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Abstract

The estimation of quadratic functions of a multivariate normal mean is an inferential problem which,
while being simple to state and often encountered in practice, leads to surprising complications both
from frequentist and Bayesian points of view. The drawbacks of Bayesian inference using the constant
noninformative prior are now well established and we consider in this paper the advantages and the
shortcomings of alternative noninformative priors. We take into account frequentist coverage probability
of confidence sets arising from these priors. Lastly, we derive some optimality properties of the associated
Bayes estimators in the special case of independent components under Stein’s loss.
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1. INTRODUCTION

Given a normal vector z ~ N(6,X), with a known covariance matrix X, the estima-
tion of n = ||]|? is a situation for which the determination of a noninformative prior is
troublesome, as pointed out by Stein (1959). For instance, the constant prior on 6 (which
is the Jeffreys prior here) leads to the definitely suboptimal estimator of 7,

So(z) = llzll* +tr(Z),

which is uniformly dominated in terms of frequentist risk under squared error loss by
[|z||2> — ¢tr(Z). Several authors have addressed this estimation problem (under weighted
squared error loss) from a classical point of view, including Perlman and Rassmussen
(1975), Neff and Strawderman (1976), Saxena and Alam (1982), Gelfand (1983), Chow
(1987) and Kubokawa, Robert and Saleh (1993).

Following the reference prior approach proposed in Bernardo (1979), which is designed
to deal with nuisance parameters in noninformative settings, we construct in Section 2 two
explicit (and competing) noninformative priors when 7 is the parameter of interest. The
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particular case ¥ = I was alluded to in Bernardo (1979) (see also Fernandez, 1982) as
an example where reference priors could provide reasonable answers in situations where
marginalization paradoxes occur. We compare, in Section 3, the behavior of these two
reference priors with each other and with the more naive prior, 7() = 1/,/7, which is the
reference prior when ¥ = I. The appendix establishes the validity of these priors in terms
of posterior propriety. In the particular case when ¥ = I, we study in Section 5 the Bayes
estimators associated with 7(n) = n° and show that the reference prior estimator, which
corresponds to ¢ = —1/2, has certain optimality properties.

Sections 3 and 4 consider the frequentist confidence behavior of credible sets arising
from these reference priors. Starting with Welch and Peers (1963) and Peers (1965), this
has become a common way to study the properties of noninformative priors. For ¥ =
I, Stein (1985) and Tibshirani (1989) (see also Ghosh and Mukerjee (1992, 1993) and
Datta and Ghosh (1995)) showed that the reference prior, m(n) = 1/,/7, is a frequentist
probability matching prior, in the sense of yielding one-sided credible sets (of posterior
probability 1 — &) which have frequentist coverage of 1 — a up to O(n™!). For & # I,
we show that the reference priors from Section 2 are not probability matching. However,
obtaining any probability matching priors for which the resulting posterior is proper is a
formidable task when p = 2, and a nearly impossible task for p > 3. And, even when one
can be found, its coverage properties for small n are suspect, as we show in a numerical
example. Hence we feel that the practical advantages remain with the reference priors.

The estimation of quadratic functions is of importance in many areas. In astronomy,
1|6]|?> arises in the measurement of a celestial object or as an indicator of the accuracy of
a measure. Kariya, Giri and Perron (1988) give examples where the norm of the mean
appears in the variance of the distribution. Finally, let us mention the following predictive
application: if 2@ is to be predicted, with [E[z] = p and E[(z — p)(z — p)t] = I, we have
IE[z?6] = p'6 and var(z*0) = 'L, which involves a quadratic function of . Berger, Smith
and Andrews (1995) address this inferential problem in a car fuel economy study.

2. THE DIRECT AND REVERSE REFERENCE PRIORS

2.1. Preliminaries. Let z ~ N,(6,X). Of interest is inference concerning the parameter

n = ||6]|?>. First, we can assume without loss of generality that ¥ is a diagonal matrix,
diag()1,...,\p), even when we estimate 6°Q0 for any p.d. matrix ). A reparameterization
of # in polar coordinates (1, ¢1,...,@p-1), 1.€.

