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Abstract

Gaussian processes, and in particular the Brownian Bridge and the Brownian motion,
are used to model numerous processes in applications. In many of these problems, accu-
rate forecasting of the process at future times is important. We address the problem of
distinguishing between the Brownian Bridge and the Brownian motion with possible drift
on the basis of observations at n discrete times; both deterministic and random times are
considered. The article starts with calculating the mean of the L; distance between the
two processes; this is done to understand if distinguishing between the two processes is
intrinsically difficult. We then derive the likelihood ratio test statistic, its asymptotic null
distribution and the fixed sample null and nonnull distributions. These are used to study
the critical values and the power and their robustness with respect to the distribution of
the times when the times are random. We also derive the Bayes factor and its asymptotics
vis-a-vis the likelihood ratio and compare posterior probabilities to the P value of the like-
lihood ratio test. It is found that the posterior probabilities are not robust with respect to
the distribution of times as well, and especially so at large sample sizes. The Bayes rule
has the amusing feature that for all small sample sizes, it always rejects Brownian Bridge

as the model, for all samples.

1. INTRODUCTION

Many naturally occurring processes in various branches of science, economics, and
other disciplines behave like Gaussian processes. In particular, the Brownian motion and
the Brownian Bridge are used as models for many processes; for instance, such processes are
used to model the ups and downs of the stock market, the movement of cells or subcellular

organisms, the diffusion of gas or fluid molecules, etc. See Berg (1993).

In many of these problems, it is important to be able to accurately predict the location
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of the process at a (distant) future time. If so, it is clearly important that one can correctly
identify the true process generating the observations, from a number of possible processes
one can think of. It is also, realistically, often the case that the observations one makes
on the process are at discrete times. One therefore has the question: is it possible to
accurately distinguish between various Gaussian processes based on observations at a finite
sequence of discrete times? In this article, we address the question of testing if observations
X1,Xs,...,X, corresponding to times ty,%,,...,t, are coming from a standard Brownian
Bridge or a Brownian motion with possible drift. The time interval under consideration is
the unit interval [0,1]. We consider the case where t1,%,...,t, are deterministic as well
as the case where they are the order statistics of a random sample from a CDF F on [0,1].
In fact, many results we present do not depend on whether the times are deterministic or

random.

In section 2, we do some preliminary calculations to anticipate if the distinction is
going to be easy or difficult by deriving the mean L; distance between the two processes;

this calculation has some independent probabilistic interest.

In section 3, we derive the likelihood ratio test, and its asymptotics. In this section,
we also consider the fixed sample distribution of the likelihood ratio statistic under both
the null and the alternative. These are then used to give critical values and evaluate the
power of the test and also to study the robustness of the critical values themselves and
the power to the choice of F, when the times of observations are random. We conclude
that the critical values lack in robustness with respect to F', making a decision to reject
or accept difficult unless the distribution F' is known pretty precisely to the practitioner.
We also conclude that the power of the test is small, especially if the drift of the Brownian

motion is small to moderate, making identification of the true process also difficult.

Section 4 treats the problem from a Bayesian angle; we derive expressions for the
Bayes factor and the posterior probability of the null hypothesis and consider the asymp-
totics of the Bayes factor vis-a-vis the likelihood ratio statistic. We also present tables of
posterior probabilities and corresponding P values of the frequentist likelihood ratio test,
for comparison. This section also presents a rather interesting phenomenon: if the times

are deterministic, then it can happen that for all small n, the Bayes test ALWAYS rejects



Hy, regardless of the sample obtained.

Similar analyses with other Gaussian processes are under investigation. Tests on
Wiener processes are considered in Simons et al (1989); some general optimality of likeli-

hood ratio tests is discussed in Brown (1971).

