f(X:/S;) is a nonnegative local martingale. Moreover
forany 0 < a<1 it holds on 0 <t <T, that

e f (%) < f(a) .

The optional sampling theorem therefore yields for 0 < a <1 and r > 0 that

Ee ™l = S0 Rt | .
72a')’1 —_ 71(1’72

This is special case of the results in [16].
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