61 = iicos g,

02 = \/ncos sy sinpy,
(2.1)



0p—1 = +/Mcospp_1sinp,_s...sinepq,
0, = \/Msingp_j...sin ¢y,

will be used to define the nuisance parameter ¢ = (¢1,92,...,9p—1). For this set of
parameters, the information matrix is given by

o
I(n,0) = HS'H! = | 1 12]
(1,) BEAl

where 211 is a scalar and H is the Hessian matrix

_ D(64,...,6,)
D(n7901""a90p—1)
[ cosp1/2,/M cospasing; [2,/n ... sin@p_1...5i001/2,/77
nsing; /1 cosp cos s VT1singy_1 ... cos ey
0 —\/7sinpzsin ¢y
| 0 0 ’ \/NCospy_1...5in¢p7 J

Note also that H can be written

- [48)

where A € IR? and B, a (p — 1) X p matrix, are both functions of ¢ only.

2.2. The direct reference prior.  The construction of the reference prior proceeds as
follows, using the algorithm in Berger and Bernardo (1992 a,b). First, the conditional
distribution of ¢ given 7 is 7¢(p) o |Iz2|'/2. Since ¥ is diagonal, we get

I- [Cf/}{] [4/\i iB']

[C;Aff" o ] : (2.2)

with obvious notations; thus, I, = 7DB* and 7%(y|n) does not depend on 7 (and, indeed,
is a proper distribution). The marginal distribution of 5 is given by

<t e {1 108 (1) o .

where IE stands for expectation w.r.t. 7¢(¢|n). Clearly
P
[I| = C*'AIDB|y*~% + ) (DA)iwin®~?,

=1

|I22| = n?~'|DBY|,



as shown by (2.2). Thus
7l 1

xX —.
|L2| 7

Because 7%(¢p|n) is proper and does not depend on 7, the following proposition is immedi-

ate.

Prop'osition 2.1 The direct reference prior on (n,¢) is

Lolyly _ |In['?
p _2lySy (I
T (77,90) - 771/2 - np/z

The reference posterior is

I 1/2 B
(0, ple) o« 22 exp{~ (s~ 65 (a - /2], (23)
where 8 = (0y,...,0,) 13 given by (2.1).

The prior 7™(n,¢) = n71/2, i.e. 7*(8) = ||9]|~»~Y, which corresponds to the case
Y = I, will be called the naive prior.

2.8. The reverse reference prior.  Another reference prior, 7", can be constructed for
this model; #" is called the reverse reference prior because it considers the parameter of
interest, n, and the nuisance parameter, ¢, in the reverse order during the derivation. We
thus condition first on the nuisance parameters in order to derive the distribution of the

parameter of interest. In this case, we have

I I
Iom) = [g; i;j]

and

. 1, ._ -1 . -1 . .

1 = E(/\l Veos® o1 + Ayt sin® g cos® g + ... + Ay sin® ¢y ... sin? Pp—1)-
Therefore, the distribution of #, conditional on ¢ and on any compact of IR}, is

7 (k) o Vit o 1/

The marginal reference distribution of ¢ is then

" (¢) o< exp {IE [(1/2) log(|1|/ir1)l¢]}
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where IE stands for expectation w.r.t. 77(n|p) on the compact. Noting that

!—I—I =P (ﬂ)
11 %11

this marginal distribution is given by
7"() ox exp { (1/2) og(11/ins)lmn } = VITT/imi| _,

The following proposition follows directly.

3
n=1

Proposition 2.2 The reverse reference prior on (1,¢) s
w(1,p) = ———r=
\/_ 2! |1)=1

and the associated posterior is
\I[\/2

" (n, wlw)ocﬁexp{ (z—6)'S7(z - 6)/2}. (24)

Obviously, the two priors (direct and reverse) coincide when I, = 0. In particular,
this is the case when ¥ = I,. We show in the appendix that the three priors lead to proper
posterior distributions.

3. COMPUTATIONAL ISSUES
d

", allow for a rather

The reference priors, 7% and 7", as well as the naive prior, 7
straightforward numerical computation of the posterior distributions through Gibbs and
importance sampling. In fact, as distributions of § (in the natural parameterization), these
three posteriors involve the expression

e— (=0T (z—6)/2

[ (31
since
P40l o 1 o= &=
||9l| |H|
|H|||o||=1 |6]]7—* ’
1/2 ,—(z—0)'5"1(z—8)/2
77 (0|z) | °

|H Vi 16112
1 e—(z—@)tE"l(:c—O)/Z
X = ,
VZ11|”9”=1 HGHP—I
e—(z—0)'T "N (z—6)/2
16117 ’

7" (flz) x
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and |I| = |H|?/|Z|. This decomposition suggests the following simulation lemma.