2. SOME ANTICIPATIVE CALCULATIONS

Before we derive the likelihood ratio and Bayes tests and their properties in the subse-
quent sections, let us do some quick calculations to anticipate what we might see in terms
of the ability to distinguish between a Brownian Bridge and a Brownian motion with drift.
These calculations are of independent probabilistic interest as well. Let then B(t) and £(t)
denote respectively a Brownian Bridge and an independent (standard) Brownian motion
on [0,1]. It is natural to look at the L; norm fol |B(t) — tu — €(t)|dt as a measure of how
different are the sample paths of a Brownian Bridge and a Brownian motion with drift.
The L, norm is a random variable; Johnson and Killeen (1983) consider the L; norm of
just the Brownian Bridge. In the following, we give a representation for the expected value
of the L; norm Ds = f06 |B(t) — tp — &(t)|dt on the interval [0, 6]; we will then use the

expression to compute E(Ds) and see how small or large the L norm is on the average.

Theorem 1. E,.(Ds) = —‘/—’—'—(—6—5)%; in general, E,(Ds) admits the infinite series rep-

resentation
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Proof: Although expression (1) looks intimidating, the derivation is easily understood

*  from the following main steps:



Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

By Fubini’s theorem, E,(Ds) = f: E,|B(t) — tp — £(t)|de.

tu+ £(t) — B(t) ~ N(6,0?) where 6 = 6(t) =t and 02 = o?(t) = 2t — 2.

By a direct integration by parts, whenever X ~ N(6,02%), E|X| = 20¢(£) +
0[28(£) —1].

2 2
The first term in Step 3 corresponds to \/—% f V2t —t2e e 2(t-:2) dt. On making

the substitution #jﬁ = z, this equals
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The second term in Step 3 corresponds to ——62 +2u fo t®( \/Ztt"th)dt. On making

the substitution _\/iﬁ = z, this equals
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If [ =5 f:ii’;;a) dz is integrated by parts twice then (3) becomes
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In (4), bf %dw becomes % of \;-(zz) dz and of E’H_zz)zdm becomes
ol

725 ]
17 —Aio? on making the substitution z = z2.

Now one simply combines steps 4 through 7 and uses the following fact:

/(; mdl‘ = 72F](V,M§1 + u; —u). (5)

(see, e.g., Gradshteyn and Ryzhik (1980), pp. 284).
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Table 1 gives the value of E,(Ds) for some values of § and p.

Table 1: E,(Ds)

7

) 0 5 1
.05 .00257 .00836 .00841
%) .1206 25051 .26666
1 .62665 .66174 76196

Table 1 suggests that even on the whole interval [0,1], the L, distance between a Brownian
Bridge and a Brownian motion with moderate drift is quite small on the average and

distinguishing one from the other may not be very easy.

3. THE LIKELIHOOD RATIO TEST

3.1 Description

In this section, we first derive the likelihood ratio test statistic and its asymptotic null
distribution, which is the same whether the times {¢;} are deterministic or random. We
then give the fixed sample null and nonnull density of the likelihood ratio test statistic
and use these to evaluate the critical value and the power function at selected values of
. These are illustrated for three different choices of F', the distribution of the times. We
show that there is indeed a practical difficulty in distinguishing a Brownian bridge from
a Brownian motion with drift: the critical value is not robust with respect to F. Thus,
unless the practitioner knows according to which F the random times are distributed,
he/she will have difficulty in deciding whether to accept or reject the null hypothesis. We

also show that to a somewhat less serious extent,the power also lacks in robustness.

3.2. The Test Statistic

Theorem 2. Let t; < t; < ... < t, be n deterministic or random times in [0,1], and
let z;,22,...,2, be observations from a process X(t¢) at the corresponding times. For
testing Ho : X(t) = B(t) vs. Hy : X(t) = tp + £(t) for some real pu, where B(t) and £(t)
denote a standard Brownian Bridge and a standard Brownian motion respectively, the
likelihood ratio test (LRT) statistic A is given by —2log A = t—n(—fit%) + log(1 — t,) and
—2log A — log(1 — t,) N x2(1) under Hp.



Proof: The second part of the Theorem is an obvious consequence of the first part. To

derive the first part, note that
e~3%'TZ

1
A= BT , (6)
sup R |1/2e @-uby 2 (.’IZ - :ut,)

where £ = (z1,...,2Zp), t = (tl,..., tn), and £;, ¥y are the covariance matrices &; =
((min(t;,¢5))), L2 = ((min(t;,t;) — tit;)). Note that the representation (6) for A is valid

regardless of whether the times are deterministic or random, due to the ancillarity of the

times.
By calculus, the maximum likelihood estimate of x4 equals —'z_ll_f Substitution of this
into (6) yields
1 1 1,y ] 1(z'S')?
log A= Jlog|¥i] - 5 log[¥2| — S2'%, §+29£2 AR (7)
Notice now the following facts:
a By =3 -t

b [S] = [51](1 - 'S0 ')
ST'sT!
1-#'57"

— 0 0
g&%=<g1) (8)
(see Rao (1973)). Hence z'S7't = z,, and ¢S] 't = ¢, and thus from (7),

22—1 — 21—1 +

I

Th . n
—2log A =log(l —t,)+ T + .
2
+ log(1 — t,), 9)

'n(]- - tn)
as stated.

3.3. Fixed Sample Distribution of the LRT Statistic

Theorem 3. Let t; <t; < ... <t, be the order statistics of a random sample from an

absolutely continuous CDF F on [0,1] with density f. Then,

a the null distribution of y = —2log A has CDF
1

Pu<o=n [ (8(/e-lg(1-0)- DF"Ofd (10

(1—e¢)Vo




b the nonnull distribution of y = —2log A has CDF
1

Pu(y < c)=n / (Gr(e 1) + Gale, iy )} FP1 () f(2)dt

1—e¢)Vo

+ F*((1 — e°)vo) — 1, (11)

where

Gr(c,1yt) = ®(y/{e— Tog(L = D)1 = 1) — uv/%)

and Ga(c, iy t) = B(y/(c—log(T = (I — D+4vi) (12)

Proof: Both parts follow from P(y < ¢) = EP(y < cltn). Under Hy, given t,, y =
—2log A has the distribution of a x?(1) + log(1 — t,,) random variable and from this, part
a follows. Under Hy, zu|tn ~ N(tnt,tn), i.6., Znltn £ tnpt + 2n\/tn, where Z, ~ N(0,1).

PH1(y < cltn)
2

_ P('tn(%ﬁ) <c—log (1 —tn)ltn)
= P(N*( it . ) S c—log (1 —1n))

V1=t VT—1,
= Gi(e,pytn) + Galc, pytn) =1 if ¢ >log (1—-1%,) and is zero

otherwise. Part b now follows.

The following table gives the critical values and the power of a 5% test at u = 0,.5,1,2,
for F(t) = t, 2 sin™'v/t, and 3t* — 2t%. Thus F is respectively the U[0, 1], the Arc-Sine,
and the Beta (2,2) CDF. The critical values and the power were obtained from Theorem 3
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by numerical integration on Mathematica.

Table 2
F n  Critical Value Power
u=20 p=.3 p=1 =2
Uniform 10 1.28 615329  .651321 .740016  .918147
20 .631 715502 745131  .816679  .950607
30 .236 764117 789651  .850801  .962111
40 —.047 794125  .816858  .871058  .968254
50 —.269 .815030 .835704  .884857  .972187
Arc-Sine 10 1076 806031  .826464 .875613 .966637
20 -1.14 .896461  .908233 .936101 .984951
30 —-1.904 929644  .937783  .956974  .990155
40 —2.457 946764  .952963  .967556  .992655
50 -2.890 957194 .962195 .973956  .994134
Beta (2,2) 10 2.005 450021  .493510 .604181 .850991
20 1.652 525077  .567427  .673034  .892751
30 1.445 565906  .606700 .707427 .910114
40 1.298 593301 .632723  .729464  .920163
50 1.184 613615  .651862 .745317 .926914