Lemma 3.1 Posterior ezpectations IE™[h(0)|z] with respect to one of the three
reference priors can be approzimated by providing o simulated sample from (8.1)
and using, as importance sampling weights, the quantities

d ||6]|=1 r n
w(l) = —————, w'(f) = — = — and w"(0) =1.
®) |H{jj0)j=1 @) Vil V’11|||o||=1 ©

Proof. Usual importance-sampling arguments can indeed be invoked in this case since

the weights are bounded. For the reverse reference prior, we have from (2.5)

-1
(Vi) <2500 v/
The case of the direct reference prior is slightly more intricate. Note that we can write

Is = HiX 1HL.

And, for n =1,
Hl _ Hl
|H|  |sin? "2 ¢p;...sinpp-2]
- hl
ha/|sin 1]

= hs /| sin p; sin |

L hp—1/|sinpysing;...sinp,_g|

T —sing; cos P €oS P2 COS (1 ...COSPp_1 COS 1 ...8INYp_1
_ 0 Fsin g tcospz...cospp1 Fcospsz...sinpp_
L 0 0 Fsingy—q + cos pp_1
Therefore,
Hy _ Hy V2
\Lo|/|H| = | 5727 5
|H|  |H]|
is indeed bounded. mm
For later reference, note that, when Ay = ... = A, = 1, the weights are

wt = \/cos2 @1 +sin® 1 /A1, w' = {/\{'1 cos? 7 + sin? gol}—lﬂ ,
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since

cos? o1 + A7 sin® ¢y 9 0
0 sin 0
I22 — 1
0 sin? P1.-. sin? Pp—2

One incentive for using importance sampling is that the three posterior distributions can be
evaluated from the same sample, generated from (3.1). Note that the Metropolis algorithm
could also be used in this setup with (3.1) as a proposal distribution, since the weights are

bounded and this property guarantees geometric convergence (see Mengersen and Tweedie,

1996).

A sample 6y,...,0,, from (3.1) can be obtained by Gibbs sampling using the following

‘hidden mixture’ representation:

+o0
7(6|z) =/0 (0, z|z)dz,

with

(8, z|z) o e~ =TT =0 /2110112 (p—1) /21

o e{—%(O-—(E'1+2zI)"12'11:)’(2_1+2zI)(0—(E'1+2zI)"12"1z)}z(p—-l)/z—].

The full conditional distributions are then easily available; indeed
n(z18,2) is  Ga((p—1)/2,]16]%), (3.2)

7(0lz,z) is N ((E7'+22)7'8 7', (871 4 221)7), (3.3)

and simulation from both distributions is straightforward, especially when ¥ is diagonal.
The Gibbs sampler then produces a sample (61,21),...,(0:, z¢) by successive simulations
from (3.2) and (3.3), and the chain (8;) converges to (3.1) in distribution (see, e.g., Robert,
1994).

Lemma 3.1 provides the correction weights w? and w” for both reference priors and
allows us to use the same sample 6,65, ... from the naive prior. Equal tailed a—credible
regions are then easily constructed for the three priors and their frequentist coverage can
be evaluated by regular Monte Carlo simulation. For instance, Figure 3.1 illustrates the
behavior of the different priors when p = 2 and A, = 1, for different values of 6;, 05,
and A;{. Small values of the 6; and A\; show a clear domination of both reference priors
over the naive prior for most values of a. It is only when « gets close to 1 that the
reference credible regions are less satisfactory, the nominal coverage probability being too

optimistic. When the 6; and \; are large enough, the coverage properties of both reference
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Figure 3.1 — Nominal versus true coverage probabilities of the equal tailed « credible
regions when p = 2 and A; = 1, for different values of (61,602,A1). (The frequentist
probability matching prior is discussed at the end of Section 4.) The Gibbs sample is of
size 5000 and the Monte Carlo evaluation of the covérage is based on 2000 replications.

priors are uniformly very good and slightly dominate those of the naive prior. In addition,

comparison between the direct and reverse reference priors turns slightly in favor of the
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reverse prior. There are, however, cases where the frequentist coverage properties of the
three priors are very poor: this occurs for small values of the 6; when A, is large. In
these cases, the three priors behave similarly and the nominal coverage probability is too
optimistic.

4. ASYMPTOTICALLY OPTIMAL COVERAGE

Recent developments in the noninformative prior literature have considered the fre-
quentist coverage properties of various classes of improper priors in order to determine
priors such that one-sided posterior a credible regions (for the parameter of interest) have
also approximately « frequentist coverage; such priors are often called frequentist probabil-
ity matching priors. References for this approach are Welch and Peers (1963), Peers (1965),
Stein (1985), Tibshirani (1989), Ghosh and Mukerjee (1992, 1993), and Datta and Ghosh
(1995) (see also Berger and Bernardo, 1992b). In particular, from Peers (1965) (see also
Stein, 1985, and Tibshirani, 1989) it immediately follows that, if § = (n,w) corresponds
to an orthogonal parameterization of 8 (in the sense that the Fisher information matrix is
block diagonal), then priors in the class

m(n,w) o g(w) Iy (n,w)[*/* (4.1)

lead (asymptotically in the sample size) to the proper frequentist coverage behavior for
one-sided credible regions for n. In (4.1), I,,, denotes the sub-matrix of I(n,w), the Fisher
information matrix, which corresponds to the parameter of interest, . Note that, under
the orthogonality assumption, I(n,w) can be written

Iaw) = | 001 (42)

It is easy to see from (4.2) why the reference prior approach does not necessarily lead
to a distribution satisfying (4.1). Note that the Jeffreys prior associated with (4.2) is

w7 (n,w) o< {Ing(n,w)""? | Lo (n,w) '/,

which satisfies (4.1) only if I, does not depend on 5. A very interesting fact, however, is
that a reference prior considering the order n-w, i.e. a reverse reference prior, leads to

7" (n,w) o< 77 (W) [ Tyn(n, w) 1%, (4.3)
which satisfies (4.1).

Unfortunately, the use of priors satisfying (4.1) calls for an orthogonal parameteriza-
tion of 6 in (n,w). This is not always possible (see Cox and Reid, 1987) and, moreover,

9



when w is multidimensional, the solution of I, = 0, i.e. of several partial differential
equations, is typically infeasible. In the following, we only consider the case p = 2 and
show that the reference priors do not qualify as frequentist matching priors, although their

coverage properties are usually acceptable, as shown by the earlier simulation.

Let (n,w) be in one-to-one correspondence with (6, 6;). If w(;) denotes Ow/96; (i =
1,2), the Jacobian matrix is

D(n,w) _ [291 292]

D(61,62) lw@) w2
and the Fisher information is given by
w —w x-! w —20
Inw)= | “@ (1)] [ @) z]
("7 w) [—202 201 4((,0(2)01 -—_ w(1)92)2 —UJ(I) 201
= : [ w(zz)’\i—1 + “"(21))‘2’_1 _2(“’(2)‘92’\1_1 + w(1)61 )\2_1)]
Hwb —w@)’ | =2webe A" +wabiAy") 463077 +61057)

Moreover, the orthogonality requirement leads to the partial differential equation
/\zw(2)02 + Alw(l)ai =0, (4.4)

which is only satisfied by functions of the form

w = |01|A2>
=1 (lezl’“ (4.5)

in each quadrant of IR?.

Note that (4.5) implies

_ o (1812 16112 s
“ay) =¥ (lezw) R

and

o (18122 161]*2 =)
w@ =Y (|92|*1> 6221 6,

Therefore, the prior distributions in (4.1) are of the form

°(1,w) o< g(w) [Lyq(n,w)|"?

Vel +
X

2|UJ(2)01 — w(1)92|
o (w) \/)‘2)\%/9% + A /\%/9%

TN 0265/61 + X161/65)]
o 9w

VA26% 4+ X632

10
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In terms of (61, 6;), this gives the following family of priors:

1
6, — 6
N EDY lw(z)b1 — wayb2|
1 Wﬂ“)l&ﬁ’ 61 &
o g(w(6y, 6 '( A==+ A=
g( ( 1 2)) ,—Wg ¢ l02|A1 |021A1 102 201
V162 + X262
o h(w(8y, 6,)) VLA T+ 205 (4.6)

6162

7l'o(01 ’ 92) X g(w(al, 92))

The reference priors developed in §2.2 and §2.3 do not satisfy (4.6) and, therefore, are
not “acceptable” under the frequentist probability matching criterion.

Lemma 4.1 The direct and reference priors cannot be written in the form (4.6),
unless ¥ o I.

Proof. (a) The direct reference prior is given by
wi(61,60) = 1al* [ 161P
=405 i

Were 7¢ of the form (4.6), there would exist a function h such that

VMO2 + 202 k(1612 /16, / 62621 = /X762 + 25762 /1617,

h (I01|*2) _ 16:65] _ (noll N |az|)"1 . (M)
6:1%) = TieE ~ \leal * o] 62|

This is impossible, unless A; = As.

l.e.