Discussion. The most alarming aspect of Table 2 is the lack of robustness of the critical
value to the choice of F. Unless the choice of F' was explicitly precontrolled, it would not
be easy to tell the difference between the U[0, 1] and the Beta [2,2] CDF. Yet, in one case,
the critical value is .631 and in another case it is 1.652 for n = 20, a moderately large
sample size. The consequence is that it will be difficult for the practitioner to decide if Hg
should be rejected. Also, one sees from Table 2 that if F is the U[0, 1] or a CDF close to it,
i.e., if the times {t;} are quite evenly spaced out, then it would be difficult to distinguish
between a Brownian motion with a small drift and a Brownian Bridge; e.g., if F' is the
Beta [2,2] CDF, then the power of the 5% test is only .65 at u = .5 with as many as 50

observations.

Corollary 1. Let A, = F‘l(l—%) and a,, = ﬁ. Then the CDF of the null distribution

of y = —2log A admits the expansion

2 e~ 3 1

;\/an log an + ol Vaglog an )
8

PHo(ySc)':l_



This is useful in the sense numerical evaluation of a critical value can be replaced by use
of this asymptotic expansion to approximate the critical value. Corollary 1 follows on
using the fact that under Hy, mﬁm (given t,) has a x%(1) distribution, and the fact
1-3(2) = 22(1 4 o(1)) as z — oo.

Acce_Péomce negion of die. Lielihood natiq fest
«=:08 F= U-[B-‘-’;]

Acceptonce hegion, of the Liuefthood hadvo dest
=S n =20

Ly,

F= Qetal2:2]

o 0.15k

0.5 p

0.25 p

-0.25 ¢

-0.75



4. POSTERIOR PROBABILITY AND THE BAYES FACTOR
4.1. Description

The standard Bayesian analysis of testing a point null against a compound alternative
assigns a prior probability p to the point null and a conditional prior distribution on the
parameters given that the alternative is true and then computes the posterior probability
of the null hypothesis; it is also common to compute a Bayes factor, a monotone function
of the posterior probability. There are striking differences between the apparent messages
of a frequentist and a Bayesian test of a point null hypothesis. Primary among them
is a phenomenon commonly called “Lindley’s paradox”; the posterior probability of Hy
increases with n to 1 when the classical P-value is very very small. See Robert (1994) for

a marvelous discussion. We have the following result.

4.2. The Bayes Test

Theorem 4. Let the prior probability of Hy be p, 0 < p < 1, and let yx have a prior
distribution G (which may not be absolutely continuous). Then, whether or not the times

{t;} are deterministic, the Bayes factor in favor of Hy equals

1 A Tn
B = —— — ¢ 2a(i-tn) @n * G)(— 5 13
= /(@ s O3 (13)

where ®,, denotes the N(0, ;=) CDF and &, * G denotes the density of the convolution of

. .. B
®, and G. Furthermore, the posterior probability of Ho equals 7 5.
q

Proof: The expression for the posterior probability in terms of B is always true. To see

the expression for B, note that by definition,

1 “lg'vrlx
2% 2 %
|22|1726

B = . 14
[ sterse 1@ BT @D G () )
1
fy—1 1oy — Igv—1432
Since —1(z — put)'S7 ' (z — put) simplifies to —i—zzl—t (n— flgl_:tt )2 +(:§t'2>:11'1tt) , (13) follows

from (14) because of (8).

Corollary 2. Under the 0 — 1 loss, the Bayes test rejects Hy if and only if

2

s —ta) - Zn P
Tl — 1) +log(1 —t,) — log(ts) + 2log ((®n * G)( . )) > 2log omq
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The proof of Corollary 1 simply follows from the fact that the Bayes test rejects Ho

when its posterior probability is smaller than % This corresponds to the stated rule on

rearranging terms in the inequality B < % < log B <log %.

Example 1. Corollary 1 leads to the following rather interesting phenomenon. The
Bayes rule of Corollary 1 is valid if the times {¢;} are deterministic or random. If they
are deterministic and t, is increasing in n, then 2log 5’7:—(] +log t, — log(l — t,,) would
be increasing in n and depending on the value of p, there will be a smallest ng such that
2
2log b +log t, —log (1 - tn) > 0 for n > ng. On the other hand, 72~ +2log ((®n *
G)(%2)) will often be always positive. Hence, for n < ng, the Bayes test will always reject
H, and never accept it. If G is the N(0,0?) prior distribution, then this phenomenon
occurs for all n such that ¢ > M——‘—l—m; for instance, if c = .5, p = .25 and ¢, = n—_’:_—l,
then the Bayes test will always reject Hy for n < 5.

Corollary 3. The Bayes factor B and the likelihood ratio A are related as

B f_/@ La)(32) (15)

This is an obvious consequence of (13) and the expression for —2log A given in Theorem 2.

Corollary 4. Under Hy, % £,

(support (F)) = 1.

1 . ) )
T @0 0) 1, provided F' is any CDF with sup

Proof: The condition on the support of F' ensures t, 25 1. Also (@, * G) (%) =
\/Lélw fe_%(”_%)sz(u). Now the function ¢(t,y) = fe_%(“_y)sz(p) is bounded and
jointly continuous in (t,y). Since (tn,$*) i (1,0) under Hy, it follows that (@, *
G)($ fe 3+ dG(p) = (@ * G)(0). Corollary 3 now follows from (15).

Remark. Note that the limit in probability of g is always a number larger than 1. This
is indicative of the generally true fact that in assessing if an observed Bayes factor is indeed
large, one requires consideration of this matter that Bayes factors tend to be a factor of
magnitude larger than the likelihood ratio in favor of the null. In fact, sgp(p lim %) = 00

even for the family of normal priors, where plim means limit in probability.
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4.3. Posterior Probability of Hy

We will now give some values of the posterior probability of Ho, with corresponding
values for the P value of the likelihood ratio test. Let us make this more precise. Expression
(15) shows that the Bayes factor and hence the posterior probability of Hy is not a function
of the likelihood ratio A alone. Thus the posterior probability of Hy is not determined by
only the P value; it also depends on the value of the nth time ¢,. If the prior distribution
G is symmetric about 0 (in the sense p and —p have the same prior distribution), the
convolution ®,, * G is also symmetric about 0. This gives the following easy representation

for B in terms of A and £,:

B e
B = )\\/—2——”/(‘1’11 * G)|E|

= /\\/—\/;——:r_—/(cbn + G)(1/(~2log A —log (1 —1

(16)

(16) is immediate from (15) and Theorem 2 which says —2log A = + (1 2y +1og (1 —tn).
The P-value determines A through (10), A and ¢, determine B through (16), and B
determines the posterior probability of Hp as —_—E:;B In the following table, we use ¢,

747> the mean of t, if F were U[0,1], and p, the prior probability of Hy, is taken as .5.
We also need to specify F, as the P value determines A via (10), which involves F. We

take F to be U0, 1], and Beta [2,2] and G is taken as N(0,1).

Table 3
P value = .01 P value = .05
F n P(H,/data) n P(H,/data)
10 175011 10 44297
20 .216438 20 51957
Ulo,1] 30 .247486 30 562306
40 272394 40 595458
50 1293271 50 621113
10 .13005 10 .360201
20 142777 20 .39316
Beta [2,2] 30 152734 30 414872
40 .160753 40 .431066
50 .167482 50 443981

Discussion. At higher sample sizes, the posterior probability is less robust to the choice of

F. This is especially true when the P value is .05; if n = 50, then the posterior probability
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of Hy is .62 > .5 when F is U[0,1] and .44 < .5 when F is Beta [2,2], making a difference
between acceptance and rejection in the two cases. Notice also the usual “Lindley paradox”
phenomenon: P(H,/data) keeps increasing monotonically even though the P value of the
classical test is quite small.
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