(b) In the same way, if (4.6) was satisfied by 7", there would exist a function A such

that
1
\/A162 + 2,62 h(|491|"2/|62|’\1)/|0102| = ,
VAT + 25163

i.e. \

0,172 6,6 0

h('aﬂh) = 2 | . 2| : _ :t(%). (4.7)

|62 VA0Z + 2262/ 0162 + X, 62 (24

Again, (4.7) cannot be satisfied unless A\; = As. mm
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When A; # Ag, it is difficult to find a prior of the form (4.6) for which the posterior
is proper. A lengthy search uncovered the following solution. Choose 1 to be the identity
function in (4.5), so that

w = |6;]*2/]62]*.

Then, in the second line of (4.6), choose
g(w) = w1+ w T )(1 + (log w35)?),

where we assume, w.l.0.g., that A; < Ay. Then the last line of (4.6) can be written (defining

v = A1/A2)
[1 + v62/62]1/2
(161] + 162]7)[1 + (log 61| — ylog |62])?]

As proved in Appendix A.3, this frequentist probability matching prior leads to a

7r°(01,92) x

(4.8)

proper posterior distribution. Figure 3.1 shows, however, that the performance of this
prior is inferior to that of the reference priors for the cases considered. Given this poor
small sample performance and the difficulty of finding a usable probability matching prior,
even for p = 2, the clear edge would seem to lie with the reference prior methodology here.

5. THE PARTICULAR CASE OF THE IDENTITY MATRIX

When X is the identity matrix, I, it is possible to provide a closed form expression
for the Bayes estimator, IE"[n|z]. In this case, the three reference priors discussed above

(naive, direct and reverse) are identical and equal to 7" (1, ) = n~1/2.

c

Proposition 5.1 The Bayes estimator associated with the prior m.(n,¢) =n~
(¢ < 1) under squared error loss is

1F1(2 - ¢;p/2;]|2])?/2)
1Fi(1—¢;p/2; ||2|[2/2)’

§7(z) =2(1 —¢) (5.1)

where 1 F} is the confluent hypergeometric function.
Proof. Let us denote z = [[z|[*>. Then, z ~ x2(n) and

Jn(z/m)®=D e~ D2,y ((/27)n~dn

6T (z) = }
‘O = T e e s (=

We have

+o0
/0 (z/m) P~ e AL, o (Vamm™2dy

12



+-oc0
o / e~ 2 Ip-a (y/20)dn
0
where ¢=(p—2+4c)/4

oo, —2¢ .
oc/ e /2 [ (u)udu
0 z—9q 2

+oo 2
= zq/ ul™29e% /221,y (u)du
0 2

r(&2+1- — —
=29 (4 + q) 11 p-2+4 4q;P/2§Z/2
2—-29+(p—2)/2 2
T(p/2)2¢/2 (1/+/22)

(Gradshteyn and Ryzhik, 1980)

_ (p+2)/4 I'(l-c¢) — .
e 1P (L aip/%2/2)

Therefore,

z(P+2)/4I‘(2 — c)21‘(°—1) 1F1(2 — ¢;p/2; 2/2)
ZPHD/AT(1 — ¢)21~c 1 Fi(1 —c;p/252/2)

1F1(2 — ¢;p/2;2/2)

1Fi(1—¢;p/2;2/2)

87(z) =

[+

=2(1-¢) mm

We are thus able to directly compute the Bayes estimator in this case. (Note that
the confluent hypergeometric function is now implemented in most packages, including
Mathematica and Maple. For instance, Figure 5.1, which gives 67 for several values of c,
is obtained by Maple) The expression (5.1) also leads to the following asymptotic approx-
imation to 87:

Corollary 5.2 As z = ||z||? goes to infinity,

87(z) =z—(p+4c—4)+0o(1).

Proof. It follows from Abramowitz and Stegun (1964) that

1F1(d;p/2;2/2) ~ —I‘éz()g) e*/2(z/2)2- (/) (1 + (1- d()z(;’z/? - d)) .

Thus,

(2 = 6i9/25/2) | T1=6) L oamomaog 14 (e = D(p/2+ e =2)/2)
(1 —cp/%22)  T@=0) T+ (2e(p/2 + c— 1)/2)

13
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Figure 5.1 — Graphs of 67 for ¢ = —-0.1,0,---,0.9 and p = 10.

and

1) == (14 2em DS 2H B/ (1 _pele= 1+ 0/2)

z z

~ s (1 Lole=D(e=2+(p/2)) —cle—1+ (p/2)))

z

=2z —2(2c—2+(p/2)). mm

It is of interest to consider the frequentist risk of §7 under squared error loss and for
large values of 7. Indeed, using Corollary 5.2 it can be shown that, for large 7,

E,(87(z) — n)® ~ 2p+ 4n + 16(c — 1)*.

Hence it would appear that ¢ = 1 is an attractive choice. Unfortunately, the posterior
resulting from this choice is not proper. Furthermore, it is natural here to consider a
weighted loss such as

(6(z) —n)*/(2p + 4n),

and for this loss it can be shown that mo(n,¢) =1 (i.e., ¢ = 0) is optimal for large 5. Not
only is the reference prior (¢ = 1/2) intermediate between these two extremes, but the
resulting Bayes rule can be shown to be optimal for large  under the “intermediate” loss

(8(z) —n)*//2p + 4n.

14



It is interesting that this decision theoretic behavior of estimates of n is very similar to the

behavior of estimates of scale parameters.

APPENDIX

A.1. The naive prior results in a proper posterior.

According to (3.1), the posterior for the naive prior is proportional to
9(0) = |16|' =" exp {~(= - 6)'E™" (= - 6)/2} .

Consider the polar coordinates of # as in §2.1; then § = \/fa = ra with a = (a1(¢), -+, ap(p)
= (@1, *+,ap). The associated Jacobian is

A, =P cos? 2 (1) - -+ cos(pp2)-

Therefore,

/ g(0)do = / / Apexp {—(z - ra)'E_i(a: —ra)} r' Pdrde

R ¢ JR+
= / cos® (1) - -cos(gop_z)/ exp {-—(a: —ra) 7 (& - ra)} drde
3 R+
Denoting < o,z >= 'Y "'z and N(a) =< a,a >, we get
/ exp {—(:v —ra) L (e - ra)/2} dr
R+

= /R+ exp {—(N(z) - 2r < a,z > +r2N(a))/2} dr

= exp{—N(z)/2} /1;+ exp {_Nga) (—2T<]\C;Ez)> +7-2)} dr

= eX - T ex "<(l,—z>2 ex - o T—w‘z 2 T
= enl-N@Be {5 [ p{ v (- 52 }d

< exp{~N(2)/2} exp{< o,z >? /2N(a)} -]%

which implies

< a,z >?

/R,, 9(6)df < Te=N® / c0s"~2(p1) ++ cos(pp-3) exp {“W} (V@)™ dp (A1)

where I is a constant. Since a belongs to the unit sphere,

0<infA]' < N(a)<sup)' < oo.
i<p i<p

15



Therefore (A.1) is bounded and the posterior is proper.
A.2. The reverse and direct reference priors result in proper posteriors.

Since, according to Lemma 3.1,
1(0le) < w?(0)g() and  x"(8]z) xx w"(8)g(8),

with w"(0) and w*(#) bounded, the posterior distributions associated with both direct and reverse
reference priors are proper.

A.3. The frequentist probability matching prior results in a proper posterior.

We want to prove that

-1 _ _
/ /exp{——z——[)\l Yoy — 0:1)° 4+ 27 (z2 — 02)?]} 7°(01,602)d0:1d0; < oo.
For simplicity, we only integrate over #; > 0 and 63 > 0. Note that, since A\; < Az,
[\165% + A2677)% < Xo[07" + 0657, (A2)

It is immediate that 7°(61,02) < s for 62 > 1, so the integral is clearly finite over this region.
For 65 < 1,
(01 +67)7" < (6:4+62)77,

which together with (A.2) implies that

Az

2(01,6,) < .
m(61,02) < 85[1 + (log 01 — ~log 02)?]

Thus

co 1

-1 1
//exp {K(ml — 91)2 - 5/\—2(.’122 - 92)2} 7T0(91,02)d91d02
0 0

1

1
<A —(=1-01)*/201 d6,db;.
- 2//6 021 + (log 61 — vlog 82)?] ~°
0 0

Defining ¢ = log 62 and changing variables yields the equivalent integral

oo 0
1
A —(z1-01)%/2) dedo
2/ / € [1 + (log 61 — v£)?] §dbn,
0 -—oo

which is clearly finite.
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